Plant Disease Detection Using Different Algorithms
(Major Project)

Project report submitted in partial fulfilment of the requirement for
the degree of Bachelor of Technology

in
Computer Science and Engineering/Information Technology
By
Saksham Varma (181485)
Under the supervision of
Dr. Vipul Sharma

to

\NFO
’<:‘L OF A Rﬂ/&f}

'\\ 'I'.‘R /
S Ay ol
= ; T
wl =
s W
- /4 O
5, G

{ Gm@®

%{,

ACKNOWLEDGE

Firstly, We would like to express our heartiest thanks and gratefulness to almighty God
for His divine blessing makes us possible to complete the project work successfully

We are grateful and wish our profound indebtedness to Dr Vivek Sehgal, Professor &
HOD of the Department of CSE & IT, Jaypee University of Information Technology,
Waknaghat.

Deep Knowledge & keen interest of my supervisor in the field of “Deep Learning and
AI” to carry out this project. His endless patience, scholarly guidance, continual
encouragement, constant and energetic supervision, constructive criticism, valuable
advice, reading many inferior drafts and correcting them at all stages have made it

possible to complete this project.

We would also generously welcome each one of those individuals who have helped us
straightforwardly or in a roundabout way in making this project a win.

In this unique situation, I might want to thank the various staff individuals, both educating
and non-instructing, which have developed their convenient help and facilitated my

undertaking.

Finally, I must acknowledge with due respect the constant support and patients of my
parents.

Regards,

Saksham Varma 181485
IT | JUIT

Table of content :

1. Chapter 01 Introduction
- 1.2 Problem Statement

2. Chapter 02 Literature Survey
3. Chapter 03 System Development

Image Acquisition
Image Pre Processing
Feature Extraction
-3.1 Development
-3.2 Frontend

-3.3 Dataset

4. Chapter 04 Performance Analysis

4.1Accury on Machine Learning
4.2 Accuracy on Deep Learning

5. Chapter 05 Conclusion

References
Appendices

Department of Computer Science & Engineering and Information
Technology
Jaypee University of Information Technology Waknaghat,
Solan-173234, Himachal Pradesh

Certificate

Candidate’s Declaration

I hereby declare that the work presented in this report entitled “Plant Detection Using
Different Algorithms” is in partial fulfilment of the requirements for the award of the
degree of Bachelor of Technology in Computer Science and Engineering/Information
Technology submitted in the Department of Computer Science & Engineering and

Information Technology, Jaypee University of Information Technology Waknaghat is an
authentic record of my work carried out over a period from January 2022 to June 2021
under the supervision of Dr Vivek Kumar Sehgal Professor and Head of Department
CSE.

The matter embodied in the report has not been submitted for the award of any other
degree or diploma.

(Saksham Varma 181485)

This is to certify that the above statement made by the candidate is true to the best of my
knowledge.

Supervisor Name: Dr. Vipul Sharma

Designation: Assistant Professor (Grade-II)

Department Name: Computer Science & Engineering and Information Technology
Dated: 17-05-2022

List of Abbreviations:

Al - Artificial intelligence

ML - Machine Learning

GPVS - General Purpose Vision System
GPU - Graphical processing unit

List of Figures

Fig 1:Basic Block diagram of Image Processing
Fig 2: Front End for the web application

Fig 3:Classification of the figures

Fig 4:Classification of the figures

Fig 5:Different spot diseases found in vegetation
Fig 6:Resnet50

Fig 7:vGG16

Fig 8:VGG19

Fig 9:Inception V3

Fig 10:DenseNet121

Fig 11:Total Classification of dataset

Fig 12:Final accuracy

Chapter 1: Introduction

This research paper describes digital image processing-based techniques for detecting and
classifying leaf diseases in a variety of agricultural plants. This helps in the development
of various disease management measures that benefit agriculture. Automatic disease
diagnosis and analysis is based on that particular symptom, and cost concentration is
very beneficial to farmers. Early detection of illness is a serious concern in agricultural
research. Plant diseases are caused by organisms such as fungi, bacteria, and viruses, so it
is important to improve the appropriate approach in a particular area. All of these studies
are aimed at detecting and classifying plant lesions as soon as possible.

This computerised reasoning condition to a great extent relies upon the capacities of Al
for empowering innovative arrangements with intellectual characteristics. The essential
objective of computerised reasoning spotlights on decreasing human mistakes while
guaranteeing quicker tasks. Hence, you can plainly see how both Al and blockchain
expect to make processes quicker. Utilising the two of them together certainly presents
some intriguing possibilities for growing the utilizations of blockchain across different
areas.

Machine Learning has as of late empowered enormous advances in artificial intelligence
however these outcomes can be exceptionally unified. The huge datasets required are for
the most part restrictive; forecasts are frequently sold on a for each inquiry premise; and
distributed models can immediately become out of date without work to procure more
information and keep up with them To address centralization in Al, systems to share
machine learning models on a public blockchain while keeping the models allowed to use
for deduction have been proposed. One model is Decentralised and Collaborative. For
instance, Machine learning on Blockchain from Microsoft Research. The work centres
around the depiction of a few potential impetus systems to urge members to add

information to prepare a model.

Chapter 1.2: Problem Statement

Agriculture is a significant part of the Indian economy. The Indian agriculture sector employs
about half of the country's workers. India is known as the world's largest democracy. Pulses, rice,
wheat, spices, and spice products are produced in significant quantities. Farmer's economic
development depends on the quality of the items they produce, which is dependent on plant
growth and development. As a result, in the sphere of agriculture, disease detection in plants plays
an important role. a supporting role Plants are particularly susceptible to illnesses that disrupt
their growth, which can lead to death. This, in turn, has an impact on the farmer's ecology. Use
this method to detect a plant disease at an early stage. It is advantageous to use an automatic
illness detection technique. Plant diseases manifest themselves in various areas of the plant, such
as the leaves. It takes a long time to manually detect plant illness using leaf photos. As a result,
computer approaches must be developed to automate the process of disease identification and
categorization using leaf photos.

Plant disease detection is still a work in progress research topic, despite the challenges described
in the problem statement. Over the years, various ways have been offered. Using pathogen
vectors, a strategy of detecting and distinguishing plant diseases can be achieved in traditional
systems. Algorithms for machines This approach has been used to diagnose sugar beet illnesses,
with classification accuracy ranging from 65 percent to 90 percent depending on the kind and
stage of the disease. Plant disease classification was performed with Kmeans as a clustering
algorithm, again employing a leaf-based approach and using ANN as an automatic detection tool.
ANN consists of ten hidden layers. With the example of a healthy leaf, the number of outings is 6,
which is the number of classes represented by five disorders.

Chapter 2: Literature Survey

Image processing techniques have been used in a variety of fields in recent years,
including automation, medicine, and so on. Image processing systems necessitate the use
of a camera, a computer, and the necessary software. Image acquisition, pre-processing,

segmentation, feature extraction, and classification are all steps in plant disease detection.

On reviewing various research papers. We observed that some of the models mentioned in
the research paper were similar as we can see from [1] that the approach was similar to

our model but with indifference of efficiency which made the model to calculate.

Many segments showed us that even using the similar models the efficiency couldn't go
up the scale to be defined as unique. To compare to that literature we have generated an
easy to approach model with classic UI gestures to emphasise our finding and make it

easier to work with.

Table: Consisting about various findings from different research report

No. | Reference Titles | Algorithm/Techniques | Significance Measuring

1 Plant infection Real-Time Detection | data
detection using | of Apple Leaf augmentation
image Diseases Using and image
processing Deep Learning annotation

Approach Based on technologies
Improved

Convolutional Neural

Networks

2 Plant Detection | disease detection Detecting
Using Various model that uses accuracy and
Algorithms deep-CNNss is precission

proposed by
introducing the
GoogleNet Inception
structure and Rainbow
concatenation.

3 An open access | crucial role is played [K-means Accuracy
repository of by the image clustering and
images on plant | processing algorithm and | precision
health to enable | in detection of plant classification
the development | disease technique
of mobile such as
disease Artificial
diagnostics neural

network (feed
forward back
propagation)

Chapter 3: System Development

o Deep learning model :
Using the score we add the model to the blockchain and reward the maker.
Here we store the model , layers and hyper parameters used to train the
model. For every better score the transaction takes place .
Here one can use a pre-trained model such as Resnet and customise it to

get better accuracy.

SAMPLE

L 4

< FEATIURE EXTRACTION OF >

< SEOCMENTATION OF IMACGE >

IMAGE SAMPILE

Fig. Basic Block diagram of Image Processing

e Image Acquisition
The first step in acquiring images is to take pictures of the leaves with a
smartphone or digital camera. The route is used to load the saved leaf
images from the database. The images of the leaf samples are shown in

Figure

e Image Pre-processing
Pre-processing improves image quality by removing unwanted
distortions. Here, the image is cropped to the region of interest
(ROI), image smoothing and contrast enhancement are performed.

Figure 3 shows the photo after editing.

e Image Segmentation
Image segmentation is a technique for separating an image into
sub-images. To partition and reassemble the image, we employ the
Kmean segmentation technique, which involves colour estimation.
We do not consider green leaves because they are common. For
feature extraction, we chose a cluster image that shows an affected

area. The fractional images of leaves seen below.

e Feature Extraction
Feature extraction refers to the part of the image that is interesting
and from which the required information is retrieved. The area of
interest (ROI) will be smaller than it was in the original
photograph. One of the most effective texture analysis approaches
is the grayscale co-occurrence matrix (GLCM). It estimates the
image's characteristics using quadratic statistical approaches.
GLCM calculates pixels in the image that have a specified intensity
where the grey value appears. The total number of occurrences of a

pixel of a specific intensity in the spatial domain will be the

outcome. The amount of grey levels will determine the size of the

GLCM.

e Image Classification
Fungi, bacteria, and viruses cause diseased leaves. The insect can
also harm leaves, resulting in leaf spot disease. Depending on the
stage and organism involved, infected leaf portions will vary in
size and colour. Spots will be seen in a variety of colours, including
yellow, brown, beige, and black. The disease was classified using
textural information from the GLCM. The disease is divided into
three categories: anthracnose, Cercospora leaf spot, and Bacterial

blight.

We used following pre-trained models for simulation and one CNN model

acting as Mother Block :

m Resnet50
ResNet-50 is nothing but a convolutional Neural Network model .
ResNet-50 is 50 layers deep. In this you can load a pre trained
version of the network which is trained on more than a million
images from the ImageNet .(a dataset that has 100,000+ images

across 200 different classes)

e VGGI6
It is a type of convolutional neural network model. This model
achieves around 92.7% top-5 test accuracy in ImageNet. VGG-16
is 16 layers deep. You can load a pre-trained version of the network

trained on more than a million images from the ImageNet.

m VGGI19
It is also a convolutional neural network model that is 19 layers
deep (16 convolution layers, 3 Fully connected layers, 5 MaxPool

layers and 1 SoftMax layer).

m Resnet34
It is a convolutional neural network model. Resnet34 is a 34 layer
convolutional neural network. Resnet34 can be utilised as a state
of the art image classification model. This is a model that has been

pre-trained on the ImageNet dataset.

m DenseNetl21
It is a convolutional Neural Network model which connects each
layer to every other layer in a feed-forward fashion. DenseNets
have various compelling advantages like they can alleviate the
vanishing-gradient problem they can also strengthen feature
propagation and not only this they also encourage feature reuse

and last but not least substantially reduce the number of parameter

3.1 Development

For the application we made a web application using the deep learning model we created
and saving the model in the model section in our web application.

With regular auto updation in a server we can always get a new best model in regular
intervals from the blockchain .

The web application is made using HTML, CSS , Javascript for frontend and Flask for
server side.

I have used fastai which is built on top of Pytorch. Dataset consists of 38 disease classes
from PlantVillage dataset and 1 background class from Stanford’s open dataset of
background images DAGS. 80% of the dataset is used for training and 20% for

validation.

3.2 Frontend:
For different users to make it easier for them to work easily and utilise the model more
efficiently. The front end was made in a simpler Ul. The simple UI will help in

conversing with algorithms to opt the desired results.

FRONTEND
HTML For basic layout and functions
CSS For styling and improving Ul
JAVASCRIPT For dynamic styling and recalling
attributes

The frontend uses basic knowledge of HTML , Javascript and CSS
e We have created button and applied an animation for the button
e We created and applied icon for the page

e We applied CSS and the interface of the form.

o Created the basic interface of the page using HTML

3.3 Backend:
BACKEND
JAVASCRIPT Create forms and linking the frontend to
backend
FLASK Library used for creating the Ul

The backend was created using basic knowledge of Javascript and Flask

e We created the synchronisation between Flask (which used the model to provide
output) , Javascript (which supported the interface between frontend and backend).

e Created form’s backend using javascript and simple error popup system.

e Provided the incoming of image and display of result after going through the model
which was trained previously.

e Upload of the image as file.

The following image is a snippet of our front end code which shows the front end of the
title page which will then lead to further processing. This was developed using HTML
and Javascript and styled using CSS.

Interviewspr._. @ WhatsApp Explore. 30-seconds hiteboard. WatchTrend... «. Prime Music « Graphpdf-.. & Mail- Arpit_. - Programmin

‘ PLANT DISEASE DETECTOR

Supported Disease:
N s
Share a picture of the plant and get immediate results!

Apple ‘Apple scab''Apple Black rot,'Apple Cedar apple rust, 'Apple healthy'
Blueberry ‘Blucberry healthy
Cherry ‘Cherry (including sour)Powdery mildew’, ‘Cherry(including sour) healthy'

Com 'Corn Cercospora leaf spot, 'Corn Common rust’, 'Corn Northern Leaf Blight', 'Corn

healthy
@ ‘Grape Black rot, ‘Grape Esca (Black Measles), 'Leaf blight (sariopsis Leaf Spot)’, ‘Grape
rape
healthy’
Orange ‘Orange Haunglongbing (Citrus greening)"
Peach ‘Peach Bacterial spat, 'Peach healthy'
Pepper "Pepper, bell Bacterial spot', 'Pepper bell healthy’
Potato “Potato Early blight', "Potato Late blight', Potato healthy’

Rasphery 'Raspberry healthy’
. Soyabe 'Sc healthy"
Result= Tomato___Early_blight oveneEn e
Squash 'Squash Powdery mildew’
Strawberry 'Strawberry Leaf scorch, 'Strawberry healthy'

Tomato: ‘Bacterial spot, Earlyblight, ‘Late blight, ‘Leaf Mold' 'Septoria leaf spot’, ‘Spider

D mites', Target Spot’, 'Yellow Leaf Curl Virus', Mosaic virus', Healthy'

Fig2. Depicting the Front end

3.4 Dataset

Mobile phones or digital cameras are used to take images of infected leaves of different
plants. Image processing techniques are applied on those images to get useful features for
analysing. The various steps involved are shown in the figures.

The data used in the model for developing our Machine Learning model is a Dataset by
SP Mohanty for plant diseases [4] was used . It is a public dataset of 54306 images for 14
crop species and for 26 diseases . The dataset consists of colour ,grayscale and segmented
images of the data . The image is resized to 256 % 256 pixels consisting of only one leaf.

The data records contain 54,309 images. The images span 14 crop species: Apple,
Blueberry, Cherry, Corn, Grape, Orange, Peach, Bell Pepper, Potato, Raspberry, Soybean,
Squash, Strawberry, Tomato. In containers images of 17 fungal diseases, 4 bacterial
diseases, 2 mould (oomycete) diseases, 2 viral diseases, and 1 disease caused by a mite.
12 crop species also have images of healthy leaves that are not visibly affected by a
disease. Table 1 summarises the dataset. The data records are available through the
website www.plantvillage.org. A file mapping each the URL of each image to the
classification has been deposited at.

Table.: List of crops and their disease status currently in the PlantVillage

Name Fungi Bacteria Mould Virus Mite Healthy

Apple Gymnospo (1645)
(3172) rangium
juniperi
virginianae
(276)
Venturia
inaequalis
(630)
Botryosph
aeria
obtusa
(621)

Blueberry (1502)

Cherry Podosphae (854)
(1996) ra spp
(1052)

Corn Cercospora (1162)
(3852) zeae
maydis
(513)
Puccinia
sorghi
(1192)
Exserohilu
m
turcicum
(985)

Grape Guignardia (423)
(4063) bidwellii
(1180)
Phaeomoni
ella-- spp.
(1384)
Pseudocerc
ospor a
vitis

(1076)

Orange Candidatus
(5507) Liberibacte
r (5507)

Peach Xanthomo (360)
(2657) nas
campestris
(2291)
Bell Xanthomo (1478)
Pepper nas
(2475) campestris
(997)
Potato Alternaria Phytophth (152)
(2152) solani ora
(1000) Infestans
(1000)
Raspberry (371)
(371)
Soybean (5090)
(5090)
Squash Erysiphe
(1835) cichoracea
rum /
Sphaerothe
ca
fuliginea
(1835)
Strawberr | Diplocarpo (456)
y (1565) n earliana
(1109)
Tomato Alternaria | Xanthomo | Phytophth | Tomato Tetranychu | (1592)
(18,162) solani nas ora Yellow s urticae
(1000) campestris | Infestans Leaf Curl | (1676)
Septoria pv. (1910) Virus
lycopersici | Vesicatoria (5357
(1771) (2127) Tomato
Corynespo Mosaic
ra Virus
cassiicola (373)
(1404)
Fulvia

fulva (952)

The data is classified into following categories :

Fig3. Classification of the figures

Which can be sorted according to plant:

Name Class Names

Apple 'Apple scab',; Apple Black rot', ‘Apple Cedar apple rust', ‘Apple healthy'
Blueberry 'Blueberry healthy’
Cherry 'Cherry (including sour)Powdery mildew’, ‘Cherry(including sour) healthy’

Cor 'Com Cercospora leaf spot’, 'Com Common rust’, '‘Corn Northemn Leaf Blight', 'Com
! healthy’
'Grape Black rot', 'Grape Esca (Black Measles)', 'Leaf blight (Isariopsis Leaf Spot), 'Grape
Grape healthy’

Orange 'Orange Haunglongbing (Citrus greening)'

Peach 'Peach Bacterial spot’, 'Peach healthy'

Pepper 'Pepper, bell Bacterial spot’, 'Pepper bell healthy'

Potato 'Potato Early blight', ‘Potato Late blight', ‘Potato healthy'

Raspberry 'Raspberry healthy’

Soyabean 'Soybean healthy'

Squash 'Squash Powdery mildew'

Strawberry 'Strawberry Leaf scorch’, 'Strawberry healthy’

Tomato: "Bacterial spot’, 'Earlyblight', ‘Late blight', 'Leaf Mold', 'Septoria leaf spot’, "Spider

St mites’, Target Spot’, 'Yellow Leaf Curl Virus', 'Mosaic virus', "Healthy'

Fig5. Different spot diseases found in vegetation

Chapter 4: PERFORMANCE ANALYSIS

4.1 Accuracy For Machine learning :

Decision Tree Classifier : 92.98%
Logistic Regression Classifier : 95.9%
Random Forest Classifier : 96.49%
Gaussian Naive Bayesian: 92.98%
Support Vector Classifier : 97.08%
Nearest Neighbours Classifier: 95.9%

4.2 Accuracy For Deep learning:

Resnet50 :
Accuracy = 89.16%
F1 Score =0.8845819234848022

Confusion Matrix =

10

20 30
Fig6. Resnet50
VGG16:
Accuracy = 92.61%
F1 Score =0.9922231435775757

Confusion Matrix =

0 10 20 30

Fig7 VGG16
e VGGI9:
Accuracy = 92.05%
F1 Score =0.9936198592185974
Confusion matrix =
0
5
10
15
20
P13
£l

5

0 10 20 30

Fig8 VGGI19
e InceptionV3:
Accuracy = 91.62%
F1 Score =0.9164

Confusion matrix=

0 10 20 30

Fig9. Inception V3

e DenseNetl2] :
Accuracy =91.15%
F1 Score =0.9151003360748291
Confusion Matrix =
0
5
10
15
20
i3
30

35

0 10 20 30

Fig10. DenseNet121

Adding model in blockchain:
Randomly adding best model to blockchain:
e (Custom model using LeNet algorithm:

Accuracy = 94%
F1 Score =0.94

(None, 61,

12a)

120)

Non-t

ecision

Figl2. Final accuracy

Chapter 5: CONCLUSION

This documentation provides a clear statement that the main goal of the proposed work is
to identify the disease. To identify leaf diseases, various segmentation techniques were
employed. The subgrouping and classification of foliar diseases was developed using
image thresholds, K-means clustering, and neural networks (NN). Different algorithms
have been tested on the various effects of plant diseases. With experimental results
significantly supporting accurate results in less than computation time, this is the neural
network that provides the best accuracy results when compared to other networks. The
model was able to confirm the disease's identity. The diagnosis is straightforward.
Diseases were found in some cases in key plots maintained by experimental research
stations to identify disease presence in a given area. The specialist made the diagnosis in
these cases once more. We keep all images in PlantVillage's database using expert
diagnostics. The database only contains professionally defined sheets.

Our model made use of various algorithms which eventually gave us satisfactory results
through its efficiency. This efficiency was achieved by testing and training our model
which was done through the database we found. The model made use of several different
models such as Resnet and VGGetc. These models gave us an outstanding efficiency of
94%. This will help many agriculturist and scientist in their research work as it will be
free to use and will be made even simpler in coming time by using various algorithms.

Reference

[1 1Zhou, Jianlong; Chen, Fang (2018). [Human—Computer Interaction Series] Human
and Machine Learning || Deep Learning for Plant Diseases: Detection and Saliency Map
Visualisation. , 10.1007/978-3-319-90403-0(Chapter 6), 93-117.
doi:10.1007/978-3-319-90403-0 6

[2] Mohanty, Sharada P.; Hughes, David P.; Salathé, Marcel (2016). Using Deep Learning for
Image-Based Plant Disease Detection. Frontiers in Plant Science, 7(), 1419-.
doi:10.3389/fpls.2016.01419

[4] Mohanty, Sharada P., David P. Hughes, and Marcel Salathé. "Using deep learning for
image-based plant disease detection." Frontiers in plant science 7 (2016): 1419.

[5]Miller, Sally A.; Beed, Fen D.; Harmon, Carrie Lapaire (2009). Plant Disease
Diagnostic Capabilities and Networks. Annual Review of Phytopathology, 47(1), 15-38.
doi:10.1146/annurev-phyto-080508-081743

Appendix

Referred data :
Plant disease detection by SP Mohanty .
Breast cancer detection

Referred chart;
E CollaborativeTrainer
— addData(x, y)
1 |
-

== In-l:enﬂu;ME:::l-lani:imI
[} DataHandler |

T
[-Z: mcdel 1

Fig.9
IE.:-I:I:I-l:ll:lﬂh.'-l-Tr:-rrl-r
—1 —
| +adeoatai_)
¥
IncenthefischanisEm I|:|=I:J|H=I'I-I:||Er bl iz]
I =i Do Tralpaniingd. —
+ iR handbeSddDiatal | I = EEaimndieAddData]. .. wEEundatei)
| | b,
[]
COramable
i I addnet freagat-oen gl
i £ e en] N ewaDiwerae o dide s s |
madifier] sonkyOwnen|} [

Fig. 10

SNIPPETS

4) indexhtml

Apple:

*Apple scab’,"Apple Black rot’, ‘Apple Cedar apple rust’, ‘Apple healthy’
Blueberry

*Blueberry healthy'
Cherry.

‘Cherry (including sour)Powdery mildew’, ‘Cherry(including sour) healthy’

rn
‘Corn Cercospora leaf spot’, ‘Corn Common rust’, ‘Corn Northern Leaf Blight', "Corn healthy’

Grape

*Grape Black rot', 'Grape Esca (Black Measles)', ‘Leaf blight (Isariopsis Leaf Spot)', ‘Grape healthy’
Orange:

*Orange Haunglongbing (Citrus greening)®

'Peach Bacterial spot®, 'Peach healthy'

Pepper:
‘Pepper, bell Bacterial spot’, ‘Pepper bell healthy’

Potato

*Potato Early blight’, 'Potato Late blight’, 'Potato healthy’
Raspberry

*Raspberry healthy'

Soyabaan
*Soybean healthy’

Squash:
*Squash Powdery mildew’

Strawberry:
*Strauberry Leaf scorch', 'Strawberry healthy'

Tomato.
Line 126, Column 8

Tab Size: 4

stylesheet
uery-3.5.0.min.Js
23pT4 U1 cmeReFkXs4pru/IxaQ= anonymous

1115.0,115.8 €114.9,115.1 118.7,116 1 115
1.4,48.1 C171.4,40.1 176.1,42

93.0,107.8 198.3,112.5 (181.9,128.9
111="currentColor octo-bady’

b 1133.7,101.6 4 .8 c148. 4 154.6,51.2 150.7,51.8 C160.3,49.4 163.2,43.6
183.1,58.6 187.2,61. L a 9 . ,84.9 €212.7,93.1 266.9,96.8 205.4,
.5 157.7,114.1 C157.9,116. .7 7,1 ! 141.8 7

6 C205.1,102

static/bgd.jpg” id-"right
class="heading
PLANT DISEASE DETECTOR
55="text’
Share a picture of the plant and get immediate results!

multipart/form-data

SELECT IMAGE
le imagefi

id="analyze-button analyze-button
Analyze:

Result :

ic/left.png

p 126. Column 8

Tab Size: 4

%reload_ext autoreload
%autoreload 2
%matplotlib inline

from fastai import *
from fastsi.vision import *

from fastsi.metrics import error_rate, accuracy
import gdown

T 1315 paTH MG = Path('Plantvillage/')

L3 ps = 84 # batch_size

img_data = ImageDataBunch.from_folder(path=PATH_ING, train='train', valid="val', ds_tfms=get_transforms(), size=224, bs=bs)

img_data.normalize(imagenet_stats)

ImageDataBunch;

Train: Labellist (44816 items)
x: Imagelist
Image (3, 224, 224),Image (3, 224, 224),Image (3, 224, 224),Image (3, 224, 224),Image (3, 224, 224)

y: Categorylist
Tomato___Tomato_vellow_Leaf_Curl_Virus,Tomato_ Tomato_Yellow_Lesf_Curl Virus,Tomato__ Tomsto_Yellow_Lesf_Curl Virus,Tomato__ Tomato_Yellow_Leaf_Curl_

Virus,Tomato__ Tomato_Yellow_Leaf_Curl Virus
Path: Plantvillage;

Valid: Labellist (11084 items)
x: Imagelist
Image (3, 224, 224),Image (3, 224, 224),Image (3, 224, 224),Image (3, 224, 224),Image (3, 224, 224)

y: Categorylist
Tomato___Tomato_vellow_Leaf_Curl_Virus,Tomato__ Tomato_Yellow_Leaf_Curl Virus,Tomato__ Tomsto_Yellow_Leaf_Curl Virus,Tomato__ Tomato_Yellow_Leaf_Curl_

Virus,Tomsto__ Tomato_Yellow_Leaf_Curl_Virus

Path: PlantVillage;

Test: None

171" img data.show batch{rows=3, figsize=(18,8))

[27]5 ' jmg_data.show_batch(rows=3, figsize=(18,8))

Strawberry__Leaf scorch Tomato__ Septoria_leaf spot Tomato__ Bacterial_spot

Soybean__ healthy Squash__ Powdery_mildew

Soybean___healthy Corn_{maize)__|
T S

healthy
i

Soybean__healthy

img_data.c

3%

img_data.classes

["Apple__ Apple_scab',
‘Apple_ Black_rot',
'Apple_ Cedar_apple_rust’',
‘Apple_ healthy’,
'Blueberry__ healthy',
'Cherry_(including_sour)_ Powdery mildew’,
‘Cherry_(including sour)_ healthy”,
'Corn_(maize)__ Cercospora_leaf_spot Gray_leaf_spot’,
'Corn_(maize)__ Common_rust_",
‘Corn_(maize) MNorthern_Lesf Blight",
'Corn_(maize)__ healthy',
'Grape__ Black_rot',
‘Grape_ Esca (Black Measles)”,
‘Grape__ Leaf_blight_(Isariopsis_Leaf_Spot)’,
'Grape__ healthy’,
‘Orange_ Haunglongbing (Citrus_greening)”,
'Peach__ Bacterial spot’,
'Peach__ healthy’,
'Pepper,_bell Bacterial spot’,
'Pepper,_bell healthy',
'Potato__ Early blight’,
'Potato_ Late_blight”,
'Potato__ healthy',
'Raspberry_ healthy',
‘soybean___healthy’,
'squash__ Powdery_mildew',
'Strawberry_ Leaf_scorch',
‘Strawberry__ healthy”®,
'Tomato__ Bacterial spot’,
'Tomato__ Early blight’,
‘Tomato_ Late_blight”,
'Tomato__ Leaf_Mold',
'Tomato__ Septoria_leaf _spot’,
'Tomato__ Spider_mites Two-spotted_spider_mite’,
'Tomato__ Target_Spot’,
'Tomato__ Tomato_Yellow Leaf Curl Virus',
‘Tomato__ Tomato_mosaic_virus®,
‘Tomato__ healthy',
'background']

medel.lr_find()

LR Finder is complete, type {learner_name}.recorder.plot(} toc see the graph.

medel.recorder.plot()

0060

0055

0050

Loss

0.045

0040

0035

1606 1005 1e04 1e03 1e02 1e0l
Learning Rate

medel.unfreeze()
medel.fit_one_cycle(3, max_lr=slice{le-82, le-82}})
epoch train_loss valid_loss accuracy error_rate time
0 0347306 0.843074 0.B00527 0199473 0436
1 0131069 0062115 0973644 0021356 0437

2 0032473 0.020997 0.993457 0006543 0437

model.fit_one_cycle(5, max_lr=slice(le-83, le-82}))

epoch train_loss valid_loss accuracy error_rate time
0 0124315 0142200 0.957197 0.042803 04:37
1 0144007 0150233 0059024 0.040076 04:37

0.093149 0058310 0951487 0.018539 0436

(5]

3 0041538 0.019202 0.995093 0.004907 04:36

4 0013872 0.0137

0906365 (0.003635 0436

medel.save('train_1r 8 cycles')

medel. freeze()
medel.lr_find()
medel. recorder. plot()

LR Finder is complete, type {learner_name}.recorder.plot(} to see the graph.

img_data.show_batch(rows=3, figsize=(10,8))

Strawberry__ Leaf scorch Tomato__ Septoria_leaf spot

Soybean__healthy

S

___healthy

Soybean__healthy

img_data.c

39

1pip install -q pandas
http://pytorch.org/
from os.path import exists

from wheel.pepd25tags import get_abbr_impl, get_impl ver, get_abi_tag

tpip install -q Pillow==4.3.@
1pip install -q PIL

Ipip install -q image

import PIL

#%reload_ext autoreload @emmmzomea comment out
#%autoreload @ oo comment out
%matplotlib inline

Ipip install --no-cache-dir -I pillow

def register_extension(id, extension):
PIL.Image.EXTENSION[extension.lower()] = id.upper()
PIL.Image.register_extension = register_extension
def register_extensions(id, extensions):
for extension in extensions:
register_extension(id, extension)
PIL.Image.register extensions = register_extensions

from PIL import Image

Tomato__ Bacterial_spot

Squash___Powdery_mildew

Corn_{maize)__healthy
i

def register_extension(id, extension): Image.EXTENSION[extension.lower()] = id.upper()

Image.register_extension = register_extension
def register_extensions(id, extensions):

for extension in extensions: register_extension(id, extension)

Image.register_extensions = register_extensions

| ANANRNEN RN RN RNANRNRNRRNRNNNY | s sve 2.5i6/s
|

| 112kB 42.7MB/s
Building wheel for olefile (setup.py) ... done

ERROR: Could not find a version that satisfies the requirement PIL (from versions: none)

ERROR: No matching distribution found for PIL
Collecting pillow

Downloading https://files.pythonhosted.org/packages/ba/90/8a24e6220cfcf6a3a0162535d5b926e774117e384FF92190807e4c92bda/Pillow-7.1.1-cp36-cp3bm-manyli

nux1_x86_64.whl (2.1MB)
| 2.1MB 2.8MB/s

lapt-get install -y -qq software-properties-common python-software-properties module-init-tools
ladd-apt-repository -y ppa:alessandro-strada/ppa 2>&1 > /dev/null

lapt-get update -qq 2>&1 > /dev/null

lapt-get -y install -qq google-drive-ocamlfuse fuse

from google.colab import auth

auth.authenticate_user()

from oauth2client.client import GoogleCredentials

creds = GoogleCredentials.get_application_default()

import getpass

tgoogle-drive-ocamlfuse -headless -id={creds.client_id} -secret={creds.client_secret} < /dev/null 2>&1 | grep URL
vcode = getpass.getpass()

techo {vcode} | google-drive-ocamlfuse -headless -id={creds.client_id} -secret={creds.client_secret}

Imkdir -p drive
!google-drive-ocamlfuse drive

import os
#o0s._Llistdir('/content/drive/AMD/CNV")
#trainDir = '/content/drive/My Drive/AMD/CNV'

from google.colab import drive
drive.mount('/content/drive’)
data = "/content/drive/My Drive/Plant Disease/PlantVillage"

import torch

import helper

from torch import nn

from torch import optim

import torch.nn.functional as F

from torchvision import datasets, transforms, models
import torchvision.models as models

from torchvision import datasets ,transforms

#Changning the transform of the data-

transform_train = transforms.Compose([transforms.RandomHorizontalFlip(),
transforms.RandomResizedCrop(224),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Mormalize([©.485, ©.456, ©.486], [0.229, ©.224, ©.225])
1

transform_test = transforms.Compose([transforms.RandomHorizontalFlip(),
transforms.RandomResizedCrop(224),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Mormalize([@.485, ©.456, ©.486], [©.229, ©.224, ©.225])
1

choose the training and test datasets

train_data = datasets.ImageFolder(data+"/train”, transform=transform_train)
test_data = datasets.ImageFolder(data+"/val", transform = transform_test)
#n_classes = test_data.shape[1]

n_classes = len(test_data.classes)

print(n_classes)

batch_size = 16

dataloader_train = torch.utils.data.Dataloader(train_data, batch_size, shuffle=zTrue, num_workers=2)
dataloader_test = torch.utils.data.Dataloader(test_data, batch_size, num_workers=2)

In [0]: import matplotlib.pyplot as plt

import numpy as np

norm_mean = [@.485, 8.456, 0.486]
norm_std = [©.229, @.224, @.225]

def imshow_numpy{image, ax=None, title=None):
if ax is None:
fig, ax = plt.subplots()

ax.grid(False)

PyTarch tensors assume the color channel is the first dimension
but matplotlib gssumes is the third dimension
image = image.transpose((1, 2, @))

Undo preprocessing

mean = np.array(norm_mean)
std = np.array(norm_std)
image = std * image + mean

Image needs to be clipped between @ and I or it looks like noise when displayed
image = np.clip(image, @, 1)

ax.imshow{image)

return ax

In [@]: images, labels = next(iter(dataloader_train})

imshow_numpy(images[@].numpy())
print(images.chape)

torch.Size([16, 3, 224, 224])

)

(denselayer1l): DenseLayer(
(norml): BatchNorm2d(832, eps=le-85, momentum=@.1, affine=True, track_running_stats=True)
(relul): ReLU(inplace=True)

(convl): Conv2d(832, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)

(norm2): BatchNorm2d(128, eps=1e-85, momentum=@.1, affine=True, track_running_stats=True)
(relu2): RelU(inplace=True)

(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)

)

(denselayerl2): _Denselayer(

(norml): BatchNorm2d(864, eps=1e-85, momentum=8.1, affine=True, track_running_stats=True)
(relul): ReLU(inplace=True)

(convl): Conv2d(864, 128, kernel _size=(1, 1), stride=(1, 1), bias=False)

(norm2): BatchNorm2d(128, eps=1e-85, momentum=@.1, affine=True, track_running_stats=True)
(reluz): ReLU(inplace=True)

(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)

)

(denselayerl3): Denselayer(

(norml): BatchMorm2d(896, eps=1e-@5, momentum=8.1, affine=True, track running stats=True)
(relul): ReLU(inplace=True)

(convl): Conv2d(896, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)

(norm2): BatchMorm2d(128, eps=1e-@5, momentum=8.1, affine=True, track running stats=True)
(relu2): RelU{inplace=True

(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)

)

(denselayer14): _Denselayer(

(norml): BatchNorm2d(928, eps=le-85, momentum=@.1, affine=True, track_running_stats=True)
(relul): ReLU(inplace=True)

(convl): Conv2d(928, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)

(norm2): BatchNorm2d(128, eps=1e-85, momentum=@.1, affine=True, track_running_stats=True)
(relu2): RelU(inplace=True)

(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)

)

(denselayerl5): _Denselayer(

(norml): BatchMorm2d(960, eps=1e-@5, momentum=8.1, affine=True, track running stats=True)
(relul): ReLU(inplace=True)

(convl): Conv2d(968, 128, kernel _size=(1, 1), stride=(1, 1), bias=False)

(norm2): BatchMorm2d(128, eps=1e-@5, momentum=8.1, affine=True, track running stats=True)
(relu2): ReLU(inplace=True)

(conv2): Conv2d(128, 32, kermel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)

)

(denselayerl6): Denselayer(

(norml): BatchMorm2d(992, eps=1e-@5, momentum=0.1, affine=True, track_running_stats=True)
(relul): RelLU(inplace=True)

(convl): Conv2d(992, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)

(norm2): BatchNorm2d(128, eps=le-85, momentum=@.1, affine=True, track_running_stats=True)
(relu2): RelU(inplace=True)

(conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)

)

)
(norms): BatchNorm2d(1824, eps=12-85, momentum=8.1, sFfine=True, track_running_stats=True)

(classifier): Linear(in_features=1024, out_features=100@, bias=True)

Epoch: 1 Training Loss: 2.87@873 Validation Loss: @.951872
validation loss decreased (inf --> @.951872). Saving medel

tensor([[13., 3., 5.,

e., 2., 0.l
[1., 9., 1., . 6., ., o.],
[e., @, @,, e. 0.l

[e.. e., @, ... e, @e., o],
[12., 11., @., ..., 37.,532., 3.1,
5., 1., @, ..., @., 3.,363.]])

Class @

TP 13.8, TN 54628.8@, FP 24.8, FN 823.0
Recall = ©.020440252497792244
Precision = @.3513513505458332

F1 Score = @.838632988929748535
Class 1

TP 9.8, TN 54854.@, FP 9.@, FN &8l16.@
Recall = ©.014399999752648724
Precision = @.5

F1 Score = @.82799377776682377

Class 2

TP @.@, TN 55@87.@, FP @.@, FN 28l1.@
Recall = @.@

Preciszion = nan

F1 Score = nan
Class 3
TP 712.8, TN 53184.8, FP 538.@, FN 934.8

Recall

= ©8.43256378173828125

Precision = @.569599986@876355

F1l Score = ©.4917127192028416

Class 4

TP 773.8, TN 53284.8, FP 582.@, FN 729.@
Recall = ©.5146471261978149

Precision = @.6@62744855830737

F1 Score = ©.556715846085617865

Class 5

TP 39@.8, TN 54085.8, FP 149.@, FN 734.8
Recall = @.2846299787889557

Precision @.6681514382362366

F1 Score = 0.399201571294137573

Class &

TP 247.8, TN 54276.8, FP 157.@, FN 683.8
Recall = 0.2888839014720917

Precision = ©.6113861203193665

F1l Score = @.3923749029636383

Class 7

TP 15.@, TN 54744.8, FP 18.8, FN 511.@
Recall = 0.028517118273241997

Precision = @.4545454630919647

F1 Score = 0.85366726592183113

Class 8

TP 819.8, TN 53544.8, FP 429.8, FN 3%6.@

Re 11

= & ArasTaASITAARARR

model.lr_find()

LR Finder is complete, type {learner_name}.recorder.plot() to see the graph.

model.recorder.plot()

0.060

0.055

0.050

Loss

0045

0.040

0.035

106 1e0s 1en4 1e03 | leoz | ledl
Learning Rate

model.unfreeze()
model.fit_one_cycle(3, max_lr=slice(le-83, 1e-82))
epoch train_loss valid_loss accuracy error_rate time

0 0347308 0843974 0800527 0199473 0436

1 0131069 0062115 0978644 0.021356 0437

o

0038473 0.020097 0993457 0.006543 0437

model.fit one_cycle(5, max_lr=slice(le-83, 1le-82))

epoch train_loss valid_loss accuracy error_rate time
0 0324815 0.142209 0957197 0042803 04:37

1 0.144097 0.150233 0859924 0.040076 0437

o

0093149 0058316 0981461 0.018539 04:36

wa

0041538 0.019202 0.995093 0.004907 04:36

model.fit_one_cycle(5, max_lr=slice(le-@3, 1e-82))

epoch train_loss valid_loss accuracy error_rate time
0 0724815 0142209 0857197 0042803 0437
10044097 (.150233 0959924 0.040076 0437
2 0093149 (0.058316 0981461 0.018539 0436
3 0041538 0019202 0995093 0.004907 0436

4 0018872 0013773 0996365 0003635 0438

model.save('train_lr 8 cycles')

model.freeze()
model.lr_find()
model.recorder.plot()

LR Finder is complete, type {learner_name}.recorder.plot() to see the graph.

0.020
0.018
u 0016
0.014

0.012

1606 1605 1604 1603 1602
Learning Rate

1r = 1e-3/2
model.fit_one_cycle(2, slice(lr))

epoch train_loss valid_loss accuracy error_rate time

0 0018528 0014205 0996274 0003726 0325

1 0016784 0.013566 0996547 0003453 0326

model.fit_one_cycle(3, slice(lr))

model.fit one cycle(3, slice(lr))

epoch train_loss walid_loss accuracy error_rate time
0 0020793 0013504 0096092 0003908 03:26
1 0021284 0013225 0996547 0003453 03:27

2 0011413 0013450 0995547 0003453 0327

model.save(train_finals_cycles’)

model.load(" train_finals_cycles’)
Learner(data=ImageDataBunch;

Train: Labellist (44816 items)

x: Imagelist

Image (3, 224, 224),Image (3, 224, 224),Image (3, 224, 224),Image (3, 224, 224),Images (3, 224, 224)

y: Categorylist

Tomato__ Tomato_Yellow_Leaf_Curl_Virus,Tomato_ Tomato_Yellow_Leaf_Curl Virus,Tomato_ Tomato_Yellow_Leaf_Curl_Virus,Tomato__ Tomato_Yellow_Leaf_Curl_
Virus,Tomato_ Temate Yellow Leaf Curl Virus

Path: PlantVillage;

Valid: Labellist (11@84 items)

x: Imagelist

Image (3, 224, 224),Image (3, 224, 224),Image (3, 224, 224),Image (3, 224, 224),Image (3, 224, 224)

y: Categorylist

Tomato_ Tomato Yellow Leaf_Curl Virus,Tomato_ Tomato_Yellow Leaf Curl Virus,Tomato Tomato_Yellow Leaf Curl Virus,Tomato Tomato Yellow Leaf Curl_
Virus,Tomato_ Temate Yellow Leaf Curl Virus

Path: Plantvillage;

PLAGUE REPORT

Saksham_Report

ORIGINALITY REPORT

30, 276 18+

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

PRIMARY SOURCES

pdfs.semanticscholar.org 7
Internet Source %

www.ir.juit.ac.in:8080 3
Internet Source %

dspace.daffodilvarsity.edu.bd:8080 3
Internet Source %
www.semanticscholar.org

Internet Source 2%

www.coursehero.com 2
Internet Source %
annals-csis.org

H Internet Source 2%
jjarcce.com

Internet Source 1%

B Justin D. Harris. "Chapter 10 Analysis of 1 o

0

Models for Decentralized and Collaborative Al
on Blockchain", Springer Science and Business
Media LLC, 2020

Publication

n studenten365.com v
Internet Source %
arxiv.or v
InternetSourge %
www.irjmets.com /
Internet Source %
Rahul Keru Patil, Suhas Shivlal Patil. "Cognitive /1 o
Intelligence of Internet of Things in Smart °
Agriculture Applications", 2020 IEEE Pune
Section International Conference (PuneCon),
2020
Publication
drago1234.github.io v
Intern%tSource g %
www.ijraset.com v
Internethurce %
"Intelligent Learning for Computer Vision", 1 o
Springer Science and Business Media LLC, °
2021
Publication
ljisrm.in
IrJ1ternetSource <1 %
reetvolas.com
Internet Source <1 %

Singh, Vijai, Varsha, and A K Misra. "Detection
. . <l%
of unhealthy region of plant leaves using
image processing and genetic algorithm",
2015 International Conference on Advances in
Computer Engineering and Applications, 2015.
Publication
www.ijert.or
Internethurce g <1 %
Ha.IiI Durmus, EFe Olcay Gunes, Murvet Kirci. <1 %
"Disease detection on the leaves of the
tomato plants by using deep learning", 2017
6th International Conference on Agro-
Geoinformatics, 2017
Publication
"Proceeding of the International Conference <'] o
on Computer Networks, Big Data and loT ’
(ICCBI - 2018)", Springer Science and Business
Media LLC, 2020
Publication
R Anand, S Veni,] Aravinth. "An application of <1 %

image processing techniques for detection of
diseases on brinjal leaves using k-means
clustering method", 2016 International
Conference on Recent Trends in Information
Technology (ICRTIT), 2016

Publication

