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ABSTRACT 

 

 

 
 

Paxcom India Pvt Ltd., is an e-commerce and product-based company with vision of becoming 

a leader in e-commerce analytics and automation across all key geographies. with the parent 

company as PaymentUs, an integrated payment platform. Amongst the many teams Paxcom 

consists of, such as IVR, e-commerce, ChatBot, I work in the ML team, which designs and 

takes on projects from clients as well as other Paxcom teams, which helps us increasing 

efficiency and utilizing man hours that can be saved by using a good model. The ML team 

works together and creates multiple models, like Ensemble Learning, extract either features 

from the dataset or makes a variety of algorithms as the features, thereby adding effective 

algorithms just as training samples and increasing model performance metrics (f1, accuracy, 

precision, depending upon project requirement). In the ML team, with the guidance and support 

of my team lead and colleagues, I have gained industrial exposure in NLP and have been 

working on hands-on projects on various datasets. Until now, A generalized Sentiment 

Analysis pipeline have been made which when given a raw unlabelled dataset as input, will 

label, pre-process, run across multiple algorithms, and finally give the best hyperparameter-

tuned model with results and classification report. I have worked on annotations/labelling, blur 

classification, sentiment analysis and both supervised and unsupervised learning. With the help 

of my team, I have strengthened my skillset in the domain of ML and NLP both theoretically 

and hands-on, and will continue learning with deep neural networks currently. Hence this 

project will be about how I approached the sentiment analysis problem, what I learnt along the 

way and the respective performance and results of the same. 
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Chapter 1. INTRODUCTION 

 

 

1. General Introduction 

 

 

Sentiment Analysis, as the name suggests, it means to identify the view or emotion behind 

a situation. It basically means to analyze and find the emotion or intent behind a piece of text 

or speech or any mode of communication, whose use cases can vary from a feedback form to 

being used in automation based human emotion detection.  

 

Polarity precision can be crucial when it comes to various businesses, for instance, when 

analyzing customer feedback in survey responses and conversations, one can learn to detect 

emotions and provide services and products accordingly. One of the ways to solve them is by 

using NLP (Natural Language Processing), a branch of computer science concerned with 

giving computers to understand vocabulary and grammar of texts.  

 

Since the machine only understand zeroes and ones, we need to convert such grammatical 

phrases to numerical data while retaining the contextual information of the same, and then 

apply machine learning algorithms or deep learning networks, hence getting a model which 

can understand sentiment like humans, and hence, then be used in end user applications. Thus, 

in this internship, I tried to experience NLP a bit deeper and prepare myself for industry level 

projects from my learnings of this use case. 

 

The pipeline includes complete generalization, labelling the dataset with state-of-the-art 

models, a series of preprocessing steps, then vectorizing the corpus or create embeddings, then 

running a Gridsearch on multiple ML and boosting algorithms with cross-validation, evaluating 

performance results and classification report and returning the best (non-overfitted) model. 
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Fig 1. NLP Pipeline Broad Overview 

 

 

The project includes analysis of the different preprocessing steps and vectorizers and 

algorithms used, and why specific algorithms and vectorizers/embeddings worked well than 

others. 

 

 

2. Problem Statement 

 

 

The problem statement is to how to parse through thousands of lines of text corpus or feedback 

survey records and detect human emotion and sentiment out of them, thereby efficiently 

utilizing time and manpower. Emotion detection has been surprisingly significant in 

businesses, and helps companies plan and tailor products according to the needs of end user.  
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3. Solution Approach 

 

The solution is to create a generalized ML pipeline which when given an unlabelled / labelled 

dataset, will preprocess the data vectorize and run ML models on the data, and at the end of 

pipeline return the best hyperparameter tuned model, completely on its own with no human 

interference. 
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Chapter 2. LIBRARIES AND SOFTWARE USED 

 

 

1. Python 

 

 

Python is a high-level interpretable language, used widely when it comes to ML and API 

making. Python unlike C and Java, and minimize long codes into few lines with its rich libraries 

and functions with the use of space indentation.  

 

 

Fig 2. Using python to code function which gets performance results and best model 

 

All pipelines and pre-processings have been done on Python as it’s tools and integrated systems 

help in analyzing models and visualizing performances easily and saves time. 

 

 

2. Jupyter 

 

 

Jupyter notebooks is a web based local host platform with variable coding environments for 

coding and data. It supports both CPU and GPU, hence one can use their remote PC’s system 

and RAM to run models here. 
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3. Google Colab 

 

 

While Jupyter notebooks are good when it comes to accessing local RAM and saving remote 

data, Colab notebooks is also a web-based computing platform, but one can use Google’s GPU 

and RAM for inferences. Notebooks and datasets can be either imported or saved at google 

drive and code data can be easily shared. 

 

4. LabelImg 

 

 

LabelImg is an open-source graphical image annotation tool, where you can emphasize 

meaningful areas of images that you want to label for classification. 

 

 

Fig 3. LabelImg being used to label barcodes and QR codes 

 

5. Doccano 

 

Doccano is an open-source text annotation tool, analogous to LabelImg, just used in 

emphasizing texts and later indexed in numerical data for NLP models. 
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Fig 4. Labelling texts using Doccano 

 

6. Pandas 

 

 

Pandas is a python library used to structure and manipulate data using for instance, data frame 

and series. In this project, pandas will come in handy to tabulate data and apply operations. 

 

7. Numpy 

 

 

Numpy is a python library used for applying mathematical operations and transformations to 

n-dimensional data structures. 

 

8. NLTK 

 

 

NLTK (Natural Language Tool Kit) is a textual data pre-processing library used to structure 

and organize raw textual data for text analysis and visualizations. Functions such as tokenizer, 

lemmatizator and stopwords copurs are some of the NLTK functions that come in handy whehn 

pre-processing text. 

 

9. Scikit-Learn 

 

 

Scikit-Learn is a machine learning library for Python providing powerful preprocessing tools, 

various algorithms for regression and classification, feature selection and extraction, and 

dimensionality reduction functions.  

 

10. Gensim 

 

 

Gensim is an open-source library used for document indexing, and finding phrase/document 

similarity. It also consists of Word2Vec function, which as the name suggests, converts words 

and phrases to n-dimensional vectors, attempting to capture the context of phrases in a sentence 

or a document. These came as an improvement of count and TF-IDF vectorizers. 
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11. Transformers 

 

 

Transformers is an open-source library by HuggingFace widely know for it’s state of the art 

NLP classification models for PyTorch, TensorFlow and JAX. The major use of transformers 

in our pipeline will be for BERT, a state-of-the-art model which will help us in labelling 

unlabelled data and providing word embeddings for corpus. 

 

These were the libraries that were majorly used, other mentions could be of collections, 

xgboost, catboost, tensorflow and more. 
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Chapter 3. TASK ASSIGNED DETAILS 

 

 

1. Dataset Description 

 

There are 2 unlabelled datasets merged together for this situation, first has people who bought 

biscuits online feedback entries, second is of people who bought electronics online feedback 

entries. 

 

 

 

Fig 5. 2 Datasets (i) Biscuit Feedback (ii) Electronics Feedback 

 

In total removing duplicates, there are 5000 text samples with 3 labels to classify: Positive (1), 

Negative (-1) and Neutral (0).  The entries are mostly in English, with some outliers of Hindi 

and Tamil.  
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The problem with this dataset is, it is highly imbalanced with approx. 3500 entries of Positive 

labelled data, 1400 of negative and a 100 of neutral.  

 

Hence instead of accuracy, this situation calls for focussing on f1 as a performance metric since 

even if the accuracy is high, that might also occur when our model is perfectly predicting the 

positive ones but wrongly predicting the neutral entries by a large difference. 

 

2. Dataset Labelling 

 

As the dataset is unlabelled, our first step should be labelling the data with a very strong model. 

This is where RoBERTa steps in, A Robustly Optimized BERT Pretraining Approach, which 

is based on Google’s Bert model released in 2018.   

 

It builds on BERT and modifies key hyperparameters, removing the next-sentence pretraining 

objective and training with much larger mini-batches and learning rates. 

 

 

 

Fig 6. Labelling function 
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This pre-trained model itself takes care of stemming, lemmatizing, removing unknown 

symbols and stopwords. One might think of straight away use the given model for all kinds of 

problems, as honestly, it is the best. But the point to note is it is still a pretrained and a very 

large model, present on HuggingFace’s cloud and remotely available for us, thus it takes a good 

amount of time to use ROBERTa and consequently, requires the need for making our own 

model tailored to our requirements. 

 

Finally, the dataset is labelled and now requires manual review, as the model is best but migt 

not be matching our requirements of labelling. 

 

3. Preprocessing & Cleaning 

 

 

Preprocessing a textual dataset requires a series of steps for it to be prepared for vectorizing or 

in other words, converting it to numerical data. 

  

 

Fig 7. Pre-processing Flow Diagram 

 

1. Removal of unwanted symbols: This can be done by limiting the ASCII numbers to 

small letters, capital letters and digits.  
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2. Tokenizer: Tokenizer creates a list of all words and letters from a sentence or paragraph, 

disregarding all punctuations and special characters. Tokenizer provided by NLTK can 

be of 2 types, sent_tokenize and word_tokenize. sent_tokenize is used to split a 

document or paragraph into sentences while word_tokenize is used to split a sentence 

into tokens. 

 

 

Fig 8. Preprocessing Pipeline Code – 1 

 

3. Expanding short hands: Expanding words such as don’t, can’t, it’s is essential as it helps 

in recognizing them as stopwords and getting “not” word as a token, for negative 

entries. 

4. Removing stopwords: Now as the words have been expanded, NLTK’s stopwords 

library can be used to recognize and remove the same. 

5. Spellchecker: A good spellcheck such as TextBlob  is used here to correct wrongly 

spelled words. 

6. Standardization: People might use slangs obtained from social networking sites in their 

textual vocabulary, writing “good” as “gud”, “osm” for “awesome” are some of the 

common ones. 

7. Lemmatization: Lemmatization is bringing the token back to its actual form, for 

example, “studies” to “study”. While stemming is also widely used, it has not been  
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applied here as stemming doesn’t give the actual word, it removes affixes out of words, 

for example, “studies” to “studi”, which is not base word. Lemmatization gives us the 

base word. 

 

 

Fig 9. Stemming vs Lemmatization 

 

 

Fig 10. Preprocessing Pipeline Code - 2 
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8. POS Tagging: Finally, POS-tagging, recognizing and filtering words based on their 

categories of phrases, like removing proper nouns and keeping adjectives. 

 

 

Fig 11. Pos Tagging 

 

Thus, preprocessing is done, and now can remove empty and duplicate entries in the dataset, 

and move om to the next step, i.e., vectorizing. 
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4. Vectorizers 

 

There are 2 types of vectorizers mainly used, Count Vectorizer and TF IDF Vectorizer. 

 

1. One Hot Encoding: Giving each word a one while all others are giving index 0. Easiest 

implementation by far, but highly inefficient when it comes to dimensionality of matrix 

and memory usage. 

 

 

Fig 12. One Hot Encoding 

 

2. Count Vectorizer: A simple vectorizer that provides indexes to all unique words, the 

count of words will accordingly be given higher or lower priority by the model.  

 

Again, a simple approach but with a lot of loopholes as it is incapable of identifying 

relationships between words and works purely based on number of occurrences in the 

whole document.  
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Fig 13. Count Vectorizer 

 

3. TF-IDF Vectorizer: Term Frequency - Inverse Document Term frequency is based on 

not only on count of word in the document, but also takes in account number of times 

the word is occurring in a sentence. 

 

 

Fig 14. TF – IDF Formula 

 

This is a simple yet powerful tool, and in some cases work even better than Word2Vec, which 

takes contextual information in account too. But it has 2 edge cases to it: 

 

ZERO VALUE ISSUE: which occurs because of the IDF calculation. Imagine we have three 

entries, and the word we are considering here is “cat”. In document A, cat makes up 70% of  
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the words. If cat appears once in document B and none times in document C, the TF-IDF value 

would be high. But if cat appeared once in C too, tf-idf would fall all the way to zero, which is 

a way too big contrast for just one occurrence change. 

 

This is an undesirable feature as even though cat is a very important word here, TF IDF says 

otherwise. 

 

EXTENSIVE MARGIN ISSUE: again because of the IDF portion. This occurs because TF 

IDF does take account of number of times the word cat occurs in the document, but doesn’t 

take in account number of times it occurs in other documents.  

 

Consider the same scenario taken above. Now suppose cat makes up 5% of words in document 

A. If cat didn’t occur at all in document B, TF IDF value would be high, but if it came once in 

B, TF IDF would again, fall down like a hero to zero.  

 

Hence, even in this situation even though it condition is almost identical, TF IDF shows 

complete change of behavior just by ne word difference. Hence, TF IDF is sometimes not 

desirable when it comes to vectorizing.  

 

The traits of TF IDF can be changed by giving proportional importance to words, but why do 

that when we can move to contextual words vectorizing in methods such as Word2Vec and 

Glove? 
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Fig 15. TF IDF Implementation 

 

 

 

Fig 16. TF IDF Results 

 

In the case TF IDF, SVM showed the best results a possible explanation for that is SVM 

performs well at small datasets whereas the other algorithms such as boosting and  
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ensemble learning algorithms (decision tree & random forest), they are data hungry and hence 

perform great at large datasets. 

SVM works well when there is a clear set of separation and it uses a subset of training points 

in the decision function (called support vectors), so it is also memory efficient. We will talk 

about models later. 

 

 

5. Word Embeddings 

 

 

Word Embeddings basically, are n-dimensional (n specified by the programmer) vectors used 

for representation of words, another way to convert text to numerical data. Before this even 

though vectorizers had no dimensionality and just single digit values, they were completely 

unknown to the context. Word embeddings can be used to take context into account and hence, 

making the model altogether better. 

 

 

 Fig 17. Word Embeddings 

 

The most famous example of contextual embeddings is: 

Queen = King – Male + Female 
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There are 4 types of embeddings analysed on the pipeline: 

1. Word2Vec 

2. Glove 

3. Bert 

4. ELMo 

 

Bert and ELMo are currently the best working embeddings currently, and are available as 

pretrained models. But we for our use, will only use their embeddings in this case. 

 

6. Word2Vec & Glove Embeddings 

 

Word2Vec is a semi-supervised learning technique, like every other neural network. It is 

supervised if you consider that the network has to learn from backpropagation, unsupervised if 

you consider that no human expert makes labels. For instance, KNN for K-nearest neighbors 

is a classification algorithm that in order to determine the classification of a point combines the 

classification of K-nearest points. It is supervised because if you are trying to classify a point 

based on the known classification of other points.  

 

 

Fig 18. CBOW model 
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Word2Vec produces a produces a vector space, typically of several hundred dimensions, with 

each unique word in the corpus such that words that share common contexts in the corpus are 

located close to one another in the space. That can be done using 2 different approaches: 

starting from a single word to predict its context (Skip-gram) or starting from the context to 

predict a word (Continuous Bag-of-Words). 

 

 

 

Fig 19. Skip-gram model 

 

Hence, the neural network is fully used to predict the next word or predict the words around it, 

either way we will only be taking the network weights as embeddings and don’t require the full 

model. 

 

Also, we will be preferring CBOW over Skip-gram here because firstly, CBOW trains faster 

and can better represent frequent words, mainly because it works on context and maximizes 

probability of target word by looking at context hence, making it easier to work on frequently 

occurring words than the rarely occurring ones. And secondly, CBOW gave better results on 

analysis. 
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Fig 20. Word2Vec results 

 

As you can observe, Word2Vec results are not as good as TF IDF, mainly because of TF IDF 

takes care of rarely occurring words as well, while Word2Vec CBOW doesn’t predict well at 

rarely occurring words.  

 

Also, once Word2Vec is applied or trained, it can’t be trained again. Hence every time a new 

word comes in, Word2Vec will try to give an embedding accordingly in the n-dimensional 

vector space to the word.  

 

Word2vec relies only on local information of language words and proves suboptimal, we will 

see how other embeddings prove over Word2Vec in this case. Also, it might be possible that 

in our case the occurrences of words had a good effect on the model, thereby TF-IDF giving 

good results and Word2Vec unable to. 

 

 

 

 

 

 

 

 

 

 

 

(21) 



 

Fig 21. GloVe Embeddings 

 

Enter GLoVe, the model which considers both contextual and statistical information of a 

corpus. In other words, it tries to capture both the count vectorizer technique (or co-occurrence 

matrix) and Word2Vec’s prediction-based technique (word embeddings). 

 

 

 

Fig 22. GLoVe Results 
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And look at what we have here, better results as soon as occurrence of words was taken into 

account. Thus, the reasons were correct, number of occurrences is important in this dataset and 

GLoVe improved over Word2Vec using the same. Even the overfitted results can be improved 

over by some Hyper-parameter Tuning and vectorization. 

 

Also, GLoVe is already trained over a big corpus, so just download the embeddings and you 

have shorter training time compared to Word2Vec. This is great, but what if the embeddings 

didn’t only rely on the neighbours? 

 

7. BERT & ELMo Embeddings 

 

 

Until now in Word2vec and Glove embeddings, we had to get sentence embeddings out of 

word embeddings by adding and averaging them out. An effective method, but not an ethical 

one as it doesn’t represent the sentence at all. 

 

 

 

Fig 23. ELMo Embeddings  
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ELMo embeddings, tries to solve the disadvantages of Word2Vec and Glove by bringing in 

contextual information in embeddings too, hence the weighted sum of the word vector and 2 

intermediate word vectors gives us the resultant word vector. 

 

 

 

Fig 24. ELMo Results 

 

The results are still good, contextualized embeddings are better then isolated embeddings as 

they do not grasp the environment around the same. 

 

BERT on the other hand, has its own way of doing things. BERT creates a mask first, SEP 

mask for separating lines and CLS at the beginning of text. 

 

For UNK or unknown tag, BERT doesn’t use it this time. Rather, it will split the unknown 

word into small pieces, and make embeddings out of it. For instance, if there was an embedding 

present for the word “embed” and a new “embedding” word has come now, it will create the 

embeddings for “ding” and “embed#####”, showing that it is similar to embed but might have 

been used differently, look out. 

 

 

Fig 25. Bert Embeddings 
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That’s why BERT is called state-of-the-art, it prepares itself for all the edge cases it can out 

there. 

 

 

Fig 26. BERT Results 

 

The results are better than ever, thus in our case. BERT performed the best with many models 

almost to the brim of perfection. Almost because if we observe, there are still some models 

with overfitting present. 

 

In my duration of internship, I used to think that 90 training acc. and 80 testing acc. (also known 

as validation accuracy) means overfitting, but when it comes to deeper observation, here 

catboost is overfitting as well, with 98 training acc. and 91.5 testing acc. 

 

Thus, now we will go deep into all algorithms and fine tune them, and prevent them for 

overfitting. 
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8. ML Algorithms 

 

 

 

Logistic Regression 

 

Logistic Regression in our case, didn’t had any overfitting, but if it needed, L1 (Lasso), L2 

(Ridge) and Elastic Net (combined Ridge and Lasso) are the parameters used for regularization. 

 

• Lasso (L1): λ·|w| 

• Ridge (L2): λ·w² 

• Elastic Net (L1+L2): λ₁·|w| + λ₂·w² 

 

Not all of them are compatible with all kinds of solver Logistic Regression has. For instance, 

LBFGS solver is only compatible with L2, not with L1 and Elastic Net. So, need to keep a 

track on that. The difference between L1 and L2 is that one is absolute lambda and other is 

squared lambda. 

 

 

Fig 27. Learning Curve 
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Logistic and SVM were also underperforming because of MultinomialNB. When sending 

training data, whenever the pipeline got MultinomialNB in the models list, MultinomialNB has 

the requirement to only allow zero or positive values. 

 

Hence when the dataset was scaled to positive exclusively for MultinomialNB and not for other 

models, the accuracy of both SVM and Logistic Regression rose up. 

 

Hence, SVM didn’t require any hyperparameter tuning. And MultinomialNB being purely 

based on probability, didn’t have any parameters to tune. 

 

 

 

Fig 28. SVC 

 

Decision Tree and Random Forest, always tend to overfit. This is because by default the 

scikit-learn’s tree depth is mentioned as “None”, so the tree naturally keeps splitting the nodes 

(training samples) until all of them aren’t segregated.  
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Fig 29. Pipeline Overview 

 

Decision Tree has multiple parameters that can be tuned: 

 

• Criterion: Gini or Entropy 

• Max_depth: Change “None” to a value and observe how it stops overfitting 

• Min_samples_split: Just like an AVL tree, the node will simple into more only if the 

training samples in the node are equal or above the given criteria. 

• Min_samples_leaf: Minimum number of training samples that should be a present for 

a node to be present. 

 

These were the criterions I tuned and got appropriate results, there are more that can be looked 

into.  
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Fig 30. Decision Tree 

 

 

Fig 31. Random Forest 
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9. Boosting Algorithms 

 

Boosting Algorithms are said to take weak learns and combine them into a strong one, but what 

is the difference between Decision Tree algorithms and Boosting algorithms? 

 

Ensemble Learning is joining multiple models to solve one problem, Bagging is a way to 

decrease the variance in the prediction by generating additional data for training from the 

dataset using combinations with repetitions to produce multi-sets of the original data. Boosting 

is an iterative technique which adjusts the weight of an observation based on the last 

classification. If an observation was classified incorrectly, it tries to increase the weight of this 

observation. 

 

Random Forest comes under bagging, while XGboost, Catboost and more come under boosting 

algorithms. 

 

 

Fig 32. Boosting Algorithms 

 

Even though Boosting Algorithms have trees, they have a different way to make trees compared 

to Decision Tree. Surely, they do have decision-based trees, yet they have good optimisation 

techniques to the loss function. While Random Forest randomly takes random subsets and work 

on them and returns the best subset of trees. 
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Fig 33. XG Boosting 

 

Moving ahead, I had used Gradient Boosting, XG boosting and Catboost in my pipeline. 

Gradient Boosting worked better when n_estimators were reduced from 100 to 50, reduced 

overfitting (the number of sequential trees to be 40odelled). 

 

XG Boost got optimized when regularization was Added and its learning ratewas tuned. Unlike 

Decision trees XG Boost had reguliarization parameters (xgb: lambda = L2 regularization, 

alpha = L1 reg, learning_rate a.k.a eta) 

 

And Catboost too, was optimised with the help of Added L2 regularization and tuned 

no_of_iterations (the number of trees in the model). 
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Chapter 5. CONCLUSION 
 

1. Conclusion 

 

 
 

Fig 33. Optimised Results 

 

 

Hence, we learnt how to apply Supervised learning ML algorithms, input a raw dataset and 

return the best hyperparameter tuned model with good embeddings. 

 

2. Future Work 

 

In the next part, an entire segment of Deep Learning is still left to apply and explore, hence 

looking forward to that. There is still a lot of space where these models can be optimised and 

embeddings can be made better. BERT embeddings are a black box, even though we know 

how it works we are not sure how the weights of the neural network can relate to each other.  

 

Multiple Researches are going into this and new aspects of learning are constantly flowing in, 

so can look into that as well. 
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