SENTIMENT ANALYSIS USING NLP
(INTERNSHIP REPORT)

Enrol. No. - 181322
Name of Student - Devansh Kaushik
Project Supervisor - Dr. Amol Vasudeva

May - 2022

Submitted in partial fulfilment of the Degree of
Bachelor of Technology
In
Computer Science Engineering

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING &
INFORMATION TECHNOLOGY
JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, SOLAN

DECLARATION

| hereby declare that this submission is my own work and that, to the best of my
knowledge and belief, it contains no material previously published or written by another
person nor material which has been accepted for the award of any other degree or
diploma of the university or other institute of higher learning, except where due

acknowledgement has been made in text.

Date: 30 May 2022 Name: Enroll. No:
Devansh Kaushik 181322

CERTIFICATE

This is to certify that Devansh Kaushik was working as an intern with Paxcom since 7th
February 2022 on developing different product related feature and also integrating
various tools. This letter was issued on request from the employee and the company

bears no responsibility or liability on behalf of the employee for any transaction that
may arise.

Name of Supervisor: Sakshi Sehgal
Designation: Senior Data Scientist
Date: 27th May

(if)

ACKNOWLEDGEMENT

| have taken efforts in this internship. However, it would not have been possible
without the kind support and help of many peers and organisation. | would like to
extend our sincere thanks to all of them. | am highly indebted to Ms. Sakshi Sehgal
for her guidance and constant supervision as well as for providing information
regarding the internship and also for their support in completing the projects given
during internship. My thanks and appreciations also go to my colleagues in
developing the project and people who have willingly helped us out with their

abilities.

(iii)

TABLE OF CONTENTS
Chapter No. Topics
Chapter — 1 Introduction

1. General Introduction
2. Problem Statement
3. Solution Approach

Chapter — 2 Libraries and Software Used

Python
Jupyter
Google Colab
Labellmg
Doccano
Pandas
NumPy
NLTK

. Scikit-learn
10. Gensim

11. Transformers

CoNO~wWNE

Chapter — 3 Task Assigned Details

Dataset Description
Dataset Labelling
Pre-processing & Cleaning
Vectorizers

Word Embeddings
Word2Vec & GLoVe

Bert & ELMo

ML Algorithms

Boosting Algorithms

CoNR~WNE

Chapter — 4 Conclusion

1. Conclusion
2. Future Work

Chapter — 5 References

(iv)

Page No.

1-3

4-7

8-31

32

33

LIST OF ABBREVIATIONS

ML — Machine Learning

NLP — Natural Language Pre-processing

CPU — Central Processing Unit

GPU — Graphics Processing Unit

BERT - Bidirectional Encoder Representations from Transformers
NLTK — Natural Language Toolkit

GloVe — GLObal VEctors for word representation

RAM — Random Access Memory

© o N o g B~ w D PE

TF — Term Frequency

=
o

. IDF — Inverse Document Frequency

-
-

. Approx. — Approximately

. ROBERTa - Robustly Optimized BERT Pretraining Approach
. POS — Parts of Speech

. ELMo — Embeddings from Language Model

. SVM — Support Vector Machines

. AVL - Adelson, Velski & Landis

e e T i e
o U1 A WM

(v)

LIST OF FIGURES

1. NLP Pipeline Broad Overview

2. Using python to code function which gets performance results and best model
3. Labellmg being used to label barcodes and QR codes
4. Labelling texts using Doccano

5. 2 Datasets (i) Biscuit Feedback (ii) Electronics Feedback
6. Labelling Function

7. Pre-processing Flow Diagram

8. Pre-processing Pipeline Code — 1

9. Stemming vs Lemmatization

10. Pre-processing Pipeline Code — 2

11. Pos Tagging

12. One Hot Encoding

13. TF IDF Formula

14. TF IDF Implementation

15. TF IDF Results

16. Word Embeddings

17. CBOW model

18. Skip-gram model

19. Word2Vec Results

20. GLoVe Embeddings

21. GloVe Results

22. ELMo Embeddings

(vi)

23.

24,

25.

26.

217.

28.

29.

30.

31.

32.

33.

ELMo Results
BERT Embeddings
BERT Results
Learning Curve
SVC

Pipeline Overview
Decision Tree
Random Forest
Boosting Algorithms
XG Boosting

Optimised Results

(vii)

ABSTRACT

Paxcom India Pvt Ltd., is an e-commerce and product-based company with vision of becoming
a leader in e-commerce analytics and automation across all key geographies. with the parent
company as PaymentUs, an integrated payment platform. Amongst the many teams Paxcom
consists of, such as IVR, e-commerce, ChatBot, | work in the ML team, which designs and
takes on projects from clients as well as other Paxcom teams, which helps us increasing
efficiency and utilizing man hours that can be saved by using a good model. The ML team
works together and creates multiple models, like Ensemble Learning, extract either features
from the dataset or makes a variety of algorithms as the features, thereby adding effective
algorithms just as training samples and increasing model performance metrics (f1, accuracy,
precision, depending upon project requirement). In the ML team, with the guidance and support
of my team lead and colleagues, | have gained industrial exposure in NLP and have been
working on hands-on projects on various datasets. Until now, A generalized Sentiment
Analysis pipeline have been made which when given a raw unlabelled dataset as input, will
label, pre-process, run across multiple algorithms, and finally give the best hyperparameter-
tuned model with results and classification report. | have worked on annotations/labelling, blur
classification, sentiment analysis and both supervised and unsupervised learning. With the help
of my team, | have strengthened my skillset in the domain of ML and NLP both theoretically
and hands-on, and will continue learning with deep neural networks currently. Hence this
project will be about how | approached the sentiment analysis problem, what I learnt along the

way and the respective performance and results of the same.

(viii)

Chapter 1. INTRODUCTION

1. General Introduction

Sentiment Analysis, as the name suggests, it means to identify the view or emotion behind
a situation. It basically means to analyze and find the emotion or intent behind a piece of text
or speech or any mode of communication, whose use cases can vary from a feedback form to

being used in automation based human emotion detection.

Polarity precision can be crucial when it comes to various businesses, for instance, when
analyzing customer feedback in survey responses and conversations, one can learn to detect
emotions and provide services and products accordingly. One of the ways to solve them is by
using NLP (Natural Language Processing), a branch of computer science concerned with

giving computers to understand vocabulary and grammar of texts.

Since the machine only understand zeroes and ones, we need to convert such grammatical
phrases to numerical data while retaining the contextual information of the same, and then
apply machine learning algorithms or deep learning networks, hence getting a model which
can understand sentiment like humans, and hence, then be used in end user applications. Thus,
in this internship, | tried to experience NLP a bit deeper and prepare myself for industry level

projects from my learnings of this use case.

The pipeline includes complete generalization, labelling the dataset with state-of-the-art
models, a series of preprocessing steps, then vectorizing the corpus or create embeddings, then
running a Gridsearch on multiple ML and boosting algorithms with cross-validation, evaluating

performance results and classification report and returning the best (non-overfitted) model.

1)

=

—_— N
h— EEEE
1. TEXT 2. SEGMENTATION 3. TEXT
INFORMATION AND TOKENIZATION CLEANING
7. INTERPRETATION 6. MACHINE LEARNING 5. TEXT LEMMATIZATION 4. VECTORIZATION AND
OF THE RESULT ALGORITHMS AND STEAMING FEATURE ENGINEERING

Fig 1. NLP Pipeline Broad Overview

The project includes analysis of the different preprocessing steps and vectorizers and
algorithms used, and why specific algorithms and vectorizers/embeddings worked well than

others.

2. Problem Statement

The problem statement is to how to parse through thousands of lines of text corpus or feedback

survey records and detect human emotion and sentiment out of them, thereby efficiently

utilizing time and manpower. Emotion detection has been surprisingly significant in

businesses, and helps companies plan and tailor products according to the needs of end user.

)

3. Solution Approach

The solution is to create a generalized ML pipeline which when given an unlabelled / labelled
dataset, will preprocess the data vectorize and run ML models on the data, and at the end of

pipeline return the best hyperparameter tuned model, completely on its own with no human
interference.

3)

Chapter 2. LIBRARIES AND SOFTWARE USED

1. Python

Python is a high-level interpretable language, used widely when it comes to ML and API
making. Python unlike C and Java, and minimize long codes into few lines with its rich libraries

and functions with the use of space indentation.

def save models and results(root_dir: str, save dict: dict = {}) -> None:
os.mkdir(root_dir)
for filename in save dict.keys():
with open(root_dir + filename, 'wb') as fid:
pickle.dump(save dict[filename], fid)

def save_textual_data(root_dir:str, filename:str, text):
with open(root_dir + filename, 'w') as f:
f.write(text)

def get_performance_results_and_best_model(transformed X_train, y train, transformed_X_test, y_test, classifier dict = {}):
max_train_acc, max_test_acc, best model, bestmodelname, results dict = @, @, None, "", {}
for classifier_class in classifier_dict.keys():
modelname = str(classifier class).split('.')[-1][:-2]
print("Training set")
train_acc, train_report, train_conf_matrix = model_evaluation(transformed_ X train, y_train, classifier_dict[classifier_class])
print("Testing set")
test_acc, test_report, test_conf_matrix = model evaluation(transformed X test, y test, classifier dict[classifier_class])
print(modelname + " Training acc:",train_acc)
print(modelname + " Test acc:",test_acc)
if train_acc>= ©.98 and test_acc <@.9@:
print(modelname + "(OVERFIT):\t" + str(train_acc))
elif test _acc > max_test acc:
max_train_acc, max_test_acc, bestmodelname, best model = train acc, test_acc, modelname ,classifier_dict[classifier_class]
print("Performance results, Classifier dictionary:\t", classifier_dict[classifier_class])
results_dict[modelname] = {"train_acc": train_acc, "train_report”: train_report, "train_conf_matrix": conf_matrix_to_string(train_conf_matrix),
"test_acc": test_acc, "test_report": test_report, "test_conf_matrix": conf_matrix_to_string(test_conf_matrix)}

return best_model, bestmodelname, results_dict

Fig 2. Using python to code function which gets performance results and best model

All pipelines and pre-processings have been done on Python as it’s tools and integrated systems

help in analyzing models and visualizing performances easily and saves time.

2. Jupyter

Jupyter notebooks is a web based local host platform with variable coding environments for

coding and data. It supports both CPU and GPU, hence one can use their remote PC’s system

and RAM to run models here.

(4)

3. Google Colab

While Jupyter notebooks are good when it comes to accessing local RAM and saving remote
data, Colab notebooks is also a web-based computing platform, but one can use Google’s GPU
and RAM for inferences. Notebooks and datasets can be either imported or saved at google

drive and code data can be easily shared.

4. Labellmg

Labellmg is an open-source graphical image annotation tool, where you can emphasize
meaningful areas of images that you want to label for classification.

LX)
7. OO0 U WARHTTH NPT | | Box Labels
‘ A Edit Labe
Ope? Codabar EAN-S Interleaved 2 of 5 | lj difficult
S e w0
L/ ; . Code 93 » UPC-A Daiibe
Change Save Dir
= QR_CODE
| T T =
- PDF417
« CODE_128
Prev Image EANES UPC-E Dotcode CODE_93
GS1 Composite Co UPC A
G | 111 ‘
Industrial 2 of 5 QRCode
¥l labellmg ? X
</>
. V' oK <A Cancel
i lJ h * 1 mw ‘ ya. il S EEm
i E -\I\’\'
| P | IH‘ MWM‘L!JMI| “‘ ﬁ % ."""
. - -‘.r‘:\.
< >
Width: 180. Heiaht: 180 / X: 1242: Y: 1515

Fig 3. Labellmg being used to label barcodes and QR codes

5. Doccano

Doccano is an open-source text annotation tool, analogous to Labellmg, just used in

emphasizing texts and later indexed in numerical data for NLP models.

(5)

this | biscuit is my favourite | and | Il buy it so many times and |
| realli aﬁﬁreciate the gualiti of the discrete | thank iou so much Amazon

Fig 4. Labelling texts using Doccano

6. Pandas

Pandas is a python library used to structure and manipulate data using for instance, data frame
and series. In this project, pandas will come in handy to tabulate data and apply operations.

7. Numpy

Numpy is a python library used for applying mathematical operations and transformations to

n-dimensional data structures.

8. NLTK

NLTK (Natural Language Tool Kit) is a textual data pre-processing library used to structure
and organize raw textual data for text analysis and visualizations. Functions such as tokenizer,
lemmatizator and stopwords copurs are some of the NLTK functions that come in handy whehn

pre-processing text.

9. Scikit-Learn

Scikit-Learn is a machine learning library for Python providing powerful preprocessing tools,
various algorithms for regression and classification, feature selection and extraction, and

dimensionality reduction functions.

10. Gensim

Gensim is an open-source library used for document indexing, and finding phrase/document
similarity. It also consists of Word2Vec function, which as the name suggests, converts words
and phrases to n-dimensional vectors, attempting to capture the context of phrases in a sentence

or a document. These came as an improvement of count and TF-IDF vectorizers.

(6)

11. Transformers

Transformers is an open-source library by HuggingFace widely know for it’s state of the art
NLP classification models for PyTorch, TensorFlow and JAX. The major use of transformers
in our pipeline will be for BERT, a state-of-the-art model which will help us in labelling

unlabelled data and providing word embeddings for corpus.

These were the libraries that were majorly used, other mentions could be of collections,

xgboost, catboost, tensorflow and more.

(7)

Chapter 3. TASK ASSIGNED DETAILS

1. Dataset Description

There are 2 unlabelled datasets merged together for this situation, first has people who bought
biscuits online feedback entries, second is of people who bought electronics online feedback

entries.

Text
good material

nice texture

favourite biscuit

broken biscuit part biscuit opposite placed cream inside product delivery fail
taste

taste fresh

mummy

product good price high printed packet

sweetness

sugar make whole thing painless item mislead consumer pretext healthy
good quality

fibrous perfect go moming tea

like

now delicious

for taste crisp healthy

nice

taste healthy

‘ review

The sound quality is good

The sound quality is good

Ok with cost but washing is not as expected

Better to purchase from flipkart bcos of good price.
Voice search option is not available which surprised me as my 32 inch Samsung smart TV remote has that feature. Otherwise, worth the money we pay for this TV.
Not for fast cooling

Nice

Supar

Better to purchase from flipkart bcos of good price.
Better to purchase from flipkart bcos of good price.
Nice

Ok with cost but washing is not as expected

Excellent product and easy to use. Love ?7 it
Inverter sound is very less as compared to other product in this price range.
Thanks Samsung & Flipkart.

Super

Fig 5. 2 Datasets (i) Biscuit Feedback (ii) Electronics Feedback

In total removing duplicates, there are 5000 text samples with 3 labels to classify: Positive (1),
Negative (-1) and Neutral (0). The entries are mostly in English, with some outliers of Hindi
and Tamil.

(8)

The problem with this dataset is, it is highly imbalanced with approx. 3500 entries of Positive

labelled data, 1400 of negative and a 100 of neutral.

Hence instead of accuracy, this situation calls for focussing on f1 as a performance metric since
even if the accuracy is high, that might also occur when our model is perfectly predicting the

positive ones but wrongly predicting the neutral entries by a large difference.

2. Dataset Labelling

As the dataset is unlabelled, our first step should be labelling the data with a very strong model.
This is where ROBERTa steps in, A Robustly Optimized BERT Pretraining Approach, which
is based on Google’s Bert model released in 2018.

It builds on BERT and modifies key hyperparameters, removing the next-sentence pretraining

objective and training with much larger mini-batches and learning rates.

def label(df):
df.drop_duplicates(keep = 'first', inplace = True)
df.dropna(inplace=True)
print("Dataframe stats")
get _words_stats(df)

print("Creating Label column..")
df = df.assign(Label = [None]*len{df))

print("Import transformers..")
for i in range(len(df)):
predicted label = sentiment_analysiskdf.iloc[i}e])[G]

if predicted label['label’'] == "MEGATIVE' and predicted label['score']»=8.75:
df.ilec[i,1] = -1

elif predicted label['label’'] == 'POSITIVE' and predicted label['score']>=0.75:
df.iloc[i,1] = 1

else:

df.iloc[i,1] = @
it i%166 == a:
print{"progress: ", iflen(df))
return df

Fig 6. Labelling function

9)

This pre-trained model itself takes care of stemming, lemmatizing, removing unknown
symbols and stopwords. One might think of straight away use the given model for all kinds of
problems, as honestly, it is the best. But the point to note is it is still a pretrained and a very
large model, present on HuggingFace’s cloud and remotely available for us, thus it takes a good
amount of time to use ROBERTa and consequently, requires the need for making our own

model tailored to our requirements.

Finally, the dataset is labelled and now requires manual review, as the model is best but migt

not be matching our requirements of labelling.

3. Preprocessing & Cleaning

Preprocessing a textual dataset requires a series of steps for it to be prepared for vectorizing or

in other words, converting it to numerical data.

Expanding short Removing

Tokenizer hao: Stopwords

Lemmatization Standardization Spellchecker

. Pos Tagging

Fig 7. Pre-processing Flow Diagram

1. Removal of unwanted symbols: This can be done by limiting the ASCII numbers to
small letters, capital letters and digits.

(10)

2. Tokenizer: Tokenizer creates a list of all words and letters from a sentence or paragraph,

disregarding all punctuations and special characters. Tokenizer provided by NLTK can
be of 2 types, sent_tokenize and word_tokenize. sent_tokenize is used to split a
document or paragraph into sentences while word_tokenize is used to split a sentence

into tokens.

~ Preprocess

w

&

o

o

Fig 8. Preprocessing Pipeline Code — 1

Expanding short hands: Expanding words such as don’t, can’t, it’s is essential as it helps
in recognizing them as stopwords and getting “not” word as a token, for negative
entries.

Removing stopwords: Now as the words have been expanded, NLTK’s stopwords
library can be used to recognize and remove the same.

Spellchecker: A good spellcheck such as TextBlob is used here to correct wrongly
spelled words.

Standardization: People might use slangs obtained from social networking sites in their
textual vocabulary, writing “good” as “gud”, “osm” for “awesome” are some of the
common ones.

Lemmatization: Lemmatization is bringing the token back to its actual form, for

example, “studies” to “study”. While stemming is also widely used, it has not been

(11)

applied here as stemming doesn’t give the actual word, it removes affixes out of words,
for example, “studies” to “studi”, which is not base word. Lemmatization gives us the

base word.

Stemming vs Lemmatization

changes —> chang changes —> change
changed changed

changer changer

Fig 9. Stemming vs Lemmatization

print(“Initiating Spellcheck.. ")
df Text - of Text.apply(lambda txt: ''.join(TextBlob(txt).correct())}
print("Initiating Spellcheck.. DONE")

print("standardizi
lookup_dict = { 'bik
‘gud”:
for i in range(len(df))
sw = set(sw)
‘tokens - tokenizer. tokenize(df.iloc[1,8])
tokens - [w for w in tokens if not w.lower() in su]
tokens = [lookup_dict[w] if w in lookup dict.keys() else w for w in tokens]
df.iloc[4,8] = " ".join(tokens)
print(df.iloc[4,0])
print("Standardizing.. DONE ")
df[*Text "] .dropna(inplace=True)

i “biscuits’, ‘buiscuit’: ‘biscuit’, ‘buiscuits’: ‘biscuits’, "
good”, ‘okay':’'ok’, favorite': favourite', "test”: “taste”, "

": "taste”}

print("Initiating Lemmatization and PosTagging.. ")
1i = ["RB", "NN", "NNS", "J3", "VBD", "VBN", "VB", "VBZ", "IN", "RBR", "VBP", "VBG", "JJS", "RP", "JIR", "RBS", "UH"]
for i in range(len(df)):]

s - df.iloc[i,8]

print(s)

‘tokens = tokenizer. tokenize(s)

tokens = tokenizer.tokenize(s)

tokens = [lem.lemmatize(word) for word in tokens]

df.iloc[4,6] = " ".join(tokens)

‘tags = pos_tag(tokens)

print(df.iloc[1,8])

ans = ""

for j in range(len(tags)):

iF tags[§1[1] dn 1i
ans += tags[jlfe] + " "

ans = ans[:-1]

df.iloc[i,6] = ans
print("Initiating Lemmatization and PosTagging.. DONE")

4F[*Text "] .dropna(inplace=True)
return df

Fig 10. Preprocessing Pipeline Code - 2

(12)

8. POS Tagging: Finally, POS-tagging, recognizing and filtering words based on their

categories of phrases, like removing proper nouns and keeping adjectives.

@ ad Ea book coIIector][happyj Ehe other da@
' } _ 4

H

: : Vérb Vérb
Subject Object
weet]l L 16 Modifier ’hﬂodiﬁer
Bob - Noun _%grb ‘
made - Verb ‘ made - Adverb
Compound Compound
Noun |Adverb
@booklcollector] [th@[otherIday]
Modifies Modifies
a - Article \ 3
book — Adjective the ~ fAmFle
other — Adjective
collector - Noun
day - Noun

Fig 11. Pos Tagging

Thus, preprocessing is done, and now can remove empty and duplicate entries in the dataset,

and move om to the next step, i.e., vectorizing.

(13)

4. Vectorizers

There are 2 types of vectorizers mainly used, Count Vectorizer and TF IDF Vectorizer.

1. One Hot Encoding: Giving each word a one while all others are giving index 0. Easiest
implementation by far, but highly inefficient when it comes to dimensionality of matrix

and memory usage.

Label Encoding One Hot Encoding
Food Name Categorical # | Calories Apple | Chicken | Broccoli | Calories
Apple 1 95 |1 0 0 95
Chicken 2 231 0 1 0 231
Broccoli 3 50 0 0 1 50

Fig 12. One Hot Encoding

2. Count Vectorizer: A simple vectorizer that provides indexes to all unique words, the
count of words will accordingly be given higher or lower priority by the model.

Again, a simple approach but with a lot of loopholes as it is incapable of identifying

relationships between words and works purely based on number of occurrences in the

whole document.

(14)

The lecture is in noon, please come to the lecture on time

Original Sentence

come in is lecture | noon on please the time to

0 1 2 3 4 5 6 7 8 9
Indexing the words

1 ik 1 2 1 1 1 2 1 1

Sentence after vectorization

Fig 13. Count Vectorizer

3. TF-IDF Vectorizer: Term Frequency - Inverse Document Term frequency is based on

not only on count of word in the document, but also takes in account number of times

the word is occurring in a sentence.

tr

4

df

number of occurrences of { in |

= total number of dociuments

N
W . .::gf_ .><lc§; —
i,] 1,] (EF]

number of documents contalning i

Fig 14. TF — IDF Formula

This is a simple yet powerful tool, and in some cases work even better than Word2Vec, which

takes contextual information in account too. But it has 2 edge cases to it:

ZERO VALUE ISSUE: which occurs because of the IDF calculation. Imagine we have three

entries, and the word we are considering here is “cat”. In document A, cat makes up 70% of

(15)

the words. If cat appears once in document B and none times in document C, the TF-IDF value
would be high. But if cat appeared once in C too, tf-idf would fall all the way to zero, which is

a way too big contrast for just one occurrence change.

This is an undesirable feature as even though cat is a very important word here, TF IDF says

otherwise.

EXTENSIVE MARGIN ISSUE: again because of the IDF portion. This occurs because TF
IDF does take account of number of times the word cat occurs in the document, but doesn’t

take in account number of times it occurs in other documents.

Consider the same scenario taken above. Now suppose cat makes up 5% of words in document
A. If cat didn’t occur at all in document B, TF IDF value would be high, but if it came once in

B, TF IDF would again, fall down like a hero to zero.

Hence, even in this situation even though it condition is almost identical, TF IDF shows
complete change of behavior just by ne word difference. Hence, TF IDF is sometimes not

desirable when it comes to vectorizing.
The traits of TF IDF can be changed by giving proportional importance to words, but why do

that when we can move to contextual words vectorizing in methods such as Word2Vec and

Glove?

(16)

[1

X = df.iloc[:,0]
y = df.iloc[:,1]

print(X.shape,y.shape)
X_train, X_test = train_test_split(df, test_size=8.2, random state=42, stratify = y)

y_train = X_train["Label"”].values
y_test = X_test["Label"].values

(4979,) (4979,)

print(type(X_train["Text"]), len(X_train["Text"]), len(X_test["Text"]))

<class 'pandas.core.series.Series’> 3983 996

~ Tfldf

[1]

Weighted Logistic Regression

SVM

Naive Bayes
o Decision Tree

Random Forest

from sklearn.feature_extraction.text import TfidfVectorizer
vectorizer = TfidfVectorizer(max_features=5008, ngram_range=(1,2))
corpus = X_train["Text"].values.astype('U")
vectorizer,fit(corpus)

TfidfVectorizer(max_features=5808, ngram_range=(1, 2))

train = vectorizer.transform(corpus)
dic_vocabulary = vectorizer.vocabulary_

Fig 15. TF IDF Implementation

Training Acc

Yo
[\
wu

® O ® W
ol [S =)
o 00 N

(o]

Best Model

Fig 16. TF IDF Results

In the case TF IDF, SVM showed the best results a possible explanation for that is SVM

performs well at small datasets whereas the other algorithms such as boosting and

(17)

ensemble learning algorithms (decision tree & random forest), they are data hungry and hence
perform great at large datasets.

SVM works well when there is a clear set of separation and it uses a subset of training points
in the decision function (called support vectors), so it is also memory efficient. We will talk

about models later.

5. Word Embeddings

Word Embeddings basically, are n-dimensional (n specified by the programmer) vectors used
for representation of words, another way to convert text to numerical data. Before this even
though vectorizers had no dimensionality and just single digit values, they were completely
unknown to the context. Word embeddings can be used to take context into account and hence,

making the model altogether better.

Word2Vec

etnan 2390
5 ' China
. °
pe
Beijing
Male-Female Verb Tense Country-Capital
GloVe
| / o
; Calerpillar... _ _ 7 stronger
luncle jwoman Chrysler.] e /
rqueen United~ . _ e T 96817 /
| g ~Honolulu strong ¥
Exxon= — — _ 7’< 37211 _) ~Clearer
I = -Nashville ~ - ‘Soffer~ —
| Wal-Mart - - 95823 Aashvilieno L2 soffe
1BM — - Citigroup, 5.5 o
’ CT 92804 e S clear 7~ -~ darkef — — -
soft < -~
{sir I p
rk
Iman tking Viaoom— — — — — — da

man - woman company - ceo city - zip code comparative - superlative

Fig 17. Word Embeddings

The most famous example of contextual embeddings is:

Queen = King — Male + Female

(18)

There are 4 types of embeddings analysed on the pipeline:
1. Word2Vec

2. Glove

3. Bert

4. ELMo

Bert and ELMo are currently the best working embeddings currently, and are available as

pretrained models. But we for our use, will only use their embeddings in this case.

6. Word2Vec & Glove Embeddings

Word2Vec is a semi-supervised learning technique, like every other neural network. It is
supervised if you consider that the network has to learn from backpropagation, unsupervised if
you consider that no human expert makes labels. For instance, KNN for K-nearest neighbors
is a classification algorithm that in order to determine the classification of a point combines the
classification of K-nearest points. It is supervised because if you are trying to classify a point
based on the known classification of other points.

INPUT PROJECTION OUTPUT

cCBOW

Fig 18. CBOW model

(19)

Word2Vec produces a produces a vector space, typically of several hundred dimensions, with
each unique word in the corpus such that words that share common contexts in the corpus are
located close to one another in the space. That can be done using 2 different approaches:
starting from a single word to predict its context (Skip-gram) or starting from the context to

predict a word (Continuous Bag-of-Words).

CQVPM _me.l/\l"’\a Dedte

T [ron] is how o — /Fhe, non)

Te o] s b 4o~ Lriem,fre), (s, i)

The |Mon | 15 e | Ho —% (e, van), (15, here)

The Mo | 15 |lwre| 4o __>(’Aumfs),[w,h)

W i d e
a2

Fig 19. Skip-gram model

Hence, the neural network is fully used to predict the next word or predict the words around it,
either way we will only be taking the network weights as embeddings and don’t require the full

model.

Also, we will be preferring CBOW over Skip-gram here because firstly, CBOW trains faster
and can better represent frequent words, mainly because it works on context and maximizes
probability of target word by looking at context hence, making it easier to work on frequently
occurring words than the rarely occurring ones. And secondly, CBOW gave better results on

analysis.

(20)

Test Set Conf Matrix

Gradient Boosting 0.82 0.7 Training Set Conf Matrix
precision recall 11-score support

05 091 065 637

046 093 062 42

098 038 088 3095

cccccccc y 082 3774

macro avg 0.65 0.88 072 3774

weighted avg 089 082 084 3774

XG Boosting 081 0.69Training Set Conf Matrix

pre recall fl-score upport

058 0.81 067 821

013 092 023 12

094 0.81 087 2941

cccccccc ¥ 0.81 3774

o avg 055 085 059 3774

ghted avg 086 0.81 083 3774

Fig 20. Word2Vec results

pracision recall fl-score support

K 0.65 053 058 156

0 0 0 0 3

1 075 0.81 0.78 261

curacy 07 420

macro avg 045 0.45 0.45 420

weighted avg 07 07 07 420
Test Set Conf Matrix

pre recall fl-s upport

E 053 052 052 132

0 0 0 0 0

1 0.78 077 0.78 288

acy 069 420

cro avg 044 043 043 420

weighted avg [X 069 [X 420

As you can observe, Word2Vec results are not as good as TF IDF, mainly because of TF IDF

takes care of rarely occurring words as well, while Word2Vec CBOW doesn’t predict well at

rarely occurring words.

Also, once Word2Vec is applied or trained, it can’t be trained again. Hence every time a new

word comes in, Word2Vec will try to give an embedding accordingly in the n-dimensional

vector space to the word.

Word2vec relies only on local information of language words and proves suboptimal, we will

see how other embeddings prove over Word2Vec in this case. Also, it might be possible that

in our case the occurrences of words had a good effect on the model, thereby TF-IDF giving

good results and Word2Vec unable to.

(21)

Output

Input Hidden Factors (softmax)
0 0
0 0
N

0 —T 1
h, \" "
0 0

hl
0 0

h,
0 x v g 3 x » 0
0 0
hy 0

- Vector for word i)
Y] °
0 0
Embedding matrix
0 0
N—) —
One-hot vector (Vx1) Dense representation One-hot vector for the
for the word "Patriots" for the word Patriots word "win"

Fig 21. GloVe Embeddings
Enter GLoVe, the model which considers both contextual and statistical information of a

corpus. In other words, it tries to capture both the count vectorizer technique (or co-occurrence

matrix) and Word2Vec’s prediction-based technique (word embeddings).

Dataset: ABSA

Loigstic Regression 928] 09 0.92 0.91 0.91 0 089 09 0.89
1 0.95 0.93 0.94 1 093 092 093
SVM 0.8] 0.54 0.98 0.69 0.88 0 095 081 088
1 0.98 0.76 0.85 1 085 0.96 09
Multinomial NB 082] 0.38 0.55 0.45 0.41 0 1 041 0.58
1 0.79 0.65 071 1 0 1 0.01
Decision Tree 099] 0.99 0.99 0.99 075 0 0.64 073 0.68
1 0.99 0.99 0.99 1 084 077 08
Random Forest 099] 0.99 0.99 0.99 072 0 057 069 063
1 1 0.99 0.99 1 082 074 078
Gradient Boosting 095] 0.94 0.95 0.94 0.85 0 073 089 08
1 0.97 0.98 0..96 1 094 083 088
XG Boosting 099] 0.99 0.99 0.99 0.88 0 082 088 0.85
1 1 0.99 0.99 1 093 088 09
CatBoost 094] 0.92 0.94 0.93 0.87 0 083 0.86 0.85
1 0.96 0.95 0.95 1 091 088 09

Fig 22. GLoVe Results

(22)

And look at what we have here, better results as soon as occurrence of words was taken into
account. Thus, the reasons were correct, number of occurrences is important in this dataset and
GLoVe improved over Word2Vec using the same. Even the overfitted results can be improved
over by some Hyper-parameter Tuning and vectorization.

Also, GLoVe is already trained over a big corpus, so just download the embeddings and you
have shorter training time compared to Word2Vec. This is great, but what if the embeddings

didn’t only rely on the neighbours?

7. BERT & ELMo Embeddings

Until now in Word2vec and Glove embeddings, we had to get sentence embeddings out of
word embeddings by adding and averaging them out. An effective method, but not an ethical

one as it doesn’t represent the sentence at all.

Structure .

Each token tg

oA
A
A
A

L-layer biLM - . - -

computes 2L+1 =T
representations LM I 1 i T 3
hig o=, : L - . :
k is the k-th token
—IM |+ LsTm (e Rl ... J (B
jis the j-th biLM layer P k. $ $ $;
LM
a:k A »‘ 'y Iy
ti o ‘ '

Fig 23. ELMo Embeddings

(23)

ELMo embeddings, tries to solve the disadvantages of Word2Vec and Glove by bringing in

contextual information in embeddings too, hence the weighted sum of the word vector and 2

intermediate word vectors gives us the resultant word vector.

Gradient Boosting

XG Boosting

CatBoost

0.95

0.95

0.94

0.94
0.97

0.94
0.96

0.92
0.96

0.95
0.98

0.95
0.96

0.94
0.95

0.95
0.96

0.94
0.96

093
0.95

Fig 24. ELMo Results

0.89

0.89

0.89

0.86
091

0.87
091

0.88
09

0.87
09

0.86
091

0.86
0.92

0.86
091

0.87
091

0.87
0.91

The results are still good, contextualized embeddings are better then isolated embeddings as

they do not grasp the environment around the same.

BERT on the other hand, has its own way of doing things. BERT creates a mask first, SEP

mask for separating lines and CLS at the beginning of text.

For UNK or unknown tag, BERT doesn’t use it this time. Rather, it will split the unknown

word into small pieces, and make embeddings out of it. For instance, if there was an embedding

present for the word “embed” and a new “embedding” word has come now, it will create the

embeddings for “ding” and “embed#####”, showing that it is similar to embed but might have

been used differently, look out.

[MASK]

[MASK]

Input ([CLSI] [my \l [dog] [is 1(cute][[SEP] 1 (he W likes W play 1 (##ing] [[SEP]]
Token
Embeddings E[CLS] Emy EIMASKI EIS Ecute E EIMASKI Eplay
+ -+ & + + + -+ +
Sentence
Embedding EN (RESS (NESS| [RESN [KES ES| (ME (MES
+ + + + + + + +
Transformer
Positional
Embedding EO E E2 E3 E4 Ee E? Es

Fig 25. Bert Embeddings

(24)

That’s why BERT is called state-of-the-art, it prepares itself for all the edge cases it can out

Viodel Training Set Acc precision recall f1-score Test Set Acc precision recall f1-score
Dataset: ABSA
Logistic Regression 072 0 35 1 0.52 075 o] 0.42 097 0.58
1 1 068 074 1 0.99 07 082
SVM 068 0 098 057 072 063 0 0.95 054 0.69
1 047 0.97 063 1 0.41 0.92 056
Multinomial NB 061 0 051 055 053 083 1] 0.51 057 054
1 07 066 068 1 072 067 07
Decision Tree 0.99 0 099 1 0.99 09 0 0.88 0.88 0.88
1 1 0.99 1 1 091 091 091
Random Forest 0.99 0 099 1 0.99 093 0 0.92 092 092
1 1 0.99 1 1 0.94 0.94 094
Gradient Boosting 0.99 0 0.99 1 0.99 0.92 o] 09 09 0.9
1 1 0.99 0.99 1 0.93 093 083
XG Boosting 0.99 0 0.99 1 0.99 0.935 0 0.93 0.92 0.92
1 1 099 1 1 0.94 095 0.94
CatBoost 0.983 0 087 0.99 0.98 0915 o 0.94 087 09
1 0.99 0.98 0.99 1 0.9 0.95 0.92

Fig 26. BERT Results

The results are better than ever, thus in our case. BERT performed the best with many models
almost to the brim of perfection. Almost because if we observe, there are still some models

with overfitting present.
In my duration of internship, 1 used to think that 90 training acc. and 80 testing acc. (also known
as validation accuracy) means overfitting, but when it comes to deeper observation, here

catboost is overfitting as well, with 98 training acc. and 91.5 testing acc.

Thus, now we will go deep into all algorithms and fine tune them, and prevent them for
overfitting.

(25)

8. ML Algorithms

Logistic Regression

Logistic Regression in our case, didn’t had any overfitting, but if it needed, L1 (Lasso), L2

(Ridge) and Elastic Net (combined Ridge and Lasso) are the parameters used for regularization.
e Lasso (L1): A|w]|
o Ridge (L2): A-w?
o Elastic Net (L1+L2): Adi-|w| + A2-w?
Not all of them are compatible with all kinds of solver Logistic Regression has. For instance,
LBFGS solver is only compatible with L2, not with L1 and Elastic Net. So, need to keep a

track on that. The difference between L1 and L2 is that one is absolute lambda and other is

squared lambda.

The Learning Curves

Loss

training

Epochs

Fig 27. Learning Curve

(26)

Logistic and SVM were also underperforming because of MultinomialNB. When sending
training data, whenever the pipeline got MultinomialNB in the models list, MultinomialNB has

the requirement to only allow zero or positive values.

Hence when the dataset was scaled to positive exclusively for MultinomialNB and not for other

models, the accuracy of both SVM and Logistic Regression rose up.

Hence, SVM didn’t require any hyperparameter tuning. And MultinomialNB being purely

based on probability, didn’t have any parameters to tune.

QA Maximum

Margin Positive

¢ Hyperplane

Maximum
Margin
Hyperplane

Support
Negative Hyperplane VECtTS
Fig 28. SVC

Decision Tree and Random Forest, always tend to overfit. This is because by default the
scikit-learn’s tree depth is mentioned as “None”, so the tree naturally keeps splitting the nodes

(training samples) until all of them aren’t segregated.

(27)

#Train splitting parameters
test_size = 0.2
random_state = 42
classifier_inst_dict = { #logisticRegression: {"penalty": ('12', 'elasticnet’, 'none'), "tol" : (None, ©.8001, ©.86001, ©.6005),
"class_weight’: (’balanced’, None, {@:50,1:25,-1:25}, {@:20,1:40,-1:48})},

SVC: {"kernel”: ("linear”, "poly”, "sigmoid"), "C" : (1, 5, 10)},

MultinomialNB: {"alpha": (8, 1, 2, 5, 18), "fit_prior" : (False, True)},

DecisionTreeClassifier: {"criterion": ("gini", "entropy"), "max_depth": (Nene, 2, 5), "min_samples_split": (2, 3, 5)},

RandomForestClassifier: {"criterion”: ("gini”, “entropy”), "max_depth”: (None, 2, 5), "min_samples_split”: (2, 3, 5), "max_features”: (“auto”,"sqrt")},
GradientBoostingClassifier: {"loss": ("deviance", "exponential"), "learning rate": (6.1, 0.5, 8.61), "n_estimators": (100, 200),
"criterion": ("friedman_mse", "squared error", "mse", "mae")},
XGBClassifier: {"booster": ("gbtree", "gblinear", “"dart"), "binary": ("logistic", "logitraw"), "lambda": (@, @.01, @.5), "alpha": (@, @.e1, @.5)},
CatBoostClassifier: {"iterations": (50), "learning rate": (None, .81, 8.05, ©.1)}
}
classifier_inst_parameters = { #LogisticRegression: {"max_iter": 1000},

SVC: {"cache_size": 560},
MultinomialNB: {},

DecisionTreeClassifier: {},

RandomForestClassifier: {},

GradientBoostingClassifier: {3},
XGBClassifier: {},

CatBoostClassifier: {}

Fig 29. Pipeline Overview

Decision Tree has multiple parameters that can be tuned:

e Criterion: Gini or Entropy

e Max depth: Change “None” to a value and observe how it stops overfitting

e Min_samples_split: Just like an AVL tree, the node will simple into more only if the
training samples in the node are equal or above the given criteria.

e Min_samples_leaf: Minimum number of training samples that should be a present for

a node to be present.

These were the criterions | tuned and got appropriate results, there are more that can be looked

into.

(28)

Decision Node ———)»Root Node

RroE ZEEEENE|

| Sub-Tree Decision Node Decision Node

I

! | |

B v v v

: Leaf Node Decision Node

N e e e e e e e o |

v v

Leaf Node Leaf Node

O o - o o o -

Fig 30. Decision Tree

Random Forest Simplified

Instance
Random Forest

Class-A C lalss-B Class-B
I' I\ﬁjoﬁt)‘-\’oﬁting? |

Final-Class |

Fig 31. Random Forest

(29)

9. Boosting Algorithms

Boosting Algorithms are said to take weak learns and combine them into a strong one, but what

is the difference between Decision Tree algorithms and Boosting algorithms?

Ensemble Learning is joining multiple models to solve one problem, Bagging is a way to
decrease the variance in the prediction by generating additional data for training from the
dataset using combinations with repetitions to produce multi-sets of the original data. Boosting
IS an iterative technique which adjusts the weight of an observation based on the last
classification. If an observation was classified incorrectly, it tries to increase the weight of this

observation.

Random Forest comes under bagging, while XGboost, Catboost and more come under boosting

algorithms.

CatBoost
‘ * Handle categorical
Light Gbm features automatically
» Further improve on
XGBoost running speed using

leaf-wise tree growth

‘ « Improve on Overfitting * Allow tuning of more
Gradient Boosting * Optimise Running parameters
Speed using tree
* Using loss function parallelism and tree
AdaBoost « Gradient descent pruning
method to minimize
* Focus on missed- loss

classified cases
* Sequential modelling
» Foundation of Boosting

Fig 32. Boosting Algorithms

Even though Boosting Algorithms have trees, they have a different way to make trees compared
to Decision Tree. Surely, they do have decision-based trees, yet they have good optimisation
techniques to the loss function. While Random Forest randomly takes random subsets and work

on them and returns the best subset of trees.

(30)

Similarity
=0.33

...and when we plug them Dosage <5
into the equation for the
Gain...

Similarity Similarity
=1 =2

Gain = Leftsimilarity + Rightsimilarity - ROOtsimilarity

Fig 33. XG Boosting

Moving ahead, | had used Gradient Boosting, XG boosting and Catboost in my pipeline.
Gradient Boosting worked better when n_estimators were reduced from 100 to 50, reduced

overfitting (the number of sequential trees to be 40odelled).
XG Boost got optimized when regularization was Added and its learning ratewas tuned. Unlike
Decision trees XG Boost had reguliarization parameters (xgb: lambda = L2 regularization,

alpha = L1 reg, learning_rate a.k.a eta)

And Catboost too, was optimised with the help of Added L2 regularization and tuned

no_of _iterations (the number of trees in the model).

(31)

Chapter 5. CONCLUSION

1. Conclusion

fraining set was transformed before due to
multinomialN (no negative values were sent), now
training set is temporarily tranformed only for
MultinomialNg and not for other models, which

Logistic Regression 095 0 095 094 095 781 092 0 095 087 091 &4 increased aceuracies in Logistic Reg and SVC.
Had already added regularization and
1 055 097 096 1013 1 08 096 093 116 class_weights
svM 0.956 0 0354 085 085 752 0525 0 033 09 091 3 same as logisiic reg
1 095 096 098 1043 1 092 095 093 "7

inifially to make the training matrix fo positive, the
i m

minimum negalive value present in the training set
was being added. Replaced that method with
Mutiinomial NB 077 0 075 073 074 784 0795 0 077 075 0.78 &1 sklean's MinMaxScaling from [0,1]

1 0.8 081 0.81 1036 1 081 0.83 0.82 19

ntain less than
Added class_weights
oplions fo grid search, min_samples_spiit (nodes
will leave expand untl leaves contain less than
min_samples_spit) and min_sampies_leaf

Decision Tree 091 0 0.94 0.86 0.9 T84 0.88 0 0.94 081 0.57 &1 (min_samples per leaf).
1 0389 096 092 1036 1 0384 095 089 113

Random Forest 0.964 0 0.95 0.98 0.96 759 0.93 0 092 0.92 0.92 50 same as decision tree
1 098 097 097 1041 1 094 094 094 120

reduced n_estimators from 100 ta 50, reduced
overfitting {the number of sequential trees fo be
Gradient Boosting 0.978 0 0.98 098 097 748 092 0 092 092 092 75 modeled.)

1 0.99 0.97 0.98 1052 1 0.94 094 0.94 125

Added regularization and tuned leaming rate. xgb:
lambda = L2 regularization, alpha = L1 reg
%G Boosting 0.968 0 035 087 096 750 03815 0 08 089 09 78 leaming_rale 2 ka eta

1 098 097 097 1050 1 092 093 093 122

| Added L2 regularization and tuned no_of_iterations |
CatBoast 0.977 0 098 096 097 773 0.965 0 098 084 096 &7/ (the number of trees in the model.)]

1 0.99 0.99 0.98 1027 1 0.96 098 0.97 13

Fig 33. Optimised Results

Hence, we learnt how to apply Supervised learning ML algorithms, input a raw dataset and

return the best hyperparameter tuned model with good embeddings.

2. Future Work

In the next part, an entire segment of Deep Learning is still left to apply and explore, hence
looking forward to that. There is still a lot of space where these models can be optimised and
embeddings can be made better. BERT embeddings are a black box, even though we know

how it works we are not sure how the weights of the neural network can relate to each other.

Multiple Researches are going into this and new aspects of learning are constantly flowing in,

so can look into that as well.

(32)

References

https://scikit-learn.org/stable/index.html

https://www.geeksforgeeks.org/

https://medium.com/

https://towardsdatascience.com/

https://stats.stackexchange.com/

L A

https://stackoverflow.com/

(33)

https://scikit-learn.org/stable/index.html
https://www.geeksforgeeks.org/
https://medium.com/
https://towardsdatascience.com/
https://stats.stackexchange.com/
https://stackoverflow.com/

