Dr. Vincet Sharma

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION- 2021 P. Task, M. Samusatar (CSE IT)

B.Tech VI Semester (CSE-IT)

COURSE CODE: 18B1WPH532

COURSE NAME: Applied Materials Science

COURSE CREDITS: 03

MAX. TIME: 2 Hours

MAX. MARKS: 35

Note: All questions are compulsory. Carrying of mobile phone during examinations will be treated as case of unfair means. Scientific calculators are allowed.

- (Q1) Calculate the induced dipole moment per unit volume for He-gas subjected to 6×10^5 V/m. The atomic polarizability of He is 0.18×10^{-40} F-m² and the concentration of He-atoms is 2.6×10^{25} m⁻³. Also calculate separation of positive and negative charges in each atom. [3]
- (Q2) What is poling? Elaborate on its application? [2]
 (Q3) (a) Cross linked copolymers consisting of 60 wt % ethylene (C₂H₄) and 40 wt % propylene (C₃H₆) may have elastic properties similar to those for natural rubber. For this copolymer, determine the fraction of both mer types. [2]
- (b) What is the difference between naturally occurring and synthetic polymers? On the basis of thermal response of polymers, discuss their various types. [3]
- (Q4) (a) A material core has 10 turns per centimeter of a wire wound uniformly upon it which carries a current of 2 Amperes. The flux density in the material is 1 T. Calculate the magnetic field and magnetization of the material. Also calculate the relative permeability of the core. [2]
- (b) Derive an expression for the larmour precession frequency for an atom subjected to external applied magnetic field. [3]
- (Q5) (a) For an optical fibre (core diameter d) having core refractive indices n_1 and surrounding medium refractive index n_0 , derive an expression for the number of reflections per meter suffered by the guided ray if the acceptance angle is θ_A . [3]
- (b) How much will a light pulse spread after travelling along 6-km of a step index fiber whose numerical aperture is 0.280 and n_1 is 1.48. Also, calculate the maximum bit rate that may be obtained assuming only intermodal dispersion. [2]
- (c) The optical power after propagating through a fiber of 1.5 km length is reduced to 25% of its original value. Compute the fiber loss in dB/km. [2]
- (Q6) (a) Derive the London equations and give their physical significance. [4]
- (b) Calculate the value of London penetration depth at 0 K for lead whose density is 11.3×10^3 kg/m³ and atomic weight is 207.19. Its T_c is 7.22 K. Calculate the increase in penetration depth at 3.61 K from its value at 0 K.
- (c) Calculate the critical current density for 1-mm diameter of lead at 4.2 K. A parabolic dependence of H_c upon T may be assumed. Given T_c for lead is 7.18 K and H_o for lead is 6.5x10⁴ A/m.
- (Q7) What is working principle of LED? How many shades of colour will be displayed by a 16-bit LED panel.
 [3]