

i

PathFinding Visualizer

Project report submitted in partial fulfillment of the requirement for

the degree of Bachelor of Technology

in

Computer Science and Engineering/Information Technology

By

Meenakshi Sharma 181419

Under the supervision of

Dr. Himanshu Jindal

to

Department of Computer Science & Engineering and Information

Technology

Jaypee University of Information Technology Waknaghat, Solan-

173234, Himachal Pradesh

ii

Candidate’s Declaration

I hereby declare that the work presented in this report entitled “PathFinding Visualizer” in

partial fulfillment of the requirements for the award of the degree of Bachelor of

Technology in Computer Science and Engineering/Information Technology submitted in

the department of Computer Science & Engineering and Information Technology, Jaypee

University of Information Technology Waknaghat ,is an authentic record of my own work

carried out over a period from August 2021 to December 2021 under the supervision of Dr.

Himanshu Jindal(Assistant Professor(SG) , Computer Science and Engineering and

Information Technology).

The matter embodied in the report has not been submitted for the award of any other degree

or diploma.

Meenakshi Sharma,181419

This is to certify that the above statement made by the candidate is true to the best of my

knowledge.

(Supervisor Signature)

Dr. Himanshu Jindal

Assistant Professor (SG)

Computer Science and Engineering and Information Technology

Dated: 14 May,2022

iii

Acknowledgements

I would like to express my sincere gratitude to my project guide “Dr. Himanshu Jindal” for

giving me the opportunity to work on this topic. It would never be possible for me to take

this project to this level without his innovative ideas and his relentless support and

encouragement.

I also thank our family, friends and all the faculties who gave their unfiltered suggestions and

feedback and helped me face all the challenges and hurdles which came along during the

project.

Meenakshi Sharma 181419

iv

Table of Contents

Title Page………………………………………………………. (i)

Certificate of Candidate’s Declaration………………………… (iii)

Acknowledgment…………….......................................….......... (iv)

Table of Contents……………………………………………… (v)

List of Abbreviations…………………………………………. (vii)

List of Figures………………………………………………… (viii)

List of Graphs…………………………………………………. (x)

List of Tables…………………………………………………. (xi)

Abstract………………………………………………………... (xii)

1. Chapter-1Introduction …………………………………… 1-12

 1.1 Introduction …………………………………..…… 1

 1.1.1 Visualization of PF Algorithm……. 2

1.2 Problem Statement ………………………………… 3

1.3 Objectives …………………………………………. 7

1.4 Methodology ………………………………… …… 8

1.5 Project Life Cycle …………………………………. 8

1.6 Representations of Maps …………………………... 9-11

1.7 Types of algorithms ………………………………. 12

 1.7.1 Informed Search …………………… 12

 1.7.2 Uninformed Search ………………… 12

1.8 Project Organization ………………………………. 12

2. Chapter-2Literature Survey ………………………………. 13-21

 2.1 Literature Survey …………………………………… 13

 2.2 Research Gaps ……………………………………… 15

 2.3 Research Papers and Thesis ……………………… 15-18

 2.4 Critical Review of Research Papers …………............ 20

 2.5 Summary of PathFinding Research Papers …………. 21

3. Chapter-3 System Development ……………………………. 22-66

 3.1 Model System ……………………………………….. 22

 3.1.1 Software and Hardware Requirements .. 23

 3.1.2 Tools/Platforms used …………………. 24

 3.2 Algorithms Implemented ……………………….. 28-66

 3.2.1 BFS ……………………………………. 29

 3.2.2 DFS ……………………………………. 32

 3.2.3 Dijkstra ………………………………… 37

 3.2.4 A* Search ……………………………… 41

v

 3.2.5 D* Search ……………………………… 46

 3.2.6 IDA* AND JPS ………………………... 48

 3.2.7 Maze Generation Algorithm …………… 49

 3.3 Animations and UI ………………………………. 58

4. Chapter-4 Performance Analysis ………………………… 69-91

 4.1 Sample Simulation ………………………………… 69

 4.2 Analysis of Results ………………………………… 81

 4.3 Summary of Comparative Study ………………….. 84

5. Chapter-5 Conclusions ……………………………………… 92-97

5.1 Conclusions …………………………………….......... 92

5.2 Future Scope …………………………………………. 93

5.3 Applications Contributions ……………………........... 95

References ………………………………………………………. 99

Appendix ……………………………………………………… 100

vi

List of Abbreviations

1. 2D/3D Two/Three Dimensional

2. AI Artificial Intelligence

3. BFS Breadth First Search

4. BGP Border Gateway Protocol

5. CSS Cascading Style Sheets

6. DAG Directed Acyclic Graph

7. DFS Depth First Search

8. FIFO First in First Out

9. GPS Global Positioning System

10. HPA* Hierarchical Path Finding Algorithm

11. IDA* Iterative Deepening A* Algorithm

12. IP Internet Protocol

13. JS JavaScript

14. JSON JavaScript Object Notation

15. LAN Local Area Network

16. LIFO Last in First Out

17. MIMO Multi Input Multi Output

18. Min. Minimum

19. OSPF Open Shortest Path First

20. PF Path Finding

21. PSO Particle Swarm Optimization

22. RIP Routing Information Protocol

23. UI User Interface

24. Viz. Visualization

25. VLSI Very Large-Scale Integration

vii

List of Figures

FIGURE TITLE Page No.

Figure 1 3D Visualization of Bellman Ford Algorithm 2

Figure 2 Bellman Ford Algorithm 3

Figure 3 Bellman Ford Algorithm on Path finding Visualizer 3

Figure 4 3 Phases of Path Finding, Discretization 5

Figure 5 Different Grids 5

Figure 6 Navigation Mesh 5

Figure 7 Solve Convex Partitioning Problem 6

Figure 8 Path Finding in a Graph 6

Figure 9 Graph Algorithm’s 6

Figure 10 Heuristical Improvements 7

Figure 11 Different Types of Grids 10

Figure 12 Navigation Mesh 11

Figure 13 Way points 11

Figure 14 Adjacency Matrix and Corresponding Graphs 14

Figure 15 Different Optimizations in PathFinding 17

Figure 16 PathFinding with Different Heuristics 18

Figure 17 Line vs Grid Movements 19

Figure 18 Particle Movement and Flowchart of PSO Algorithm 16

Figure 19 Optimal Paths on Different Grids 19

Figure 20 Shortest path using A* and Dijkstra Algorithm 22,23

Figure 21 Design of Path Finding Visualization 25

Figure 22 Structure of Path Finding Visualizer 26

Figure 23 Model of project 27

Figure 24 Different Types of Algorithms in Project 28

Figure 25 BFS Implementation as a Queue (FIFO) 30

Figure 26 BFS Visualization 31

Figure 27 BFS and DFS Code Snippet 32

Figure 28 Working of DFS 34

Figure 29 DFS Implementation as a Stack (LIFO) 35

Figure 30 DFS Visualization 37

Figure 31 Dijkstra’s Implementation as a Priority Queue 38

Figure 32 Dijkstra Code Snippet 42

Figure 33 Dijkstra Visualization 42

Figure 34 Manhattan and Pythagorean Distance 44

Figure 35 Manhattan Distance Map 45

Figure 36 A* Visualization 47

Figure 37 Maze Generation Algorithms 51

Figure 39 Generating a 30x20 Maze using Kruskal’s Algorithm 53

viii

Figure 40 Generating a 30x20 Maze using Prim’s Algorithm 54

Figure 41 Steps of Recursive Division 55

Figure 42 Recursive Maze Generation 56

Figure 49 Animations and their Types 61

Figure 62 Locust Swarm Algorithm for Path Finding 89

Figure 64 3D Simulation of Path Finding Visualizer 93

ix

List of Graphs

Figure Title Page No.

Figure 38 Graph Theory Based Method 52

Figure 43 Recursive Division Maze 56

Figure 44 Recursive Division (Vertical Skew) 57

Figure 45 Recursive Division (Horizontal Skew) 57

Figure 46 Random Maze 58

Figure 47 Random Weights Maze 58

Figure 48 Simple Stairs Pattern 58

Figure 50 Testing Tool in Simulation 1, A* 70

Figure 51 Testing Tool in Simulation 1, Dijkstra 71

Figure 52 Testing Tool in Simulation 1, D* 72

Figure 53 Testing Tool in Simulation 2, A* 73

Figure 54 Testing Tool in Simulation 2, Dijkstra 74

Figure 55 Testing Tool in Simulation 2, D* 75

Figure 56 Testing Tool in Simulation 3, A* 76

Figure 57 Testing Tool in Simulation 3, Dijkstra 77

Figure 58 Testing Tool in Simulation 3, D* 78

Figure 59 Generating Single Source Shortest Path Algorithm 27

Figure 60,61 A* Search 87,88

Figure 63 A swarm intelligence graph-based Path Finding Algorithm 90

x

List of Tables

Table No. Topic Page No.

Table 1 Data from environment 1 79

Table 2 Data from environment 2 80

Table 3 Data from environment 3 81

Table 4 Efficiency Scores 82

Table 5 Comparison between BFS and Dijkstra 82

Table 6 Comparison between informed and uniformed algorithm 83

Table 7 Summary of Algorithm Performance 83

xi

Abstract

Learning by Graphics and Visualization is the most effective pedagogy to understand any

algorithm in the field of computer science. Theoretical concepts when learnt in a visually

pleasing manner tend to interest us more and it is through these dynamic visualizations that

we can see the underlying steps involved in any algorithm. This project intends to visualize

all the shortest path algorithms that find the most optimal path from a source to destination

node subject to constraints of time and cost. Experimentation with different sets and

combinations of path finding algorithms help us get the most efficient applications of these

algorithms, which can be useful in a variety of real-life applications like traffic congestion

management, digital mapping services, social networking applications, robotics, game

development and much more. The functionality consists of various algorithms like BFS,

DFS, Dijkstra, A* Search, IDA* Search, Jump Point Search, and test simulations where all

the above algorithms are compared by common parameters to get the most optimal path

under each environment,

1

Chapter 1

Introduction

1.1 Introduction

Algorithm visualization / animation often uses dynamic graphics to visualize

computation of any algorithm. Around 2000’s , the advent of software tools in the

form of Java and its libraries took place along with invention of complex hardware

systems which changed the way algorithms were taught in computer science. Sorting ,

searching problems involving different data structures like trees, hash maps and

graphs were being understood by visualization via animated algorithms. Animation

tools and libraries were developed to allow development and research in the field of

computer graphics.

Algorithm operates on a dataset, input data, variables and output data. Conventionally

, graphs and tress are visualized by circles/nodes drawn by line segments , no. chains ,

vertical/horizontal bars via fundamental structures of matrices, vectors, real functions.

An algorithm runs in steps to visualize the step-by-step flow of the algorithm.

Visualizing the algorithm serves as a fundamental step to understand the internal

working of it in small steps in order to develop a better sense of its utility and

functioning.

1.1.1. VISUALIZATION OF PATH FINDING ALGORITHMS

Even though the example given in this segment can also be understood as an

algorithm stable visualization, it is perhaps more convenient to speak about

algorithmic idea visualization (AIV). Once more, there is no general method of AIV,

because the underlying ideas of different algorithms in different fields have nothing in

common, and each idea is unique and requires uncommon method of representation

by dynamic graphic means. Well, in case, there is one general method of AIV. Even

though very little is known about productive mental process that leads to discovery of

new algorithms, we understand (based on our introspection) that a researcher

visualization is perhaps often based, as the word recommend, on mental images - and

AIV is just a straightforward projection of such mental images to a demonstration of a

computer. Due to the space limitation, we give just one example - Fortune’s algorithm

(Fortune, 1987) for Voronoi diagram in the plane. There are several animations of the

algorithm in the web, the reader is invited to look at them. The Voronoi diagram is

eventually drawn, but the animations totally give no idea what the moving arcs mean

and why and how they build the diagram. The algorithmic idea behind the method is

following imagine the plane containing sites are enclosed as a horizontal plane into

the 3-dimensional space. For each site, create a circular cone that has a vertical axis

and uses the site as its apex. Observe the cone surfaces vertically from the limitless (to

avoid effects of perspective). The junction of cones project to the site plane as the

Voronoi diagram we are looking for. Moreover, if the “mountains” of the cones are

swept by an inclined plane, the junction of the plane with the clear parts of the cones

appear as the arcs that are visual in the planar animations.

2

Figure 1: 3D Visualization of Bellman Ford Algorithm

Figure 2:Bellman Ford Algorithm

Figure 3: Bellman Ford Algorithm on Path finding Visualizer

3

1.2 Problem Statement

Pathfinding algorithms address the problem of finding a path from a source to a

destination avoiding obstacles and minimizing the costs (time, distance, risks, fuel,

price, etc.). This is a common programming challenge.Pathfinding is closely related to

shortest path problem, thus the definition of pathfinding is finding the optimal path

from a given start node(s) to goal node(g) in the given graph(G), where optimal refers

to the shortest path, low-cost path, fastest path, or any other given criteria. Pathfinding

can generally be divided into two categories: SAPF, that is Single Agent Pathfinding,

to generate a path for one agent and MAPF, that is Multi-Agent Pathfinding, to

generate the path for more than one agent. In this paper, we only consider the single-

agent pathfinding problem in a static environment, which means the map does not

change as the agent moves. Pathfinding has applications in different fields, and it is

hard to consider all the application areas, so in this paper, only video game

applications are used and in 2D environments.

Finding a Way is a major computer problem

• complex game worlds

• high number of businesses

• changing locations

• real-time response

The problem statement includes:

• if given first place if given first place and goal point and goal point r, get a, find a

way from s to reducing a particular condition.

• search problem construction

• Find a way to reduce costs

• problem-solving and efficiency

• reduce costs depending on roadblocks

Three stages of finding a way:

1. Divide the game world

• select points and links select points and links

 2. Find solution to problem of a path in given graph

• allow way points = vertices, connection = edges, allow way points = vertices,

connection = edges, cost = weights cost = weights

• find the minimum route of the graph

3. Observe the movement in the game world

• aesthetic concerns

• Visual connector anxiety

The stages of path finding are mentioned as:

4

Figure 4: 3 Phases of Path Finding, Discretization

Figure 5: Different Grids

Figure 6: Navigation Mesh

5

Figure 7: Solve Convex Partitioning Problem

Figure 8: Path Finding in a Graph

Figure 9: Choosing graph algorithm

6

Figure 10: Heuristical Improvements

Path locating normally refers to locating the shortest direction among any two

locations. Many current algorithms are designed exactly to solve the shortest path

trouble consisting of Genetic, Floyd set of rules. This approach will visit unwanted

nodes which might not be the nice path, and this additionally increases the time taken

to discover the quality direction to our vacation spot. It might also advise us longer

paths to our destination as these are uninformed algorithms.

Thus, given source and destination nodes we need to devise the minimal and optimal

path connecting them, considering the obstacles in between in the most efficient

manner possible.

1.3 Objectives

1. Studying a variety of weightless ways to find algorithms such as un-weighted BFS

DFS because they are the basis for a graph (or tree) and often serve as benchmark for

evaluating another algorithm. It covers highly developed algorithms that include

heuristics such as Dijkstra, A * (A-Star), Swarm algorithm, Convergent Swarm, Bi-

directional Swarm Algorithm etc.

2. Visualize the algorithms that work by finding the shortest / most direct path

between the source and the target. Play with the algorithm using multiple sets of

obstacles along the way between two nodes like Mazes, Obstacles such as Bomb

Node and various self-designed patterns such as Simple Stair Pattern, Recursive

Division etc.

3. Integrate UI Images with algorithm to visualize them working.

• Analyse their behaviour under various circumstances, obstacles and mazes

• Understand various weighty and weightless algorithms and their real-life programs

such as grid-based games, distance maps, map analysis, GPS

7

1.4 Methodology

Add Mazes and various patterns
To test the algorithms with different sets of paths

Clear Board, Weights and Walls

UI Options to clear the grid to clear the screen

Terrain settings

Different distance metrics, diagonal options etc., Adjust Speed and Visualization

Level

1.5 Project Life cycle

Project Design and Implementation is recorded in seven phases. These sections cover

all project steps, from data collection and processing to user output.

The 7 categories are:

1. Graph Matrix Construction.

2. Added Walls, Obstacles like bomb nodes, weight nodes.

3. Design the JS Scripts and integrate the Graph Algorithms.

4. Measure and Improve Finder Performance.

5. Improved Animation themes, design, and UI.

6. Added Speed, Controls and associated visuals, Different Heuristics and Mazes,

Patterns

7. Adding Different Location Features, Search Parameters and Combinations

Post these we evaluated the project on different simulations and recorded the results.

1.6 Representations of Map

Pathfinding is used in a wide variety of areas and usually implemented on different

maps that are generated to test pathfinding algorithms. The widely popular maps are

8

implemented using a grid-based graph, set of nodes and edges, representations in the

algorithm. Usually, a grid is superimposed over a map and then the graph is used to

find the optimal path. Most widely used representations are square tile grid which can

either be accessed as a 4-way path or 8- way path. Both have their own advantages

and disadvantages. Grids are considered simple and easy to implement and are

commonly used by researchers. Other representations are Hexagonal grid, Triangular

grid, Navigation Mesh, and Waypoints. Various types of map representations are

discussed below briefly:

1.6.1 Tile Grids: The composition of the grid includes vertices or points that are

connected by edges. Basically, grids uniformly divide the map world into

smaller groups of regular shapes called “tiles”. The movement in square tile

grids can either be 4-way (no 4-diagonal movement) or 8-way (diagonal

movement). The second most widely used grid representations are Hexagonal

grids. Hexagonal grids are like square grids with the same properties and take

less search time and reduced memory complexities. Triangular grids are not

popular among game developers and researchers, but some methods are

proposed to reduce the search effort and time consumption

Figure 11: Different types of tile/square grids

9

1.6.2 Navigation Mesh: A navigation mesh is a connected graph of convex polygons,

where the polygon is a node in a graph, also known as navmesh. Polygons represent a

walkable area, thus movement in any direction is possible within the polygon. The

map is pre-processed to generate nav-mesh and then the path can be found by

traversing polygons (from polygon consisting of start point to polygon consisting of

goal point). The benefits of using navigation mesh are that it reduces the number of

nodes in the graph as the large walkable area can be represented as a single convex

polygon, reduces the memory required to store pre-processed map, and increases the

speed of pathfinding.

Figure 12: Navigation mesh

1.6.3 Waypoints: A waypoint can be defined as a point along the path which can be

marked manually or can be automatically computed. The purpose of waypoints is to

minimize the path representation as the shortest path can be pre-computed between

any two points. Therefore, certain optimization techniques are developed to compute

the path using waypoints. The main advantage of waypoints can be in a static world as

the map does not change, so the shortest paths between two waypoints can be pre-

computed and stored, reducing the time to calculate the final path after execution

10

Figure 13: Way points

1.7 Algorithms

For finding a path between two nodes in each graph a search algorithm is required.

Many search algorithms have been developed for graph-based pathfinding.

Pathfinding algorithm generally finds the path by expanding nodes and neighboring

nodes according to some given criteria. Pathfinding algorithms can be broadly divided

into two categories: Informed and Uninformed pathfinding Algorithms.

1.7.1 Informed Pathfinding Algorithms: As the name suggests informed means

having prior information about the problem space before searching it.

Informed search refers to the use of knowledge about the search space like

problem map, estimated costs, an estimate of goal location. Thus, the

algorithm utilizes this information while searching a path and it makes

pathfinding fast, optimal and reduces memory usage in node expansion .

Various algorithms that fall under this category are A*, IDA*, D*, HPA*, and

many more. These algorithms use different heuristic functions or uniform cost

function to utilize the 7 information of the search problem. The following

heuristic functions, used by these algorithms, are discussed briefly here:

Manhattan Distance: Manhattan distance is considered as a standard

heuristic for the square grid, defined as the sum of the absolute difference

between the start and goal position cartesian co-ordinates. In pathfinding, the

Manhattan distance is the distance between start node to goal node when the

movement is restricted to either vertical or horizontal axes in a square grid.

The heuristic function is given below: h(x) = |x1 – x2| + |y1 – y2|

Octile Distance: Octile distance is the distance between two points when

diagonal movement is possible along with horizontal and vertical. The

Manhattan distance for going 3 up and then 3 right will be 6 units whereas

only 3 units diagonally (octile distance). The function of octile distance is

given below: h(x) = max ((x1 – x2), (y1 – y2) + (sqrt (2) -1) * min((x1 – x2),

(y1 – y2))

Euclidean Distance: When any angle movement, not the grid directions

(horizontal. vertical, diagonal), is allowed then the straight-line distance is the

shortest distance between any two points which is also known as Euclidean

11

distance. The function is given below: h(x) = sqrt (|x1 – x2| + |y1 – y2|) In

uniform cost search the next node is selected based on the cost so far, so the

lowest cost node gets selected at each step. It is complete and optimal but not

efficient as it takes lot of time to explore nodes.

1.7.2 Uninformed Pathfinding Algorithms: Uninformed pathfinding refers to

finding the path without any knowledge of the destination in the search space

with only information about start node and adjacent nodes, also known as

blind search. Thus, the algorithm blindly searches the space by exploring

adjacent nodes to the current node. Breadth-first search, depth-first search,

Dijkstra are some algorithms that fall under this category. Uninformed search

is slow and consumes lots of memory in storing nodes as it searches whole

space until the destination node is found. The uninformed pathfinding is also

known as an undirected search approach, which simply does not spend any

time in planning. It just explores the nodes that relate to the current node and

then explore their neighbor nodes and so on until finds the node marked as

goal node.

1.8 Project Organization

This report consists of 6 units. The first unit defines the shortest path finding problem

and its sub problems. It discusses different map representations and main types of

algorithms. The second unit analyses the literature findings and highlights the gap in

the research papers. The third unit describes analytical and computational model

development and implementation details. The fourth unit is a comparative study of

different algorithm under simulated environments to generate a set of tests to help

determine efficiency of algorithms. The fifth unit concludes the findings and defines

the future scope of the project in addition to the real-world applications of the

algorithms hence studied under test.

12

Chapter 2

Literature Review

2.1 Literature Survey

An important area of mathematical theory is mathematics that studies the

structure of abstract relationships between objects by means of diagrams

(networks). Although the study of these structures can be purely theoretical,

they can be used to model pairwise relationships in many real-world systems.

One of the widely used applications is to determine the shortest path in many

practical applications such as: maps; robotic navigation; texture map;

typesetting in TeX; urban traffic planning; optimized pipeline of VLSI chips;

subroutines in advanced algorithms; telephony programmer;

telecommunications message routing; approximation of thin linear function;

network routing protocols (OSPF, BGP, RIP); exploit arbitrage opportunities in

currency exchange; optimal routing of trucks through a given traffic

congestion pattern.

 DATA STRUCTURE

 In practice, graphs are usually represented by one of two standard data

structures: an adjacency list and an adjacency matrix. At a high level, both data

structures are vertex-indexed arrays; this requires each vertex to have a unique

integer identifier between 1 and V. In the formal sense, these integers are

vertices.

 LIST OF PARTICIPANTS

 By far the most common data structure for storing graphics is the adjacency

list. An adjacency list is an array of lists, each of which contains the neighbors

of one of the vertices (or neighbors if the graph is directed). For an undirected

graph, each edge uv is stored twice, once in the neighborhood list of u and once

in the neighborhood list of v; for directed graphs, each edge uv is stored only

once, in the list of neighbors ending in u. For both types of graphs, the overall

space required for the adjacency list is O(V + E). There are several different

ways to represent these neighbor lists, but the standard implementation uses a

simple linked list. The resulting data structure allows us to enumerate (outside)

neighbors of a node v in O (1 + deg(v) time); just scan the list of neighbors

from v. Similarly, we can determine if uv is an edge in O(1 + deg(u)) time

scanning the list of u's neighbors. For an undirected graph, we can improve the

arrival time to O(1 + min {deg(u), deg(v)}) by traversing the neighbor lists of

u and v simultaneously, stopping when we position the edge, i.e. when we fall

from the end of the list

13

STORING GRAPHS VIA ADJACENCY MATRICES

The other standard data structure for graphs is the adjacency matrix, first proposed by

Georges Brunel in. The adjacency matrix of a graph G is a V ⇥ V matrix of 0s and 1s,

normally represented by a two-dimensional array A [1 ... V, 1 ... V], where each entry

indicates whether a particular edge is present in G. Specifically, for all vertices u and

v: if the graph is undirected, then A [u, v] := 1 if and only if uv 2 E, and if the graph is

directed, then A[u, v] := 1 if and only if uv 2 E.

For undirected graphs, the adjacency matrix is always symmetric, meaning A[u, v] =

A[v, u] for all vertices u and v, because uv and vu are just different names for the

same edge, and the diagonal entries A[u, u] are all zeros. For directed graphs, the

adjacency matrix may or may not be symmetric, and the diagonal entries may or may

not be zero. Given an adjacency matrix, we can decide in ⇥ (1) time whether two

vertices are connected by an edge just by looking in the appropriate slot in the matrix.

We can also list all the neighbors of a vertex in ⇥ (V) time by scanning the

corresponding row (or column). This running time is optimal in the worst case, but

even if a vertex has few neighbors, we still must scan the entire row to find them all.

Similarly, adjacency matrices require ⇥ (V2) space, regardless of how many edges

the graphhas, so they are only space-evident for very dense graphs.

 Figure 14: Adjacency Matrix and Corresponding Graph f

2.1.2 Research Gaps

Intensive research is an important aspect of research in the field of pathfinding. When

a new pathfinding algorithm is proposed in the literature, the performance is evaluated

by empirical methods. Statistical methods are a combination of exploratory

techniques and confirmatory procedures. Learning by exploring techniques are those

techniques that provide visualization, summarization, and modeling of the data

collected by confirmatory experiments. Empirical methods amplify our observations

and help us understand the structure of our problem world. Empirical studies seek the

explanation for the performance of the algorithm rather than finding the best

performing algorithm. In pathfinding, many works of literatures published were not

designed or evaluated empirically. There are no set guidelines for conducting

experiments in pathfinding. It is crucial to have a standardized experimental setup to

evaluate the performance of the algorithm empirically, to conclude reliable results

because whatever we publish presently becomes the fundamentals of the future.

Therefore, if a slight weakness or not reliable information gets into the mainstream it

will lead to more chaos in the future. In the literature, we did not find any paper which

could provide some standards or guidelines to conduct empirical studies in

14

pathfinding. Empirical research thoroughly examines the performance and provides

experimental verification of the working of the method. The advancement in artificial

intelligence in games and other fields is making the pathfinding problem more

challenging as the resources are utilized in other AI 13 operations like graphics,

player actions, leaving a very small space for running pathfinding search. Also, there

is a pressure of developing a more advanced, fast, and optimal path planning search

with limited resource utilization and minimum time frame

2.2 Research Papers and Thesis Consulted for Path Finding Visualizer

1. Robbi Rahim et al 2018 J. Phys.: Conf. Ser. 1019 012036: Shortest/Optimal

path is determined using BFS algorithm on a Cartesian Field.

2. “A survey of shortest-path algorithms - ripublication.com.” [Online].

Available: https://www.ripublication.com/ijaer18/ijaerv13n9_43.pdf.

[Accessed: 12-May-2022].

Shortest path was determined by a new technique called Particle Swarm

Optimization for Wireless Sensor which needed less time for packets of data

improving battery use.

Figure 18: Particle Movement and Flowchart of PSO Algorithm

15

3. Sun Yigang, Fu Jie and Zhang Hongying “Research on the Shortest Path

Algorithm of Vehicles Dispatch in Airport Emergency Rescue” 2011 Third

International Conference on Intelligent Human-Machine Systems and

Cybernetics : This paper proposed a hybrid algorithm combining DFS and

BFS in the area of vehicle dispatch , saving rescue time and minimizing losses

in case of accidents..

4. Kairanbay, Magzhan & Mat Jani, Hajar. (2013). A Review and Evaluations of

Shortest Path Algorithms. International Journal of Scientific & Technology

Research. 2. 99-104.: This paper’s main objective is to test the Dijkstra’s

Algorithm, Floyd-Warshall Algorithm, Bellman-Ford Algorithm, and Genetic

Algorithm (GA) in solving the shortest path problem in case of routing

problem in computer networks.

5. Masilo Mapaila “EFFICIENT PATH FINDING FOR TILEBASED 2D

GAMES”: Different educated guesses/heuristics used in an A* (A Star)

algorithm were explored here to target efficient path finding within tile-based

games. Various optimization techniques were listed which made real time path

finding faster and less memory intensive.

Figure 15: Different Optimizations in PathFinding

6. Yap, P. (2002). Grid-Based Pathfinding. In: Cohen, R., Spencer, B. (eds)

Advances in Artificial Intelligence. Canadian AI 2002. Lecture Notes in

Computer Science (), vol 2338. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/3-540-47922-8_4: Applications like network traffic,

robot planning, military simulations, and computer games were explored in

this paper to find the most optimal path in each case. Different grid

visualizations and search algorithm were compared on A* and IDA* Search

particularly.

https://ieeexplore.ieee.org/author/37396805400
https://ieeexplore.ieee.org/author/37887059100
https://ieeexplore.ieee.org/author/37395529900
https://ieeexplore.ieee.org/xpl/conhome/6036124/proceeding
https://ieeexplore.ieee.org/xpl/conhome/6036124/proceeding
https://ieeexplore.ieee.org/xpl/conhome/6036124/proceeding
https://ieeexplore.ieee.org/xpl/conhome/6036124/proceeding
https://doi.org/10.1007/3-540-47922-8_4

16

Figure 16: PathFinding with Different Heuristics

7. Lee W., Lawrence R. (2013) Fast Grid-Based Path Finding for Video

Games. In: Zaïane O.R., Zilles S. (eds) Advances in Artificial Intelligence.

Canadian AI 2013. Lecture Notes in Computer Science, vol 7884. Springer,

Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38457-8_9: Video

games and virtual agents interacted in grid-based path finding with map

sizes and count of agents changing in real time. Evaluated against

benchmarks maps from DBA* Search of Dragon Age game. On analysis 3

% more efficient than PRA* implementation of the benchmark.

8. Red Blob Games “Grid PathFinding Optimizations”

https://www.redblobgames.com/pathfinding/grids/algorithms.html: Presents

different optimizations in A* Search algorithm to improve its efficiency like

Changing the map representation to a grid structure , using hexes, tiles ,

different traversal speed optimizations etc.

Figure 17: Line vs Grid Movement

https://doi.org/10.1007/978-3-642-38457-8_9
https://www.redblobgames.com/pathfinding/grids/algorithms.html

17

Figure 19: Optimal Paths in Different Grids

2.3 A Critical Analysis of Path finding Research Papers

Research papers are an important part of current developments in pathfinding area, as

it provides insight into the work done in past and future expectations. It is necessary

to critically review the research papers published in past to make future research more

valuable and reliable by learning from their mistakes and weaknesses. In this thesis

nearly 150 research papers are critically reviewed during literature study and

throughout our thesis work to find out the pitfalls and problem areas while conducting

research. Critical review of some papers is presented in this section. Kai Li et al.

proposed a boundary iterative-deepening depth-first search (BIDDFS) algorithm

which repeats its search from the saved boundary location, minimizing the search

redundancy in most of the iterative search algorithms (repeats its search from starting

point each time). The experimental results only show the time taken and threshold, in

which Dijkstra beats the time of BIDDFS, but it does not provide clear evidence like

the memory usage. Therefore, the paper fails to provide causal explanation of their

algorithms performance which might result in mislead 16 interpretations of data.

Also, the paper gave no evidence that their algorithm had been tried on more than one

set of maps (randomly generated square maps), no real-world maps were used to test

the algorithm’s performance. Another problem was that BIDDFS had the same

threshold as of IDDFS in all the cases and takes more runtime for lower obstacle

density. Threshold was described as memory efficiency, but the paper did not provide

any memory comparisons, which was the claim, that proposed algorithm consumes

less memory. The research paper written by Yngvi et al. proposed two new effective

heuristics for A*. The first one is, the dead – end heuristic, that reduces the search

area from the map which is irrelevant to the current path query and thus claimed to be

more effective than general octile heuristic. The second heuristic, called gateways

heuristic, used the decomposed map from the previous heuristic, then consider the

boundaries of the omitted areas as gateways to pre-process the path from one gateway

to all other gateways and thus, claimed to better estimate the path cost. Now, the way

this paper was presented has three main areas where it lacks empirically or did not

provide enough information to the readers. Firstly, it uses one demo map and nine

game maps, but did not provide any information regarding the range of map size,

obstacle density and distribution of obstacles. Secondly, the author did admit that the

proposed heuristics use extra memory for pre – calculations but did not give any range

18

or number for the memory usage. Thirdly, the author claims that heuristics take less

time for the final pathfinding but did not provide any data for the time taken by these

heuristics for pre-processing of the map decomposition and distance between

gateways. Whereas, in octile heuristic neither pre-calculation nor decomposing the

map is required. So, from reader’s perspective this paper did not answer all the

questions arising in reader’s mind.

The Breadth First Search algorithm applied to determine the path from the original

location to the destination location in the Cartesian field yields several alternative

solutions based on the tests performed. Thus, the Breadth First Search algorithm

applied to the Cartesian field can produce some optimal solution (shortest path) and

solution which is non-optimal.

The tool for path finding for 2D environments. At present, has limitations and we see

the work presented in the papers as a step towards the development of a complete

tool. The current work focused on static and dynamic environments, and we have

worked with both fixed and dynamic cost environments. Most of the research in

academic AI has been focused on robotics and very little has been done towards their

application in tile-based games. This study bridges that gap and with further research,

it would be possible to develop a complete tool that would be useful in academia and

would certainly benefit the game industry

Hex grids provide a better topological representation than tile or octile grids.

Moreover, for memory constrained domains that necessitate IDA*, the hex grid is the

optimal grid choice. Finally, the implementation of hex grids is made easier with tex

grids.

Grid-based path finding must minimize response time and memory usage. DBA* has

lower suboptimality than other abstraction-based approaches with a faster response

time. It represents a quality balance and integration of the best features of previous

algorithms. Future work includes defining techniques for efficiently updating pre-

computed information to reflect grid changes.

2.4 Path finding Research Papers: A Summary

Thus, on comparing different research papers I concluded that most papers had poor

experimental setup as the simulation environments used to test various algorithms

were almost always simple and could not incorporate complex path scenarios. There

was in sufficient data collection and analysis and poor data visualization in these

setups. Only one type of representation ex. Maps/Grids were used which were either

prebuilt game maps or random maps. They were used due to easy availability and

easy generation by random maze generation algorithm; thus, I intend to use recursive

and diagonal maps/grids in my project to solve this issue. It was difficult to compare

results cross papers due to the same reason and thus not enough evidence could be

generated to ensure that the performance that the authors claimed in their setup was

completely true to its use. In papers where the experiment setup was well planned,

they were mostly penned by experienced researchers. The statistical methods used

were mean, median and standard deviation. Other papers were completely theory

based which particularly used heuristics derived from mathematic proofs to

supposedly improve the algorithm but had no experimental evidence as such.

19

Chapter 3

System Development

3.1 Model/Proposed System

The approach proposed is A* algorithm with heuristic search, will likely locate the

shortest path solution in a totally quick amount of time and minimal distance. A* set

of rules, a type of knowledgeable search, is widely used for finding the shortest route,

because the place of beginning and finishing point is considered in advance. The A*

algorithm is a refinement of the shortest course set of rules that directs the quest

toward the preferred aim. The preferred purpose of heuristic set of rules is to discover

a most desirable answer where the time or resources are constrained. As illustrated in

fig20[C]. This is later as compared with Dijkstra set of rules which is easy and

wonderful technique for route planning. Dijkstra’s set of rules chooses one with the

minimal value until located the purpose, however the search isn't always over because

it calculates all possible paths from beginning node to the purpose, then choose the

excellent answer by means of comparing which way had the minimum distance.

Figure 20.1: Shortest Path using A* Search

Figure 20.2: Shortest Path using Dijkstra Algorithm

3.1.1 SOFTWARE DEPLOYED IN VISUALIZATION

A dynamic visualization system for algorithm animation should satisfy the following

20

conditions:

 • Animation speed - the system should be able to present a good dynamic

visualization.

 • Programming effort - it should be easy to write a visualization code.

 • Widespread access - it must be easy to run a visualization code without (much of)

downloading and installing software.

Of course, the first condition is the principal one: in many cases, a visualization

involves a continuous transformation of the displayed picture, and it might be

computationally very demanding to deliver at least 20-25 frames per second to

guarantee a smooth animation. A failure in this point would make the system useless.

 Programming languages can be divided into three classes:

 • Compiled languages - a code written by a programmer is compiled into the machine

language and runs at the maximum possible speed. Examples are the languages C and

C++ that also offer libraries of graphical functions (e.g., graphics.h).

• Semi-compiled languages - The code written by programmer is transformed into a

simpler code that is then interpreted by a special software. An example is Java - the

intermediate code is interpreted by JVM program (Java Virtual Machine)

 • Interpreted languages - the runtime system reads human written program

instructions in runtime and interpret them. An example is JavaScript, see below.

There are big differences in the speed among the above classes. While one simple

instruction is often executed in just several machine clock tacts, if the same

instruction is interpreted, the software must first read and parse the corresponding

code, use tables to find the equivalent machine instruction, and only after that the

instruction is executed. Interpreted languages are often several order of magnitude

slower than compiled languages.

•Typical animations that can be found in the web are quite simple and

computationally almost insignificant. Consequently, practically any system that

allows dynamic animation can be used, preference is given to simple scripting

languages

3.1.2 Tools and Platforms Deployed

 React.js: React is a open source JavaScript library that is mostly used to build

single pages user interfaces application. it is used to handle the view for the w

e and mobile apps. It was important as it gives us the re usability of the UI

component. This tool helped me have that base interface for the tool.

 CSS:CSS stands for cascading Style Sheets which describes how HTML

elements are to be displayed on the screen, pages or other media. It is very

important as it helps with the layout control. CSS helped US make the middle

grid where our starting and end node are displayed and with display of the

wall between them.

 Visual Studio Code: Visual studio code is a source code editor developed by

Microsoft for windows, Linux, and macOS

 Node.js Library for JS

 JS Meter to benchmark visualization parameters

21

Figure 21: Design of PathFinding Visualizer

22

Figure 22: Basic File Structure of the App

The model and prototype of the project are as follows:

Figure 23: Workflow of the Project

23

Figure 59: GENERAL SINGLE SOURCE SHORTEST PATH ALGORITHMS

Figure 24: Different types of Algorithms used (Unweighted and Weighted)

3.2 Types of Algorithms

In all the general single source shortest path algorithms, a common methodology is

followed which consists of initializing all distances with a large value (preferably, inf)

, adding the source node to the data structure in use . Traversing while it is not empty,

to extract the front node of the data structure and visit all its un-visited neighbours one

by one until the end node is encountered. I have utilized an adjacency lists data

structure, consisting of an array consisting of nodes with node storing the list of their

immediate/potential neighbours. This is chosen as it was simple to formulate,

implement and test effectively. Representation in JSON works as:

24

Array[i] i.e., is set as unique node id, which used to refer to the neighbours.

1. Breadth First Search:BFS explores the node breadth wise to find all possible

combinations.

25

Figure 25: BFS implementation as a Queue (FIFO)

Pseudo Code

BFS(Maze m , Node start_node, Node end_node)

{

//initialize the queue with start_node

start_node.visit=True

Queue q(start_node)

//while there is a node entry in the queue

While(!q.empty())

{

//Front node operation

Node current_node=q.pop();

//If the end target is reached, we terminate

If(current_node==end)

Break

//Else we traverse the neighbors breadth wise

Auto Neighbors=current_node.get_unvisited_neighbours ()

for(auto i=0;i<Neighbors.size();++i)

{

Neighbors[i].visited=True

Neighbors[i].parent=current_node

q.push(Neighbors[i])

}

https://hurna.io/academy/data_structures/queue.html

26

}

//We get a path traversing backwards from destination node to source node

}

//If end has no parent , continue traversing for end

Figure 26: BFS Visualization

Figure 27: BFS and DFS Code Snippet

27

 2. Depth First Search (DFS)

 Depth First Search (DFS) is a fundamental graph traversal algorithm.The

DFS can be used to generate a topological ordering, to generate mazes (cf. DFS

maze generators), to traverse trees in specific order, to build decision trees, to

discover a solution path with hierarchical choices, to detect a cycle in a graph,

however the DFS does not guarantee the shortest path.

Then, this is not a very good algorithm if the unique purpose is to do a simple

pathfinding.Depth First Search Traverses by exploring as far as possible down

each path before going back. It is the reason why you may also find this

algorithm under the name of Backtracking. Furthermore, this property allows

the algorithm to be implemented succinctly in both iterative and recursive

forms. If we consider a tree (which is a simplified graph), the DFS will proceed

as follows:

Figure 28: Basic flow of DFS

https://hurna.io/academy/algorithms/maze_generator/dfs.html
https://hurna.io/academy/algorithms/maze_generator/dfs.html

28

Figure 29: DFS implementation as a Stack (LIFO)

Pseudo Code

DFS(Maze m, Node start_node, Node end_node)
{

//Inserting starting node in a stack

Start_node.visit=True

Stack s(start_node)

//while the stack is not empty

While(!s.empty())

{

//operating on the topmost node

Node current_node=s.pop()

//if target is reached stop

If(current_node==end)

Break

//else take unvisited neighbors in order, set parents , mark as visited and add to stack

Auto Neighbors=current_node.GetUnvisitedNeighbors()

for(auto i=0;i<Neighbours.size(),++i)

{

Neighbors[i].visited=True

Neighbors[i].parent=current_node

s.push(Neighbors[i])

}

}

//Reach the end traversing neighbor by neighbor , backtracking to previous neighbor

to a different path until end target is reached

https://hurna.io/academy/data_structures/stack.html

29

//If end has no parent , keep looking for the end

}

Recursive Variant of DFS

The recursion of the DFS algorithm stems from the fact that we don’t finish checking a

“parent” node until we reach a dead end, and inevitably pop off one of the “parent”

node’s children from the top of the call stack.

Bool Recursive_DFS(Maze m, Node start_node, Node end_node)

{

//If end target is reached terminate

If(start_node==end_node)

Return True

//traverse unvisited neighbors in order

Start_node.visit=True

Auto Neighbors=start_node.GetUnvisitedNeighbors()

for(auto i=0;i<Neighbors.size();++i)

{

Neighbors[i].parent=start_node

If(Recursive_DFS(m, Neighbors[i], end_node) return True

}

Return False

}}

30

Figure 30: DFS Visualization

 3. Dijkstra Algorithm

 Dijkstra’s algorithm finds the shortest path from a root node to every other

node (until the target is reached). Dijkstra is one of the most useful graph

algorithms; furthermore, it can easily be modified to solve many different

problems.Dijkstra’s algorithm eliminates useless traversal using heuristics to

find the optimal paths.

 Dijkstra’s algorithm uses priority queue (or heap) as the required operations

(extract minimum and decrease key) match with specialty this data structure.

Here the priority is defined by D (the distance between a node and the

root). Higher priorities are given for nodes with lower distance D.

31

Figure 31: Dijkstra Implementation as a Priority Queue

We can visualize it as regular attraction queue in a stall /fair with some people having

access to shortcut heading to different checkpoints like VIP Access.

32

Figure 32.1: Visualizing Dijkstra Algorithm

Pseudo Code

33

34

Figure 32.2: Dijkstra Code Snippet

Figure 33: Dijkstra Visualization

4. * (A-Star)

The A* (A-Star) algorithm improves on Dijkstra’s by finding the shortest path more

quickly. It was invented by Peter Hart, Nils Nilsson, and Bertram Raphael (three

American computer scientists) and described in their paper “A Formal Basis for the

Heuristic Determination of Minimum Cost Paths” in 1968.

https://hurna.io/academy/algorithms/maze_pathfinder/dijkstra.html

35

A* pathfinding algorithm is arguably the best pathfinding algorithm when we have to

find the shortest path between two nodes. A* is the golden ticket, or industry standard,

that everyone uses.

Dijkstra’s Algorithm works well to find the shortest path, but it wastes time exploring

in directions that aren’t promising. A* improves this by allowing the inclusion of extra

information that the algorithm can use as part of the heuristic function:

— Dijkstra’s Algorithm use the distance from the root node.

— The A* algorithm uses both the actual distance from the root and the estimated

distance to the goal.

A* selects the path that minimizes the following function:

f(n)=g(n)+h(n),where:

— g(n) is the cost of the path from the starting point to node n (Dijkstra distance).

— h(n) is the estimated cost of the path from node n to the destination node, as

computed by the Manhattan distance in our case.

Figure 34: Manhattan and Pythagorean Distance Calculation

https://hurna.io/academy/algorithms/maze_pathfinder/dijkstra.html#build

36

This distance is ideal for our mazes that allow 4-way movement (up, down, left,

right).h(n)=|goal.x−root.x|+|goal.y−root.y|

Here are the distance maps computed (Manhattan, Dijkstra and A*):

Pseudo Code

A* Search(Maze m, Node start_node, Node end_node)

{

Priority_queue pq()

//initialize all distances with inf

37

For(auto && Node: m Nodes){

Node.distance=inf

Node.root_distance=inf

//Using Manhattan heuristic

Node.manhattan_distance=2*(Math.abs(end_node.x-node.x)+(Math.abs(node_end.y-

node.y))

}

//setting distance to root as zero

Start_node.root_distance=0

Pq.add(start_node,0)

//Traverse until priority queue is empty

While(!pq.empty())

{

Current_node=pq.dequeue()

Current_node.discovered=True

//fetch next closet node and mark it as found

//visiting the unvisited neighbors

For(auto&& Neighbor : current_node.GetUnvisitedNeighbors())

{

//Update the minimal root distance

Neighbor.root_distance=Math.min(Neighbor.root_distance,current_node.root_distanc

e+1)

Const minimum_distance=Math.min(Neighbor.distance,

Neighbor.root_distance+Neighbor.manhattan_distance)

If(minimum_distance !=Neighbor_distance)

{

Neighbor_distance=minimum_distance

Neighbor.parent=current_node

//change the priority in queue of the neighbor

If(pq.has(Neighbor))

Pq.setPriority(Neighbor,minimum_distance)

}

If(!pq.has(Neighbor))

{

Pq.add(Neighbor,Neighbor.distance)}

}

}

//Trace path beginning from destination to root node

}

// If end doesn’t have a parent continue traversing for the end

38

Figure 36: A*Algorithm Visualization

5) D* Search: A variant of A* Search

D* is a dynamic variant of the A* search algorithm optimized for partially obscured

environments. It was first described by Anthony Stentz in 1994. D* maintains the

same three values as A*: the cost-to-current-node value, the heuristic- 10 to-end

estimate, and the cost-plus-heuristic value (Stentz refers to these as c, h, and k,

respectively). The value for c is calculated the same way as the value for g(x) in the

A* algorithm, and h is calculated the same way as A*’s h(x) value. k is functionally

equivalent to A*’s f(x). D* also tags nodes with a place on an open and closed list,

like A*, but uses an additional tag of “new” for a node that has not yet been added to

the open list. Unlike A* and Dijkstra’s Algorithm, however, the algorithm starts at the

node representing the goal, and works toward the node at which the agent starts. The

goal node is first tagged as “open,” and values for c, h, and k are calculated for each

neighbor node, and the node with the lowest k value is chosen as the next node. The

process is repeated until the starting node is tagged as “closed” or no next node can be

found. D* then uses the path found as a starting path and runs it until an error is found

(i.e., an obstacle has moved into the agent’s path, or the next node turns out to be a

dead end). In the event, the last node the agent traversed is set as a starting node and

D* recalculated the h, c, and k values for all nodes examined between the new start

and the goal. These values are compared to the previously computed values. If the k

value for a node is lower than its old k value, then the node is placed in a “lower”

state. If it is higher, the node is placed in a “raise” state. Nodes in the “lower” state are

given higher priority in subsequent calculation loops. The entire process repeats until

the starting node is tagged as “closed” or no next node can be

39

starting node is tagged as “closed” or no next node can be found.

6) IDA* Algorithm (Refer Appendix)

40

7) Jump Point Search Algorithm (Refer Appendix)

HPA* (Refer Appendix)

41

8) Maze Generation Algorithms

Figure 37: Types of Maze Patterns in Pathfinding Visualizer

42

8.1 Graph theory-based mazes

Figure 38: Graph theory-based Mazes Using Randomized depth-first search/DFS)

A maze can be generated by starting with a predetermined arrangement of cells (most

commonly a rectangular grid but other arrangements are possible) with wall sites

between them. This predetermined arrangement can be considered as a connected

graph with the edges representing possible wall sites and the nodes representing cells.

The purpose of the maze generation algorithm can then be making a subgraph in

which it is challenging to find a route between two nodes.

If the subgraph is not connected, then there are regions of the graph that are wasted

because they do not contribute to the search space. If the graph contains loops, then

there may be multiple paths between the chosen nodes. Because of this, maze

generation is often approached as generating a random spanning tree. Loops, which

can confound naive maze solvers, may be introduced by adding random edges to the

result during the algorithm.

The animation shows the maze generation steps for a graph that is not on a

rectangular grid. First, the computer creates a random planar graph G shown in blue,

and its dual F shown in yellow. Second, computer traverses F using a chosen

algorithm, such as a depth-first search, colouring the path red. During the traversal,

whenever a red edge crosses over a blue edge, the blue edge is removed. Finally,

when all vertices of F have been visited, F is erased and two edges from G, one for the

entrance and one for the exit, are removed.

https://en.wikipedia.org/wiki/Connected_graph
https://en.wikipedia.org/wiki/Connected_graph
https://en.wikipedia.org/wiki/Connected_graph
https://en.wikipedia.org/wiki/Spanning_tree_(mathematics)
https://en.wikipedia.org/wiki/Planar_graph
https://en.wikipedia.org/wiki/Dual_graph

43

8.2 Randomized depth-first search

The depth-first search algorithm of maze generation is frequently implemented

using backtracking. This can be described with a following recursive routine:

1. Given a current cell as a parameter,

2. Mark the current cell as visited

3. While the current cell has any unvisited neighbour cells

1. Choose one of the unvisited neighbours

2. Remove the wall between the current cell and the

chosen cell

3. Invoke the routine recursively for a chosen cell

which is invoked once for any initial cell in the area.

8.3 Random Kruskal's algorithm

Figure 39: Creating a 30 x 20 maze using Randomized Kruskal's algorithm.

This algorithm is a randomized version of Kruskal's algorithm.

1. Create a list of all walls, and create a set for each cell, each containing

just that one cell.

2. For each wall, in some random order:

1. If the cells divided by this wall belong to distinct sets:

1. Remove the current wall.

2. Join the sets of the formerly divided

cells.

There are several data structures that can be used to model the sets of cells. An

efficient implementation using a disjoint-set data structure can perform each union

and find operation on two sets in nearly constant amortized time so the running time

of this algorithm is essentially proportional to the number of walls available to the

maze.

https://en.wikipedia.org/wiki/Depth-first_search
https://en.wikipedia.org/wiki/Backtracking
https://en.wikipedia.org/wiki/Recursion_(computer_science)
https://en.wikipedia.org/wiki/Kruskal%27s_algorithm
https://en.wikipedia.org/wiki/Disjoint-set_data_structure
https://en.wikipedia.org/wiki/Amortized_time

44

8.4 Random Prim's algorithm

Figure 40: Creating a 30 x 20 maze using Prim's algorithm.

This maze creation algorithm is a randomized version of Prim's algorithm.

1. Start with a grid full of walls.

2. Pick a cell, mark it as part of the maze. Add the walls of the cell to the

wall list.

3. While there are walls in the list:

4. Pick a random wall from the list. If only one of the cells that the wall divides

is visited, then:

 4.1. Make the wall a passage and mark the unvisited cell as part of the maze.

4.2 Add the neighboring walls of the cell to the wall list.

4.3 Remove the wall from the list.

8.5 Aldous-Broder algorithm for Maze Generation

The Aldous-Broder algorithm also produces uniform spanning trees.

1. Pick a random cell as the current cell and mark it as visited.

2. While there are unvisited cells:

1. Pick a random neighbor.

2. If the chosen neighbor has not been visited:

1. Remove the wall between the current

cell and the chosen neighbor.

2. Mark the chosen neighbor as visited.

3. Make the chosen neighbor the current cell.

https://en.wikipedia.org/wiki/Prim's_algorithm

45

8.6 Maze via Recursive division method

Figure 41: Recursive Division Pattern

original

chamber

division by two

walls
holes in walls

continue

subdividing...
completed

step 1

step 2

step 3

step 4

step 5

Mazes can be created with recursive division, an algorithm which works as follows:

Begin with the maze's space with no walls. Call this a chamber. Divide the chamber

with a randomly positioned wall (or multiple walls) where each wall contains a

randomly positioned passage opening within it. Then recursively repeat the process on

the sub chambers until all chambers are minimum sized. This method results in mazes

with long straight walls crossing their space, making it easier to see which areas to

avoid.

Figure 42: Recursive Maze Generation

For example, in a rectangular maze, build at random points two walls that are

perpendicular to each other. These two walls divide the large chamber into four

smaller chambers separated by four walls. Choose three of the four walls at random

and open a one cell-wide hole at a random point in each of the three. Continue in this

manner recursively, until every chamber has a width of one cell in either of the two

directions.

https://en.wikipedia.org/wiki/File:Chamber.svg
https://en.wikipedia.org/wiki/File:Chamber-division.svg
https://en.wikipedia.org/wiki/File:Chamber-divided.svg
https://en.wikipedia.org/wiki/File:Chamber-subdivision.svg
https://en.wikipedia.org/wiki/File:Chamber-finished.svg

46

Figure 43: Recursive Division Maze

Figure 44: Recursive Division (Vertical skew)

Figure 45: Recursive Division (horizontal skew)

47

Figure 46: Random Maze

Figure 47: Random Weights Maze

Figure 48: Simple Stairs Pattern

48

Recursive Division Code Snippet

Random Weights Maze Snippet

49

Simple Stairs Pattern Code Snippet

3.3 Animations and UI

Figure 49: Animations and its Types

Animations to visualize the algorithm in action. They consist of:

1) On launch Animations: Which display animations on the starting page

2) Maze and Pattern Generating Animations: Modify weights and nodes on the

2D grid

3) Instant Animations: Display shortest path algorithms in action by changing

color gradient using underlying CSS using JavaScript’s internal timeout

function.

50

Launch Animation Function Code Snippet

Shortest Path Timeout Function

51

Shortest Path Change Function

52

Get Distance Function: To measure distance between coordinates(x1,y1) and (x2,y2)

53

Function to get closest Potential Neighbor Nodes

Function to Update Nodes if Comparative distance < Target node distance

54

Function to test Different Algorithms (Both weighted and un-weighted) with

given obstacles and animate nodes simultaneously

55

Chapter 4

Performance Analysis

4.1Sample simulations

In these stills from the simulator, small red boxes (1) signify nodes, and blue lines

show the links between the nodes, signifying the entire graph tree. Yellow boxes

(2), slightly larger, signify nodes that have been examined by the search

algorithm, and green boxes (3), slightly larger than the yellow boxes, signify

nodes that were determined to be part of the best path chosen by the algorithm.

Black boxes (not shown) are nodes that were determined to be dead ends. The

read out in the bottom left corner shows how many simulations (of all specified

algorithms) out of the total have been run, followed by the name of the algorithm

being used in the current test. The agent is the penguin model, and the target is the

bull’s-eye texture. In each case, the path calculated by the algorithm has been

shown using a thicker line.

Simulation 1 : Nodes placed at the boundary near the edges and destination

node at the cross section between two paths, The path grid is in form of a

uniform square mesh

Figure 50. Testing Tool in Simulation 1, A*

56

Figure 51. Testing Tool in Simulation 1, Dijkstra’s algorithm

Figure 52. Testing Tool in Simulation 1, D*

In these examples from Environment 1, all algorithms found the same path. However,

in the screenshot from the run using Dijkstra’s algorithm, 10 nodes are marked as

examined, including the nodes that are part of the path, as opposed to 5 each in the

runs using A* and D*. Dijkstra’s algorithm examined more nodes than either of the

other algorithms owing to its greedy nature.

57

Simulation 2: The path grid is non-uniform mesh with broken linkages to make

the path more complex, Nodes placed randomly in the mesh and Destination

node at the center of the grid

Figure 53 Testing Tool in Simulation 2, A*

Figure 54. Testing Tool in Simulation 2, Dijkstra’s algorithm

58

Figure 55. Testing Tool in Simulation 2, D*

We can devise from simulation 2, A* and Dijkstra’s algorithm found the same path,

but Dijkstra’s algorithm examined 16 nodes to find it, while A* examined 5. D*

found a path that traversed fewer nodes than the other path. This path is 53.081 units

long, versus the other path, which is 56.835 units long. D* calculated this path by

working backwards from the target to the start, rather than the other way around.

Simulation 3: Another variant of the broken non-uniform mesh grid with nodes

spread over a large area , Destination node at the center of the grid

Figures 56. Testing Tool in Simulation 3, A*

59

Figures 57. Testing Tool in Simulation 3, Dijkstra’s algorithm

Figures 58. Testing Tool in Simulation 3, D*

60

Table 1: Simulation 1 Output

Table 2: Simulation 2 Output

61

Table 3 : Simulation 3 Output

4.2 Analysis of Different Algorithms

An efficient algorithm is one that calculates the shortest path with the fewest number

of node visitations. A basic “efficiency score”, S, can be calculated for each algorithm

in each environment by multiplying the average number of node visitations by the

average length of a path. Multiply the reciprocal of this number by a constant k to

increase understandability (in this case, k=10000). Therefore, S = k/(V*L), where S is

the efficiency score, V is the average number of node visitation, and L is the average

length of a path in units. A larger value indicates a more efficient algorithm. These

values are specific to the environment and can only be used to compare the efficiency

of different algorithms in the same environment.

Table 4: Computing Efficiency scores

In all 6 cases , BFS,DFS were the least efficient, followed by Dijkstra as these

algorithms have no method of cutting down on the search space. As seen in the data

tables above, the average length of a path found by all algorithms was similar, but in

all environments, Dijkstra’s algorithm made far more node visitations during the path

calculation phase than either A* or D*. BFS,DFS performed slightly better than

Dijkstra on this parameter. This led to low performance scores for Dijkstra,BFS,DFS.

D* was by far the most efficient algorithm, with a fewer average node visitations per

62

path. It had the lowest average number of nodes in a path, and shortest average path

length. In case of more obstructed grids , however A* performed better than D*. D*

could determine that no path existed more quickly than A* only in unobstructed pace

where it expanded less rapidly, fewer node visitations.

In open/ far spaced grids A* could either determine more quickly that no path existed.

D* took more time and had to check a greater number of nodes, expanding the search

space more quickly.

Dijkstra, BFS and DFS were the slowest performers on a general basis.

Table 5: Comparison of BFS and Dijkstra on Optimality, Queue type and Time

Complexity

Table 6: Comparison between Uninformed and Informed Search Algorithms in

terms of execution time, Nodes Traversed and Path length

63

Table 7: Comparison of Algorithm Performance

4.4 Summary of Comparative study of Different Algorithms

Based on the three simulations I calculated values of V, the average no. of node

visitation and L, the average length of path to get the performance score P which

depicted the efficiency of each algorithm under different environments. In case of

uniform grid with no broken paths i.e., in grid 1 , D* Search had the maximum

efficiency score of 20.748 followed by A* Search of 3.037, approx. seven times

faster. In non-uniform grid 2, A* Search was better than D* Search by approx.

(18.291/7.357) 2.5 times. In grid 3, A* Search again outperformed D*Search by

(17.802/12.684) 1.4 times but this time the difference was much lower. Thus, D*

Search performed best overall but slowed in case the grids were much more

obstructed/broken as it expanded much more rapidly and had more node visitations,

D* Search iterates over all the possible paths between source and destination nodes to

find the most optimal route requiring least amount of time and distance to be

travelled.

On testing above algorithms on metrics of path length, node visitations, node

expansion and computation time , different algorithms excelled on different

parameters, Theta * (A* and D* combination) gave the best path, A* Search had the

best computation time and HPA* although had a high initial computational cost but

evolved to get more effective in the subsequent searches. IDA* performed bad in case

of small search spaces when denoted by octile maps as it expanded too rapidly in time

and distance.

Summarizing the algorithms, time complexity , graphs used and applications:

64

Depth-first search

Breadth-first search

Primarily uses a queue data structure to traverse a tree/ graph.

Dijkstra’s algorithm

A greedy algorithm, it first choses he unvisited vertices having least distance to the

source nodes and subsequently computes distance via it to each and every unvisited

neighbour node and if the distance is smaller than the one being considered it update

65

it, using a priority queue in the process.

66

A* algorithm

A* Search advances Dijkstra and behaves as a Greedy Best First Search

Algorithm via using educated guesses or heuristics to help itself reach the most

optimal path in a faster time.

Figure 60: A* Search Algorithm

With a concave obstacle, A* and Dijkstra’s Algorithm both find almost similar paths:

67

Figure 61: A* Search

The secret to its success is that it combines the pieces of information that Dijkstra’s

Algorithm uses (favouring vertices that are close to the starting point) and information

that Greedy Best-First Search uses (favouring vertices that are close to the goal). In

the standard terminology used when talking about A*, g(n) represents the exact

cost of the path from the starting point to any vertex n, and h(n) represents the

heuristic estimated cost from vertex n to the goal. In the above diagrams, the yellow

(h) represents vertices far from the goal and teal (g) represents vertices far from the

starting point. A* balances the two as it moves from the starting point to the goal.

Each time through the main loop, it examines the vertex n that has the lowest f(n) =

g(n) + h(n).

68

Swarm Algorithm

Figure 62: Locust Swarm Algorithm for Path Finding

69

Figure 63: A swarm intelligence graph-based path finding algorithm

70

Chapter 5

Conclusions

5.1 Conclusions

On successfully concluding the project we have achieved our project goal of

visualizing Path Finding Algorithm in action and comparing their performance. As we

were aware that there was a huge ridge between thesis and practical understanding of

the implementation of algorithms, the main objective of the project is to implement

these algorithms and hence understand the integrated graph problems available. In

conclusion, we have gained a lot by revisiting the implementation of these algorithm

and the basic web concepts. Following remarks can be made after analyzing different

algorithms:

 Dijkstra's algorithm is BFS but with a priority queue data structure and failed

in case of negative weights, for which Bellman Ford algorithm is used but

many more algorithms were built on it and it served a s a base for many

others.

 DFS keeps traversing nodes along their depth and backtracking until either it

finds a path or reaches a dead end, While Dijkstra is more like a BFS except it

keeps track of weights (not all paths have equal cost) and will keep checking

the shortest path not already visited until it finds the destination node.

 Generally, DFS is (usually) the fastest way to find a path but it is not

necessarily shortest and can be implemented very easily with recursion, but

Dijkstra's algorithm is the general way to find the shortest possible path faster.

DFS traverses to the depth and then backtracks to find other possible paths

which may be shorter than the initial paths.

 Particularly, A*, which is a modified version of Dijkstra's algorithm with

some extra heuristics/ educated guesses to make better decisions of choosing

the correct path nearest to the end node first. Selecting the correct set of

heuristics forms an integral part of the algorithm,

 A* and D* both could almost equally determine that no path existed. Dijkstra

on the other hand uses more node visitations to give the same result as it lacks

heuristics and thus needed more computation time expanding search space

unnecessarily , wasting computation power on useless nodes which ultimately

did not lead to the end node.

 D* Search was the best algorithm overall in terms of performance but could

not perform well in case of obstructed spaces , where A* Search was better.

BFS, DFS and Dijkstra were slowest performers with DFS not even always

guaranteeing the shortest path. DFS was much more efficient in finding all the

possible paths from source to destination rather than the most optimal route.

71

5.2 Future Scope

Having worked on a 2D grid to visualize all the path finding algorithms in this

project, i plan to extend the scope of this project to a 3D grid, wherein one can find

shortest route between two actual locations in a 3D simulation kind of game. This

would allow us to test these algorithms in a real time environment and help us devise

the most efficient combination considering different terrains, altitudes, and locations.

A blueprint for this concept as follows.

Figure 64: 3D Simulation of PathFinding Visualizer

I also plan to test more hybrid combinations of algorithms particularly Swarm

algorithm’s, Jump-Point Search, Orthogonal Jump Point Search and Trace Search to

test these out in different set of environments. We have used Manhattan and

Euclidean Heuristics particularly in this project and would like to extent that to cover

Octile and Chebyshev in the future.

Addition of more grid features to manipulate the nodes like allow/disallow diagonals,

cross corners etc. to devise more interesting patterns of these algorithms can enable

better understanding of the algorithms.

A possible future task is to conduct a comprehensive experiment with additional

algorithms. The algorithms tested in this project are just a sample of the most

common algorithms. In the standard ones, the selected algorithms differ in the

expected results.

Another related future task could be to compare one-dimensional algorithms such as

comparing advanced A * focusing on improved memory performance and Theta * for

improved memory efficiency. The only heuristic tested in this Euclidean thesis of all

algorithms except IDA * as the calculation time has increased significantly with this

heuristic. Instead, IDA * used octile to calculate its path.

Future work could be to magnify this and explore how different algorithms are

72

affected by changing heuristics. In the case of HPA *, only one batch size (16 by 16)

was used. If the size of the collection is large, the estimated results will likely vary,

especially if the HPA * pre-calculated is offline.

Also, we did not work in dynamic environments with moving targets or moving

obstacles. It was initially discussed to be included but due to time was withdrawn.

Another area to consider is the representation of a three-dimensional map instead of

the two examined in this thesis. The grid used in the maps in this thesis uses only the

octile grid. With more representation of the map the calculated results may be

different.

In this project, multi-threading was not used in computer algorithms. There are

algorithms that can be very useful in string calculation. HPA * can benefit from

calculating its acquisition in collections. Algorithms can be used both on the CPU and

GPU. Due to previous CPU programming knowledge and lack of GPU programming

experience, this project only focuses on CPU usage. One thing that can be further

investigated is the use of algorithms on both the CPU and GPU to compare how they

move.

5.3 Application Contributions

The major uses of algorithms and methods of finding methods today include:

World of Video Games and Game Theory

Now, the most common use of navigation is in video games, where the computer must

direct the opponents to the map which updates dynamically. This is a very complex

application of finding methods again we must consider that some methods are less

attractive than others, in spite of the length of time it takes (some are highly

dangerous) and dealing with many variables. In some cases, these variables are also

under the control of the computer, so an improved system may need to consider 10

different businesses and move them all in their direction in a way that minimizes total

delays. (This becomes even more difficult when you consider the key components of

the unit and other features.)

Simulating hard to reach environments

The growing, but exciting, use of findings is in exploring hard-to-reach / dangerous

areas. These were placing that people could not easily navigate, but the robots could

have explored their advantages if they did not get lost or hit a rock. This is

particularly evident in the exploration of other planets, as NASA travels sending

robots rather than humans into space.

Interestingly, there is also the impetus for robots to explore the world's most

inaccessible places, such as deserts and valleys, seeking exciting and confusing life.

Getting algorithms play a role in the development of these robots.

Commercial Use

There is a small market for robots carrying industrial units, office buildings, and other

workplaces, which saves labor costs otherwise is spent on paying people to carry

goods and these can save people from the monotonous and simple repetitive tasks.

There is also emerging market like Ola, Uber Services which require accurate real

time visualization.

73

Logistic sand Transport Activities

The problem of finding a way encompasses the condition of multidisciplinary

networks, which aims to improve traffic efficiency, accuracy, and cost of the entire

transport network. There are still many challenges to find algorithmic improvements

to meet real-world needs that include multiple goals or multiple goals, multiple

approaches involving very different networks, multiple destinations, time-based

planning, traffic speed, real-time planning. and so on. In real-world use, the

complexity of the economic, social, and environmental environment requires search

results for more than one factor, other than distance. Tasks dealing with single-

purpose problems, defined by shortcut algorithms in previous sections, do not meet

the requirement. Finding multiple conditional methods thus turns into easily

accessible and feasible. Generally, most shortcut algorithms can only deal with a

single network with one condition, far from reality. Even multiple conditioning

solutions are automatically integrated and treated as a single condition in each

network. To date there is no solution for calculating a complete route that connects

two different networks, each with a set of different conditions. For example, the travel

network needs to consider the level of difficulty posed by the slope, the roughness of

the road, and the level of closed lanes to avoid rain, while the traffic network is more

focused on time, distance, and transportation costs. Currently, many commercial and

government applications such as Google, Baidu, Bing tend to offer only one network-

based solution.

With improved transportation and more travel options like rail, road, air etc., there is a

growing need for more information to meet the diverse needs of today's commuters.

To have a complete solution that combines two or more special networks, then the

algorithm needs to consider the dependability of all networks before a better solution

to tackle all related problems can be devised.

74

REFERENCES

1]. Bassat Levy, R. B. and Ben-Ari, M. , ITiCSE ’07, Proceedings of the 12th

annual SIGCSE conference on Innovation and technology in computer science

education, Dundee, Scotland. ACM Press., 2007, pp. 120–150.

[2]. Brown, M. and Sedgewick, R. , “Techniques for algorithm animation”, IEEE

Software, Algorithm Animation. MIT Press., 1985, pp. 2:28-39.

[3]. Yngvi., Halldorsson, K., “Improved heuristics for optimal Pathfinding on

Game maps”, in AIIDE., 2006, pp. 9-14.

[4]. Kai Li LIm, KahPhooi Seng, Lee Seng Yeong., “Uninformed pathfinding: A

new approach, Expert systems with applications”., 2015, pp. 2722-2730.

[5]. SilverDavid., “Cooperative Pathfinding and Artificial Intelligence”, in

Interactive Digital Entertainment Conference, AIIDE., 2005, pp. 117-122.

[6]. Krishnaswamy Nikhil., “Comparison of Efficiency in Pathfinding Algorithms

in Game Development”, Retrieved from https://via.library.depaul.edu/tr/10

[7]. Michael Moran Walden University., “On Comparative Algorithmic

Pathfinding in Complex Networks for Resource-Constrained Software

Agents”. Retrieved from

https://scholarworks.waldenu.edu/dissertations?utm_source=scholarworks.wal

denu.edu%2Fdissertations%2F3951&utm_medium=PDF&utm_campaign=PD

FCoverPages, 2017, pp. 200-300.

[8]. Victor Martell Aron Sandberg., “Performance Evaluation of A* Algorithms”

Thesis no: BCS-2016-07, 2016.

[9]. SidhuHarinder Kaur., “Performance Evaluation of Pathfinding Algorithms”.

Electronic Theses and Dissertations. 8178. Retrieved from

https://scholar.uwindsor.ca/etd/8178 , 2020.

[10]. Chan, Simon Yew Meng, et al. , “An experiment on the performance of

shortest path algorithm.”, 2016, pp. 7-12.

[11]. Madhumita Panda Abinash Mishra. , “A Survey of Shortest-Path

Algorithms.”, in International Journal of Applied Engineering Research ISSN

0973-4562 Volume 13, Number 9, pp. 6817-6820, 2018.

[12]. Robbi Rahim et al 2018 J. Phys.: Conf. Ser. 1019 012036

[13]. Masilo Mapaila. University of Cape Town., “EFFICIENT PATH FINDING

FOR TILEBASED 2D GAMES.” , 2012.

[14]. Yap, P. , “Grid-Based Path-Finding.”, In: Cohen, R., Spencer, B. (eds)

Advances in Artificial Intelligence. Canadian AI 2002. Lecture Notes in

https://via.library.depaul.edu/tr/10
https://scholarworks.waldenu.edu/dissertations?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F3951&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.waldenu.edu/dissertations?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F3951&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.waldenu.edu/dissertations?utm_source=scholarworks.waldenu.edu%2Fdissertations%2F3951&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8178

75

Computer Science(), vol 2338. Springer, Berlin, Heidelberg. Retrieved

fromhttps://doi.org/10.1007/3-540-47922-8_4

[15]. Lee, W., Lawrence, R. , “Fast Grid-Based Path Finding for Video Games.”, In:

Zaïane, O.R., Zilles, S. (eds) Advances in Artificial Intelligence. Canadian AI

2013. Lecture Notes in Computer Science(), vol 7884. Springer, Berlin,

Heidelberg. Retrieved from https://doi.org/10.1007/978-3-642-38457-8_9

[16]. Pan, T.; Pun-Cheng, S.C. A Discussion on the Evolution of the Pathfinding

Algorithms. Preprints 2020, 2020080627 (doi:

10.20944/preprints202008.0627.v1).

[17]. Saif Ulla Shariff, M Ganeshan. , “A Path Finding Visualization Using A Star

Algorithm and Dijkstra’s Algorithm”, in International Journal of Trend in

Scientific Research and Development (IJTSRD) Volume 5 Issue 1, 2020.

[18]. Nishant Kumar and Nidhi Sengar., “Pathfinder Visualizer of Shortest Paths

Algorithms.” , in International Journal for Modern Trends in Science and

Technology., 2020, pp. 6(12): 479-483.

[19]. Aakansha N. TabhaneNikhil Likhar Kalyani Mohod Manali Kadbe, KDK

College of Engineering. , “PATH FINDING VISUALIZER” Vol-7 Issue-3

2021 IJARIIE-ISSN(O)-2395-4396, 2021, pp. 2395-4396.

[20]. Thierry Thierry Okie Department, Minnesota State University Moorhead.

“PATHFINDING VISUALIZER.”, 2017.

[21]. Alex T Mathew et al 2021 J. Phys.: Conf. Ser. 1831 012008

[22]. Pathfinding Grids. Retrieved from

https://www.redblobgames.com/pathfinding/grids/algorithms.html

https://doi.org/10.1007/3-540-47922-8_4
https://doi.org/10.1007/978-3-642-38457-8_9

76

Appendix

1. BFS: The process of searching the solution search using the Breadth First

Search algorithm are performed in the following Cartesian case:

77

2.

78

3. Issues in experimental design: It cover the papers with experiments using only

one or two type of maps, three or less map size variations, two or less obstacle

density variation and no obstacle distribution. 2. Issues in data collection: It

cover papers which collected data from 3 or less types of map and variations

or data collected does not provide direct evidence supporting their claims like

data of time consumption indirectly pointing to less memory consumption, no

data for memory consumption. 3. Issues in data analysis: The analysis only

provides average mean, median results and did not provide standard deviation,

variance of the data.

4.IDA*: Working of IDA*

Pseudo-Code of IDA*

79

5. Jump Point Search: Working of JPS

80

Pseudo Code of JPS

81

6.

HPA* (Hierarchical Path-Finding A*), a hierarchical approach for reducing problem

complexity in pathfinding on grid-based maps. This technique abstracts a map into

linked local clusters. At the local level, the optimal distances for crossing each cluster

are pre-computed and cached. At the global level, clusters are traversed in a single big

step. A hierarchy can be extended to more than two levels. Small clusters are grouped

together to form larger clusters. Computing crossing distances for a large cluster uses

distances computed for the smaller contained clusters

