
1

Web Application in Go using Three Layered Architecture

Major project report submitted in partial fulfillment of the requirement
for the degree of Bachelor of Technology

in
Computer Science and Engineering

By
Kashish Gupta (181476)

UNDER THE SUPERVISION OF
Dr. Rajni Mohana

Department of Comp

uter Science & Engineering and Information Technology

Jaypee University of Information Technology, Waknaghat, 173234, Himachal Pradesh,
INDIA

2

DECLARATION

I hereby declare that this project has been done by me under the supervision of Dr.Rajni Mohan,
Affiliation, Jaypee University of Information Technology. I also declare that neither this project nor
any part of this project has been submitted elsewhere for award of any degree or diploma.

Supervised by:
Dr.Rajni
Assistant Professor (SG)
Department of Computer Science & Engineering and Information Technology
Jaypee University of Information Technology

Submitted by:
Kashish Gupta(181476)
Computer Science & Engineering Department
Jaypee University of Information Technology

3

CERTIFICATE

This is to certify that the work which is being presented in the project report titled “Three Layer
Architecture in GO” in partial fulfillment of the requirements for the award of the degree of
B.Tech in Computer Science And Engineering and submitted to the Department of Computer
Science And Engineering, Jaypee University of Information Technology, Waknaghat is an authentic
record of work carried out by Kashish Gupta (181476) during the period from 7 Feb & 2022 to 29
May under the supervision of Dr.Rajni, Department of Computer Science and Engineering, Jaypee
University of Information Technology, Waknaghat.

Kashish Gupta
(181262)

The above statement made is correct to the best of my knowledge.

Dr.Rajni
Assistant Professor (SG)
Computer Science & Engineering and Information Technology
JUIT, Waknaghat

Mithali R Shetty
Senior Lead Engineer
Zopsmart Technology

Dated: 27-05-21

4

ACKNOWLEDGEMENT

Foremost, I would like to express my heartiest gratefulness to almighty God for his

divine blessing that made it possible for mr to complete the project successfully.

I am extremly grateful to my supervisor, Dr.Rajni Mohana, Assistant Professor (SG) ,

Department of CSE Jaypee University of Information Technology, Waknaghat, for her

assistance. To complete this assignment, my supervisor has extensive knowledge and a

deep interest in the subject of Web development. His never-ending patience, intellectual

direction, constant encouragement, constant and energetic supervision, constructive

criticism, good suggestions, and reading many poor versions and fixing them at all

stagesmade it possible to finish this job.

I'd like to thank Dr.Rajni Mohana, Assistant Professor (SG) , Department of CSE, for

her invaluable assistance in completing my project.

I would also like to express my gratitude to everyone who has directly or indirectly

assisted me in making this project a success. In this unique scenario, I'd want to

appreciate the different staff members, both teaching and non-teaching, who have

developed their helpful assistance and facilitated my project. Finally, I must express my

gratitude for my parents' unwavering support and patience.

Kashish Gupta

5

TABLE OF CONTENTS

CHAPTER 1 : INTRODUCTION

1.1 Introduction

1.2 Objectives

1.3 Motivation

1.4 Language Used

1.5 Technical Requirements

1.5.1 Hardware Configuration

1.5.2 Software Configuration

CHAPTER 2 : LITERATURE SURVEY

CHAPTER 3 : System Design Diagram

CHAPTER 4 : IMPLEMENTATION

4.1 Identification of features

4.2 SQL Schema

4.3 Study Material:

4.3.1 Linux

4.3.2 Go

4.3.3 RestAPI

4.3.4 Handlers

4.3.5 Middleware

CHAPTER 5 : CONCLUSION

5.1 Results Achieved

5.2 Applications

5.3 Limitations

5.4 Future Work / Scope

6

REFERENCES

LIST OF FIGURES

Fig. No Name of figure

1. System Design Diagram

2. Zopsmart logo

3. GO Workspace

4. SQL Schema

5. Code Snippets

6. Test Coverage

LIST OF TABLES

Sr. No Name of table

1. Hardware Configuration

2. Software Configuration

7

ABSTRACT

Creating a web application is quite simple but the challenge comes when the code has to be tested,
structured, cleaned and maintained and thus here we follow the Three Layered Architecture using
Go language.

The three layers are handler, service and datastore which are all independent of each other. The
handler layer receives request body and then parse anything that is required from that request. It
then calls the service layer where all the logic of program is defined, ensures that the response is the
required format and writes it to the response writer. This layer further communicates with the
datastore layer. It takes whatever it needs from the handler layer and then calls the datastore layer.
The datastore layer is where all the the data is stored. It can be any data storage. The use case layer
is the only layer that communicates with the datastore. That is how we test each layer independently
making sure that no layer affect other.

8

CHAPTER 1 : INTRODUCTION

1.1 Company

ZopSmart is a softaware solution technology company that provides you with all the tools to build
your e-commerce business, . ZopSmart has a suite of products that will help you build the perfect
business you’re aiming to open and run. It has different products such as Smart Store Eazy, Smart
Payment Gateway, etc. Zopsmart is building next generation technology for the retail sector and
their customers range from a small furniture shop to multinational retail chains and solutions
include an e-commerce platform,Digital Marketing , m-Commerce, automated logistics systems,
management platform, order management platform, and iOT devices. It also provide software
solutions to some of the top-most firms and has it’s ownframework to work on.

1.2 Introduction

It is a basic web application that implements CRUD operations based on the three layered

architecture. Programs at each layer have their own unit test. There is also an implementation of

middleware that authenticates the http request before sending it to the server.

1.3 Objectives

To create testable, structured, clean and maintainable web applications by using industrial best

practices.

1.4 Motivation

To apply industrial best practices and create a fast, scalable and secure web application.

1.5 Libraries/Frameworks Used

GO - An open source programming language developed by Google engineers aim to build simple,

reliable, and efficient code for applications.

GO provides various packages that are used in this project such as:

8

9

1. net/http: This package provides http client/server implementations.

2. json: Encoding and decoding of JSON is implemented by this package.

3. errors: Manipulation of errors is implemented by this function.

4. database/sql: This package provides a SQL-like databases.

And for unit testing: gomock and sqlMock is used

MOVING FORWARD WITH GO

All the backend framework such as implementing http request, sending response to server, writing

program logic etc is written in Go.

1.5 Technical Requirements

- GOLand is an IDE to write clean code .

- Postman API platform for building and using APIs.

- Mysql server provides a database management system with querying and connectivity
capabilities

1.5.1 Hardware Configuration

Table 1 : Hardware Configuration

Processor Apple M1 chip, 8-core CPU

RAM 8 GB

Hard Disk 256 GB SSD

Monitor 13’’

Mouse

Keyboard

1.5.2 Software Configuration

9

10

Table 2 : Software Configuration

Operating System Ubuntu

Language GO

Runtime environment GO runtime

Package Manager GO

CHAPTER 2 : LITERATURE SURVEY

1) GO Documentation
Designed at google by R Griesemer, R Pike, and K Thompson, go is a statically typed, open
source, compiled programming language.

2) MySQL Documentation

MySQL i.e My Structured Query Language is an open-source relational database
management system that helps us to store data, fetch details, delete an entry etc.

3) GoMock

gomock is a mocking framework for the GO programming language and is used to integrate
well with Go's built-in testing package.

4) Git and Github

Official documentary that familiarizes you with the concepts of a version control system i.e
Git and how it works with GitHub.

10

11

CHAPTER 3 : System Design Diagram

CHAPTER 4 : IMPLEMENTATION

4.1 Identification of features

The web application features:

- Creation of an entry with car and engine details

- Updation of the existing system

- Deletion of an existing entry

- Fetching details based on car/ engine ID

- Fetching details based on car brand name

- Fetching details based on car brand name and availability of engine details

4.2 SQL Schema

11

12

4.3 Study Material

LINUX

Unix based OS with both command line interface and graphical user interface.
BASH(Bourne Again Shell) is a Unix shell and is the default shell in Linux.

Package manager is used for installing, upgrading and cleaning packages. Default package manager
of Ubuntu is apt-get: Advanced Packaging Tool (APT), SUDO: superuser do or substitute user do

There are several processes running in the system environment, there are several variables set in the
environment too called Environment variables and they affect the processes using them. If the value
of these variables changed, processes using them will be affected.
We can set environment variables in ~/.bashrc or ~/.bash_profile. These are hidden files (hence start
with a dot). Both are present in the home directory(~).

PATH: specifies the locations to be searched to find a command.

LINUX Commands:
1. ls: lists the files in a folder.
2. cd: change directory
3. touch: used to create an empty file.
4. pwd: print path to the folder we are currently working
5. mkdir: creates a folder or multiple folders

To create nested folder -p mkdir folder/new
6. rmdir/rm: to delete an empty folder/ rm -rf folder(if another files/folder inside)
7. mv: move/ rename files cat: concatenate -> lists the contents of file

12

13

8. chmod: It sets the file permissions flags(define who can read, write to or execute the file) on
a file or folder.

9. vi: visual editor

Go Workspace

It’s a hierarchy with two directories as it’s root:
1. src: containing goo source files,
2. bin: containing executable commands

GOPATH environment variable: It specifies the location of your workspace.
GOROOT is a variable that defines where your Go SDK is located.

GO Packages
Each and every go program is made of packages. All the program in go enviroment start running in
the main package
math/rand:- In package rand, environment is deterministic i.e. when run rand.In return same
number, and if we want different results each time we use, rand.Seed
With import use ()-for clarity[Factored statement] and " " with packages
When exporting names use Capital letter with its package- ex: Pi(math.Pi)
We can use fmt: formatted i/o package to format all this.

13

https://www.howtogeek.com/67987/htg-explains-how-do-linux-file-permissions-work/

14

Functions:func()

In GO a function can take 0 or more agrs. The type of a function comes after variable name
func add(a int, b int) int{ return a+b}

To call a function- func main(){ add(9,2)}
ex- add(int a, int b): add(a, b int)
A function can return any number of results
ex- func swapString(str1, str 2string) (string, string)

{ return str2,str1}
func main(){ str1,str2:=swap(“A”,”B”) } [:= assignment operator]

Import:

In go we import all the paxkges and libraries in alphabetic order.
First all the inbuilt packages are written followed by third party packages.

File Watchers:

It is a tool that is used to Imports all packages, formatting: Correct all the indentation, makes code
standard and clean, etc.

Variables

We use var to declare a variable or a list of variables. The variables can be at package or function
level
declaration: var i int; default int=0, bool=false
We can include initializer one per var.

Ex: var i, j int=4,2
var k, j= false, “no!”

Inside a function, we use := for short assignment statement can be used in place of var decleration
with implicit type but outside a function, we can’t use :=; we have to use var, func,etc.

Ex:func main(){
var m, n int=3,2
k,n:= true,”no!”
}

White creating variables we should always avoid global variables
Variable declaredawithoutaanaexplicitainitialavaluea are 0, numeric; false for boolean and “” for
string

Type Conversion

Type Converts say integer to float or vice-versa i.e convers obe var type to other.
eg: var j int=32
f:= float64(j)

14

15

Type Interface

If we have a declaration on rhs, the new var takes the same type.
Ex- var i int

j:= i
But when not specified, say v:=42; then the type depends on precision.

Constants

We define constants using const.
Constasts can be char(character), string, boolean, or numeric values.
They cannot be declared using :=
Numeric const have high precision values

FOR

In go we have only for; no while or do while loop
1. for loop:

for i:= 0; i<20; i++
2. for loop behaving like a while loop:

for ; j<20; —> j>=1
for i<10→i>=1

3. for loop behaving like do while loop
for v=0;v<10; here v is local to for

IF

In if statements of fo we do not need to use () but {} is required.
If with short statements meaning if can start with a short statement before excution but it should end
with a semicolon.
Variables that are declared insid an if short statement are also available inside any of the else blocks.

SWITCH

Switch of go works a little differently. Go runs only selected cases, not all cases that follows
In go, break statements are not required after every case.
Switch cases need not be constant.
In switch values can be anything, not specifically an integer.
In go, switch evaluates from top to bottom
Switch without a condion is same as true- if,if-else
We cannot have two cases with same condition ie. no duplicate case or it gives us type mismatch
error or compile time error.

15

16

DEFER

Aadeferastatementadefersatheaexecutionaofaa functionauntilbthebsurroundingbfunctionbreturns.
Thebdeferredbcall'sbargumentsbarebevaluatedbimmediately, butbthefunctionbcallbisbnotbexecuted
untilbthebsurroundingbfunctionbreturns.
Deferbcallsbarebpushedbin a stackbandbthus it printsbin LIFO,blastbin firstboutborder.
Usebdeferbkeywordbtobdefinebdeferbstatements.

POINTERS

Pointers holds the memory address of any value that is provided to it.
*K, a pointer to K value, *pointer value
To dereferencing/ indirecting, *k=28 ()
Pointer’s zero value is nil.
declaration: var k* float, for example
& operator generates a pointer to its operand: k=&i→ k=*p

STRUCTS

Structs are collection of fields
ex: type V struct{

X int

Y int }

Func main(){

print(V{1,2})

} - basically prints 1,2

Struct fields are accessed using v= V{11,12}.
To access an struct field we use a struct pointer.
var (

v1 = Vtx{11,1 2} // has type Vertex

v2 = Vtx{X: 11} // Y:0 is implicit

p = &Vtx{11, 12} // has type *Vertex

)

ARRAYS

Arrays are where we can store a collection of elements. Array length is part of its type i.e. cannot be
resized

16

17

to declare and array :
Arr[] int
Arr=[] int {1,2}

SLICES

In go we use slices as dynamically sized array
declaration S [low:high]; incl. low
Slices are like references to array
It doesn’t store any data, we just describe a section of an array
Changing the elements of a slice modifies the corresponding elements of its underlying array and is
reflected in other slices that share common elements.
Eg: a:= names[1:2]; names-array
A slice literal is an array literal without the length.
A slice structure, internally contains a pointer, length and a capacity field.
len(s): length of slice or we can say number of elements in slice.
cap(s): capacity of slice or we can say number of elements in underlying array
Zero value of slice is nil. and thus length and capacity is nil i.e len=cap=0
Slice can be made with build-in func make that is how we create dynamic sized array.
Make creates zeroed array and returns slice that refers to the array.
Ex: a:=make([]int , len)

a:=make([]int, len, cap)
Slice can contain any type including other slices. We can also append elements in a slice using
append(slice, element1,element2…).
If the capacity of the slice is less than the no. of elements to be appended, it automatically doubles
the capacity. : cap(s)+1)*2: and creates a new slice, new memory is allocated and changes are not
reflected on underlying array.

RANGE

A Range is a form of for loop that iterates over a slice/map.
For each iteration it returns an index and copy of value at that index.
We can also skip the index or value by assigning _.
Syntax:

for j, _ := range power
for _, value := range power

If we only want index we can omit the second variable
for j:=range power

<< : times 2
>>: divide 2
For example, 1 << 5 is "1 times 2, 5 times" or 32. And 32 >> 5 is "32 divided by 2, 5 times" or 1.

MAPS

17

18

A map maps keys to values
Zero map has value nil. A nil map has no keys
If the top-level type is just a type name, you can omit it from the elements of the literal.

Ex: var m map[string]Vertex

func main() {
map = make(map[string]Vertex)
map["B Labs"] = Vertex{

40.68423, -74.39867,
} ; Or we can omit vertex

Mutating maps
To insert/update: m[key]=elem
To retrieve : elem=m[key]
To delete: delete(m,key) : to delete a key
To test if key is present: elem, ok=m[key] ; ok=true if key present else false
If we can’t find key in the map, then elem is the zero value for the map's element type.
A key in any given map cannot be slice.

PANIC: run-time error

Variadic Fuctions

fmt.Println: It is an empty interface
Variadic PARAMETER: …: can pass 0 or more values and can be of any type
In an argument list, variadic is last variable

Function Values

Functions are values too which can be passed around just like other values.
Function values may be used as function arguments and return values.
When it comes to Go function, it maybe closure.
A closure is a function value that references variables from outside its body.
The function may access and assign to the referenced variables; in this sense the function is "bound"
to the variables.

METHODS

Abmethodbisblikebabfunctionbwithbabspecialbreceiverbargument.
Webcanbdefinebabmethodbwithbabreceiverbwhosebtypebisbdefinedbinbthebsamebpackagebasbthe
method.
Thebreceiverbappearsbinbitsbownbargumentblistbbetweenbthebfuncbkeywordbandbthebmethod
name.

18

19

We can define methods on type.
We can define methods on non-struct types also.
Youbcanbonlybdeclarebabmethodbwithbabreceiverbwhosebtypebisbdefinedbinbthebsamebpackage
asbmethodbincludingbbuiltbinbtypesblikebint.
Therebarebtwobreasonsbtobusebabpointerbreceiver:
Thebfirstbisbsobthatbthebmethodbcanbmodifybthebvaluebthatbitsbreceiverbpointsbto.
Thebsecondbisbtobavoidbcopyingbthebvaluebonbeachbmethodbcall. Thisbcanbbebmorebefficient
if the receiverbisbablargebstruct.
Allbmethodsbonbabgivenbtypebshouldbhavebeitherbvalueborbpointerbreceivers, butbnot a mixture
ofbboth.

Receiver Arguments:

● Value receiver argument can only reference methods with value receiver whereas pointer
receiver argument references methods with both value and pointer receiver: METHOD
SETS

● We use value receivers when we don’t want changes to be reflected in the original value,
while using slices, maps, etc

● We can use a pointer receiver when we want the changes to be reflected or when we want to
access methods either way or when the struct is quite large to avoid duplicate copies.

INTERFACES

Interface type is defined as method signature of a particlare underlying base.

Abvaluebofbinterfacebtypebcanbholdbanybvaluebthatbimplementsbthosebmethodsbi.ebsame
methodsbwithbdifferentbtypebisbimplementedbbybinterface]

Syntax: type name interface{}

Interfacesaareaimplementedaimplicitly.aTherebisbnobexplicitbdeclarationbofbintent,bno
"implements"bkeyword.

Zero value of interface is nil.

Abstract type underlying which is our concrete type (struct, float, etc): can be thought of as a tuple
of a value and a concrete type: (value, type)

In case of pointer receiver: (&{Hello}, *main.T)

Ifbthebconcretebvaluebinsidebthebinterfacebitselfbisbnil,bthebmethodbwillbbebcalledbwithbabnil
receiverb&bdoesn’tbtriggerbabnullbpointerbexception.
Interface value that holds a nil concrete value is itself non-nil.
Abnilbinterfacebvaluebholdsbneitherbvaluebnorbconcretebtype.
Callinbabmethodbonbabnilbinterfacebisbabrun-timeberrorbbecausebtherebisbnobtypebinsidebthe
interfacebtuplebtobindicatebwhichbconcretebmethodbtobcall.
Thebinterfacebtypebthatbspecifiesbzerobmethodsbisbknownbasbthebemptybinterface:binterface{}

19

20

Anbemptybinterfacebmaybholdbvaluesbofbanybtype.bEverybtypebimplementsbatbleastbzero
methods.bEmptybinterfacesbarebusedbbybcodebthatbhandlesbvaluesbofbunknownbtype.
var i interface{}
i=42 (type->int)

TYPE ASSERTION

Abtypeaassertionaprovidesaaccessatoaanainterfaceavalue'saunderlyingaconcreteavalue.

t:=i.(T):aThisastatementaassertsathatatheainterfaceavalueaiaholdatheaconcreteatypeaTaand
assignsatheaunderlyingaTavalueatoatheavariableat.aIfaIadoanotaholdaaaT,atheastatementawill
triggeraaapanic.

Aatypeaassertionacanareturnatwoavalues:atheaunderlyingavalueaandaaabooleanavalueathatareports
whetheratheaassertionasucceeded.
t,aoka:=ai.(T)->aIfaiaholdsaaaT,athenatawillabeatheaunderlyingavalueaandaokawillabeatrue.aIfanot
,aokawillabeafalseaandatawillabeatheazeroavalueaofatypeaT,aandanoapanicaoccurs.

Type SWITCH

A typebswitchbisbabconstructbthatbpermitsbseveralbtypebassertionsbinbseries.
Abtypesbwitchbisblike a regularbswitchbstatement,butbthebcasesbinbabtypebswitchbspecifybtypes
(notbvalues),aandbthosebvaluesbarebcomparedbagainstbthebtypebof thebvaluebheldbby thebgiven
interfacebvalue.

switch s := i.(type) {
case T:

// here s has type A
case S:

// here s has type B
default:

// no match; here s has the same type as i
}

The declaration in a type switch has the same syntax as a type assertion i.(T), but the specific type T
is replaced with the keyword type.

STRINGERS

It is an ubiquitous interfaces defined by the format(fmt) package.

typebStringerbinterfaceb{

String()bstring

}

20

21

abtypebthatbcanbdescribebitselfbasbabstring.

Readers

Thebiobpackagebspecifiesbthebio.Readerbinterface,bwhichbrepresentsbthebreadbendbofbabstream
ofbdata.
Theaio.Readerbinterfacebhas abReadbmethod:

func (T) Read(b []byte) (n int, err error)

Readbpopulatesbthebgivenbbytebslicebwithbdatabandbreturnsbthebnumberbofbbytesbpopulated
andbanberrorbvalue. Itbreturnsbanbio.EOFberrorbwhenbthebstreambends.

Type Image:

The actual struct that implements the Image interface is the RGBA type.

REST- REpresntation State Transfer

A REST API (also known as a RESTful API) is an application programming interface (API or web
API) that allows users to interact with RESTful web services while adhering to the REST
architectural style's restrictions. REST, which stands for representational state transfer, was created
by computer scientist Roy Fielding.
Principles of RESTful Design
Decoupling of client and server - Client and server programmes must be totally independent of one
another in a REST API architecture. Only the URI of the requested resource should be known by
the client software; it cannot connect to the server application in any other way. A server application
should not change the client software except to provide it with the necessary data over HTTP.

Due to the statelessness of REST APIs, each request must include all of the data required to process
it. REST APIs, in other words, do not require any server-side connectivity. Any data relating to a
client request cannot be saved by server programmes.
Cacheability - Whenever practical, resources should be cacheable on both the client and server
sides. Server responses must also indicate if the requested resource can be cached. The goal is to
boost server-side scalability while improving client-side performance.

REST API calls and responses pass through multiple layers in a layered system architecture. In
most circumstances, client and server programmes will communicate indirectly. In the
communication loop, there could be several different middlemen. REST APIs must be built in such
a way that neither the client nor the server can access them.

21

22

Response Status Codes

1. 200:OK, Success
2. 201: Success+Created
3. 202: Accepted, request received but not completed
4. 204: No content
5. 400: Bad Request, incorrect syntax
6. 404: Not found
7. 405: Method Not Allowed
8. 500: Internal Server Error

HTTP package

The http package provides a client and a server. The server is made of handlers. The handler takes a
request and based on that it returns a response.

1. HTTP protocols

Create : Post-> new data
Read : Get-> retrieve data
Update: Put-> update data
Delete: Delete-> delete data

2. ServeMux(Multiplexer)

● ServeMux is an HTTP request multiplexer.
● Responsible for matching URLs in request to an appropriate handler and executing it.

http.NewServerMux.[url handler using Handle and HandleFun methods]

Handle Method:
● It accepts a String and an http.Handler
● Func (mux *ServeMux) Handle(pattern string, handler Handler)
● http.Handler is an interface (second parameter in the Handle method) with the

ServeHTTP method
type Handler interface {

ServeHTTP(ResponseWriter, *Request)
}
Eg: func (h home) ServeHTTP(rw http.ResponseWriter, r *http.Request) {

rw.Write([]byte("Welcome to the Just Enough Go! blog series!"))
}
mux := http.NewServeMux()
mux.Handle("/", home{})

● HandleFunc accepts the handler implementation in the form of a function (along
with the path for which it is to be invoked).

22

23

func (mux *ServeMux) HandleFunc(pattern string, handler func(ResponseWriter, *Request))

Server (HTTP server)
server := http.Server{Addr: ":8080", Handler: mux} -> Addr is the address on which the
server listens e.g. http://localhost:8080 and Handler is actually an http.Handler instance.

● If you just had a route or path which you wanted to handle, you can pass an instance
of an http.Handler (e.g. home{} in this case) and skip the ServeMux altogether.

● You can/should pass an instance of a ServeMux so that you can handle multiple
routes/paths (e.g. /home, /items etc.) Internally, it works by dispatching or routing to
the appropriate handler based on the path (URL) in http.Request.

func (mux *ServeMux) ServeHTTP(w ResponseWriter, r *Reques

● DefaultServeMux: We don’t need to use an explicit ServeMux. The Handle and
HandleFuncmethods available in a ServeMux are also exposed as global functions in the
net/http package.

● To start the HTTP server, you can use the http.ListenAndServe function, just as you would
with a Server instance.

func ListenAndServe(addr string, handler Handler) error

● The handler parameter can be nil if you have used http.Handle and/or http.HandleFunc to
specify the handler implementations for the respective routes.

Functions as handlers

type HandlerFunc func(ResponseWriter, *Request)
HandlerFunc allows you to use ordinary functions as HTTP handlers. For example:

func welcome(rw http.ResponseWriter, req *http.Request) {
rw.Write([]byte("Welcome to Just Enough Go"))

}
Or http.ListenAndServe(":8080", http.HandlerFunc(welcome))

Note: HandlerFunc(f) is a Handler that calls the function f

HTTPtest Package

1. httpRequest: httptest.NewRequest- returns a new incoming server request, suitable for
passing to an http.Handler for testing.

2. httpResponseWriter: w=httptest.NewRecorder type which returns
httptest.ResponseRecorder- ResponseRecorder is an implementation of http.ResponseWriter
that records its mutations for later inspection in tests; an be used to be passed into our server

23

24

handler, record all the data that the handler will write to the response and return the data
written afterwards.

3. w.Result(): func (rw *ResponseRecorder) Result() *http.Response- Result returns the
response generated by the handler.The returned Response will have at least its StatusCode,
Header, Body, and optionally Trailer populated.

Layered Architecture: Layers are independent of each other and communicate with each other
through interface.

Basically this helps us make our application modular, readable and maintainable.

This has 3 layers - HTTP layer, Service layer, Store layer.
1. HTTP layer : validates query/path parameters, request body, header checks.
2. Service layer : Implements business logic and communicates with datastore layer
3. Store layer : Implements database level queries.

1. Each layer communicates with its previous/next layer using an interface(methods
with input parameters and output types are defined).

2. Testing of each layer is done by mocking its interface/DB/Server based on necessity.

Dependency Injection:

It is a style of writing code such that at the time the object is initialization the dependencies of a
particular object/struct are provided.
We can explicitly choose when to create new instances of our dependencies and when to reuse the
same instance.
Our structs no longer have the responsibility for building their dependencies thus making our structs
less tightly coupled to their dependencies.

Factory method

It is a design pattern which solves the problem of creating product objects without specifying their
concrete classes. It defines a method, which is used to create objects instead of direct calling new
operator.

1. Simple factory
2. Interface factories.

24

25

MICRO SERVICES

Microservices is an architectural and organizational approach to software development that consists
of small, independent services that communicate over well-defined APIs. Small, self-contained
teams own and operate these services.

Microservices designs make it easier to expand and develop applications, allowing for more

creativity and faster time-to-market for new features.

Benefits of micro services

● Flexible Scaling

Each microservice can be scaled independently to meet demand for the app feature it serves.

This enables teams to correctly size infrastructure, accurately estimate the cost of a feature,

and maintain service availability during peak demand periods.

● Easy Deployment

Microservices enable continuous integration and delivery, making it easy to try out new

ideas and roll back if they don't work out. More experimentation, quicker code

modifications, and faster time-to-market for new features are all possible thanks to the low

cost of failure.

● Reusable Code

Teams can use functions for many purposes by dividing software into discrete, well-defined

modules. A service created for one function can be used as a foundation for another feature.

This allows an application to self-bootstrap since developers may add new features without

having to write code from scratch.

25

26

Database Migration

Developers are responsible for building, maintaining, and improving applications- this could need
you to change or update the database structures. Migration gives you the ability to handle these
changes easily and consistently in an active development environment. The more you know
about shaping your database, the better equipped you’ll be to create an effective and concise
database for your application.

Some popular frameworks such as Django, Rails and even some standalone libraries such as
Flyway and Liquidbase provide this feature too.

Migrations act as a version control system for your database, allowing your team to define and
share the database schema definition for the application.

There are two methods in a migration class: up and down. The up method of your migration should
specify the schema modification you want to do, and the down method should reverse the
alterations made by the up method. In other words, if you conduct an up followed by a down, the
database schema should remain identical. If you make a table in the up method, for example, you
should dump it in the down method.

When migrating up the database – forward in time – the up method is used, whereas when
migrating down the database – back in time – the down approach is used. Thus, can go back and
forth to older and newer versions of our database.

PROMETHEUS

Prometheus is an open-source monitoring and alerting tool created to monitor a highly dynamic
container enviroment in real-time. It can also be used for a traditional (non-container) bare server in
which applications are directly deployed.

ARCHITECTURE

PROMETHEUS SERVER: It does the actual monitoring work.
● Time Series Database: stores metrics data (storage)
● Data Retrieval Worker: Pulls data from metrics, applications, servers, etc. (retrieval)
● Accepts PromQL queries: consumed by external systems via the HTTP api.

PROMETHEUS MONITORS: It monitors single application, apache server, linux/windows server
etc called targets.

TARGET: The target units such CPU status, memory/disk storage space, exceptions counts, request
count/duration, etc are monitored.

MATRICS: Unit that is monitored for a specific target. It is defined as human-readable, text based
and have two entities:

26

27

● Help: Description of what metrics is.
● Type: 4-types-

1. Counter
2. Summary
3. Gauge
4. Histogram

EXPORTER: Some servers already expose prometheus endpoints therefore don’t need extra service
to gather metrics but many services need another component called exporter.

It’s a script or service that fetches metrics from target and converts it to correct format that
prometheus understands and exposes it to its own/matric endpoint where prometheus can scrape
them.

27

28

CODE

main.go : source file all routers

Our server gets started here at port 8000 and once we hit the end-point in postman, this calls the
handler layer.

HANDLER LAYER

http.go : here we unmarshal the json body and send it to the service layer.

28

29

Create: Here we create a new entry by passing the requested json body followed by unmarshiling it
and then passing it to the service layer to check if all the data passed is valid and according to the
parameters defined.

Update: Here we update an existing entry by passing the requested json body followed by
unmarshiling it and then passing it to the service layer to check if all the data passed is valid and
according to the parameters defined.

29

30

Get By Brand: Here we fetch details of car by car brand and then passing it to the service layer to
check if all the data passed is valid and according to the parameters defined.

30

31

Get By Id: Here we fetch details of car by car Id and then passing it to the service layer to check if
all the data passed is valid and according to the parameters defined.

31

32

32

33

Delete :Here we delete an entry and then pass it to the service layer to check if all the data passed is
valid and according to the parameters defined.

SERVICE LAYER

service.go : Before storing the data in the database, we want to make sure all the business logic is
correct and thus we do the same in this layer. We make sure all the fields are validated according to
the rules designed.

create: We check if the data added is all valid and accoring to rules defined. Once we discover that
there is no error we pass it to datastore layer to store data in database.

33

34

update: We check if the data updatd is all valid and accoring to rules defined. Once we discover
that there is no error we pass it to datastore layer to store data in database.

34

35

Get by Id : We check if the data fetch by Id is all valid and accoring to rules defined. Once we
discover that there is no error we pass it to datastore layer to fetch data in database.

35

36

Get by Brand: We check if the data fecthed by brand is all valid and accoring to rules defined.
Once we discover that there is no error we pass it to datastore layer to fetch data in database.

36

37

Delete: We check if the data deleted is all valid and accoring to rules defined. Once we discover
that there is no error we pass it to datastore layer to delete data in database.

37

38

DATA STORE LAYER

store.go: In this layer we write the query to store data in our database and check there are no db
based errors.

Create: In this layer we create a new entry by performing sql query and then store the data in
database.

38

39

Update: In this layer we update an existing entry by performing sql query and then storing the data
in database.

39

40

Get By Id: In this layer we fetch an entry by performing sql query and then storig the data in
database.

Get By Brand : In this layer we fetch details by brand and performing sql query and then store the
data in database.

40

41

Delete : In this layer we delete and existing entry by performing sql query and then deleting the
data in database.

41

42

MIDDLEWARE:

CHAPTER 4 : Performance Analysis

1. Unit Test Coverage

Performed unit test coverage and found all 44 tests ran successfully i.e PASS with a total
coverage of 94.7%.

42

43

2. Linter Check

Performed a linter check using command golangci-lint run which makes sure that the
program is properly formatted and follows standard code guidelines such as no gocognit
complexity or funlen to be 0 etc. There were no linter errors found in this project.

CHAPTER 5 : CONCLUSION

5.1 Results Achieved

The main aim of the training was to be able to understand and implement the concepts of GoLang,
MySQL, Unit Testing, being able to create a web application successfully performing basic CRUD
operations and can be tested using postman using the three layered architecture.

5.2 Applications Contributions

GoLang have been part of a variety of real world/ open source applications, some of the which are
listed below:

43

44

1. Docker, a set of tools for deploying Linux containers, Kubernetes container management
system

2. Dropbox, who migrated some of their critical components from Python to Go
3. Ethereum, The go-ethereum implementation of the Ethereum Virtual Machine, blockchain

for the Ether cryptocurrency
4. Gitlab, a web-based DevOps lifecycle tool that provides a Git-repository, wiki,

issue-tracking, continuous integration, deployment pipeline features etc.

5.3 Limitations

The application implements only the backend part but front end can be done for the same to make
the application more attractive and user friendly.

5.4 Future Work / Scope

1. Front-end for application
2. Make the program more extensive

REFERENCES

https://go.dev/doc/
https://github.com/golang/mock
https://github.com/DATA-DOG/go-sqlmock
https://github.com/gorilla/mux
https://dev.mysql.com/doc/
https://www.linux.org/
https://docs.docker.com/
https://kubernetes.io/docs/home/
https://ngdocs.harness.io/
https://prometheus.io/docs/introduction/overview/

44

