Image Sharing Cloud Application

Project report submitted in partial fulfillment of the
requirement for the degree of Bachelor of Technology

in
Computer Science and Engineering

By
Ritik Bhardwaj (181262)

UNDER THE SUPERVISION OF
Dr. Rajni Mohana

Department of Computer Science & Engineering and
Information Technology

Jaypee University of Information Technology, Waknaghat,
173234, Himachal Pradesh, INDIA

DECLARATION

I hereby declare that this project has been done by me under the supervision of Dr. Rajni Mohana,
Affiliation, Jaypee University of Information Technology. I also declare that neither this project nor
any part of this project has been submitted elsewhere for award of any degree or diploma.

Supervised by:

Dr. Rajni Mohana

Associate Professor

Department of Computer Science & Engineering and Information Technology
Jaypee University of Information Technology

Submitted by:

Ritik Bhardwaj(181262)

Department of Computer Science & Engineering and Information Technology
Jaypee University of Information Technology

CERTIFICATE

This is to certify that the work which is being presented in the project report titled “Image Sharing
Cloud Application” in partial fulfillment of the requirements for the award of the degree of B.Tech
in Computer Science And Engineering and submitted to the Department of Computer Science And
Engineering, Jaypee University of Information Technology, Waknaghat is an authentic record of
work carried out by Ritik Bhardwaj (181262) during the period from Jan 2022 to Apr 2022 under
the supervision of Dr. Rajni Mohana, Department of Computer Science and Engineering, Jaypee
University of Information Technology, Waknaghat.

Ritik Bhardwaj (181262)
The above statement made is correct to the best of my knowledge.

Dr. Rajni Mohana

Associate Professor

Computer Science & Engineering

Jaypee University of Information Technology, Waknaghat

ACKNOWLEDGEMENT

Foremost, I express my heartiest thanks and gratefulness to almighty God for His divine blessing
makes it possible to complete the project work successfully.

I am grateful and wish my profound indebtedness to Supervisor Dr. Rajni Mohana, Associate
Professor. Department of CSE Jaypee University of Information Technology, Waknaghat for
blessing me with her guidance and utter support throughout the project. Her vast knowledge & keen
interest in the field of “Cloud Computing” has really guided us to understand each and every topic.
Her endless patience, scholarly guidance, continual encouragement, constant and energetic
supervision, constructive criticism, valuable advice, reading many inferior drafts and correcting
them at all stages have made it possible to complete this project.

I would like to express my heartiest gratitude to Dr. Rajni Mohana, Department of CSE, for her
kind help to finish my project.

I would also generously welcome each one of those individuals who have helped me
straightforwardly or in a roundabout way in making this project a win. In this unique situation, I
might want to thank the various staff individuals, both educating and non-instructing, which have
developed their convenient help and facilitated my undertaking.

Finally, I must acknowledge with due respect the constant support and patience of my parents.

Ritik Bhardwaj (181262)

TABLE OF CONTENTS

ABSTRACT

CHAPTER 1 : INTRODUCTION

1.1 Introduction

1.2 Objectives

1.3 Motivation

1.4 Language Used

1.5 Technical Requirements
1.5.1 Hardware Configuration

1.5.2 Software Configuration

CHAPTER 2 : LITERATURE SURVEY

CHAPTER 3 : SDLC

3.1 Feasibility Study

3.1.1 Technical Feasibility

3.1.2 Operational Feasibility

3.1.3 Economic Feasibility

3.1.4 Schedule Feasibility

3.2 Requirement Definition

3.2.1 Functional Requirements
3.2.2 Non-Functional Requirements
3.3 System Design Diagram

3.4 Backend Design Patterns

CHAPTER 4 : IMPLEMENTATION

4.1 Identification of features

4.2 React.js - Front-end framework for performance

4.3 Node.js - Back-end technology for performance and security

4.4 Express.js - Back-end framework to go with Node.js for performance
4.4.1 Security considerations with Express.js

4.5 Code Snippets of the various back-end modules

4.6 Docker - Run API’s in isolation in containers (lightweight operating systems)
4.7 Microservices architecture

4.7.1 Benefits of microservices architecture

4.7.1 Microservices in our project

4.8 AWS EC2 - Linux compute instance on the cloud

4.9 AWS S3 - Object storage

4.10 AWS DynamoDB - Key-value pair storage for session data

4.10.1 Integration of Node.js back-end with DynamoDB

4.11 Nginx setup on ubuntu

4.12 PM2 Process manager setup

CHAPTER 5 : CONCLUSION

5.1 Results Achieved
5.2 Applications
5.3 Limitations

5.4 Future Work / Scope

REFERENCES

LIST OF FIGURES

Fig. No Name of figure

l. Use Case Diagram

2. List of most popular back-end frameworks of 2021
3. Login route code snippet

4. Signup route code snippet - POST

5. Signup route code snippet - GET

6. Microservice architecture running of EC2 instance diagram
7. Microservice architecture with databases diagram
8. Individual microservices diagram

9. EC2 dashboard

10. EC2 instance configuration

11. AWS S3 dashboard snippet

12. AWS S3 storage of images

13. DynamoDB dashboard

14. DynamoDB session storage example

15. Integration of DynamoDB with Node.js options
16. Installing and setting up Nginx on ubuntu

17. Setting up PM2 process manager

LIST OF TABLES

Sr. No Name of table
1. Hardware Configuration

2. Software Configuration

ABSTRACT

Freeb is an image sharing application and social network platform wherein people who love
photography or are an admirer of good pictures can share their images as well as view them for

business or pleasure.

It allows users to upload photos, like other’s images as well as share their opinion of them.
This application is specifically built to provide exposure to new artists or students or any other
person who is unable to find the correct platform to showcase their talent and therefore is built in

such a way that it can be experienced by anyone and everyone free of cost.

In today’s world where social media is everything this application is perfect for users to enhance
their reach and increase their popularity amongst youth or adults.
Not only will the user be able to build huge engagement but will also be able to get good marketing

opportunities which will provide the perfect exposure needed by anyone for further job prospects.

10

CHAPTER 1 : INTRODUCTION

1.1 Introduction

Freeb is an image sharing cloud application. Users can create their accounts and upload images. The
user data is stored in a MySql database. The images are stored in AWS S3 object storage for

scalability and fast access. The user session is stored safely in AWS DynamoDB.

1.2 Objectives

To create a fast, scalable and secure image sharing cloud application by using industrial best

practices.
1.3 Motivation

To apply industrial best practices and create a fast, scalable and secure cloud application to share

images.

1.4 Libraries/Frameworks Used

React.js - A fast front end library.

Node.js - JavaScript Runtime environment.

Express.js - A fast and low overhead backend framework.

AWS SDK for Node.js - AWS SDK for integrating AWS services with node.js backends.

AWS provides a host of services such as compute instances, databases; sql and no sql. Analytics

and a clean dashboard to manage user access and assign roles for better management of resources.

10

11

1.5 Technical Requirements

- AWS EC2 compute instance for running microservices.

- AWS S3 object storage for storing images

- AWS DynamoDB storage for storing user session data.

- Nginx server to act as a reverse proxy and also host static react app.

- Docker process on the machine to run node microservices on different linux containers for
isolation.

- Mysql database also running in a docker container to store the user data

1.5.1 Hardware Configuration

Table 1 : Hardware Configuration

Processor Apple M1 chip, 8-core CPU
RAM 8 GB

Hard Disk 256 GB SSD

Monitor 137

Mouse

Keyboard

1.5.2 Software Configuration

Table 2 : Software Configuration

Operating System Windows 10, Mac OS
Language Javascript

Runtime environment Node.js

Package Manager Npm

11

1)

2)

12

CHAPTER 2 : LITERATURE SURVEY

The Cracked Cookie Jar: HTTP Cookie Hijacking and the Exposure of Private

Information

S. Sivakorn, I. Polakis and A. D. Keromytis, "The Cracked Cookie Jar: HTTP Cookie Hijacking and
the Exposure of Private Information," 2016 IEEE Symposium on Security and Privacy (SP), 2016,
pp. 724-742, doi: 10.1109/SP.2016.49.

Everything You Ever Wanted to Know About Session Management in Node.js

But then there is always the risk of sensitive information leakage and can even end up in the
wrong hands.. The majority of users aren’t necessarily bad actors, but there might be some
applicants looking for ways to exploit an application. Therefore, most security concerns
should be addressed as soon as possible by the developer and maintainer of the application
and the developer of whatever session management library one is using.

12

13
CHAPTER 3 : SDLC

3.1 Feasibility Study

We have evaluated the feasibility of the system into the

following categories:

* Technical feasibility
* Operational feasibility
» Economic feasibility

* Schedule feasibility

3.1.1 Technical Feasibility

The evaluation of technical feasibility is a tricky but an important part because, at this point in time
there isn’t any detailed design of the system, making it difficult to assess issues like performance,
costs, deployment etc. It is very important to make sure that the project is feasible from a technical

standpoint. The project must be practical and possible with the technologies we have.

3.1.2 Operational Feasibility

Proposed project is useful as long as it can be turned into information systems that will meet the
requirements of the operation. Once the project is deployed, it must work as planned. It should be

easy to operate by a team of technical professionals.

3.1.3 Economic Feasibility

It attempts to weigh the costs of developing and implementing a new system, against the benefits
that would increase over a period of time from having the new system in place. Since the project
would be deployed on the cloud on AWS. We know that AWS charges for the type of service and
how the service is in use. Therefore it is very crucial that the operational cost is not off the charts

and manageable.

3.1.4 Schedule Feasibility

A project is basically of no use if it takes too long to be completed before it becomes useful.
Typically, this is about estimating how long the system will take to develop, and whether or not it

can be completed in a given period of time using some methods such as payback period. Schedule

13

14
feasibility is a measure of how reasonable the project timetable is. Given our technical expertise, are
the deadlines given for the project reasonable? Some projects are initiated with specific deadlines. It
is necessary to figure out whether the deadlines are mandatory or desirable. A minor deviation can
be encountered in the original schedule decided at the commencement of the project. The

application development is possible in terms of schedule.

3.2 Requirement Definition

After the extensive analysis of the issues faced within the system, we are familiarized with the
needs and requirements of the current system. The requirement that the system needs is categorized
into the functional and non-functional requirements. These requirements are listed below:

3.2.1 Functional Requirements

The system should be able to :
- Store user data and retrieve it on demand
- The storage of images should be seamless and fast.
- The session storage must be implemented without any security concerns

3.2.2 Non-Functional Requirements

The constraints that define how the system should do what it is supposed to do.

14

3.3 System Design Diagram

API Gateway

15

MySQL

N
%

Main API

ey Vit

User Data Store

Session Store

3

Image Processing API

15

Image Store

3.3 Backend design patterns

1) Chain of responsibility

16

The chain of responsibility is a behavioral design pattern that allows you to pass the request
along a chain of handlers. Upon receiving a request, each handler decides either to process it

or to pass to the next handler.

Chain of Responsibility

Request [=| Handler

©
N

Handler

©
=

Handler

©

| Ordering

v
®

2) Dependency Injection

!

®

v

&

System

It is a programming design pattern that makes a class independent of its dependencies. It
achieves that by decoupling the object creation from its usage. This helps to achieve the
SOLID’s dependency inversion principle.

LAYER A

Component 1

Refers to

LAYER B

Component 2

Interface

I

16

Implements

CHAPTER 4 : IMPLEMENTATION

4.1 Identification of features

The cloud application features:

- Creation of user account ie Signup

- Deletion of user account ie Remove account

- User login with persistence ie creation of session

- User logout; deletion of session data

- Users can post images. Images stored in S3 storage

- Users can delete images

17

17

18

4.2 React.js - Front end library for performance

1.

Component Based - Every piece of Ul inside react is known as a component. You can
compose components to create a complex Ul The behavior of the components is predictable
and modifiable by using state and props. The state object stores the current state of the

object and can be changed on the fly on any condition.

State and Props - State object allows us to set the current state of the component. Stuff can
be dynamically rendered based on the state variables. In order to compose the object and
control it on the fly we use props. Props allow us to pass data to components and compose

the Ul in a top down fashion.

Virtual DOM - Virtual DOM is a peculiar feature of react.js and it makes UI updates much
faster. The virtual DOM is an alternate representation of the actual DOM in the memory and
keeps track of changes in the UI. It compares those changes with the original DOM and
updates only those things that are changed. This avoids updating the whole DOM which

takes time. This increases the speed of UI changes.

18

19

4.3 Node.js - Back-end technology for performance and security

Node.js is an asynchronous event-driven Javascript runtime environment built on top of Google
Chrome’s V8 engine. Node.js is designed to build scalable network applications. Node.js uses an
event loop and runs on a single thread unlike other server softwares that use concurrency models in

which OS threads are employed.

No function in Node.js directly performs I/O, so the process never blocks except when the /0 is

performed using synchronous methods of Node.js standard library.

19

20

A

% of Stack Overflow
questions that month

Node.js has become very popular over the last 4 year making it the best choice for startups. It comes
with a very comprehensive documentation. It’s very easy to get started with and many people who

have been working with legacy technology are making a shift to Node.js.

20

21
4.4 Express.js - Back-end framework for Node.js

—XOress

Express.js is a free and open-source web application framework for Node.js. Features of express.js

arc:

Faster server side development.
Middleware

Routing

Templating

A o e

Debugging

Most Popular Backend Frameworks
0 20,000 40,000 60,000
v N 5 5
Django @m 56,063
Ruby on Rails_ & 47,736
seop I) 515
seego [- & 26,402
Symfony_ @ 21
iris [@ »= 20,205

Codelgniter & 18,102 M a 0
NNET Core _ @ 15,408

T T T ™1
aan—zmz Oct2012 Jul-2013 Apr-2014 Jan-2015 Oct-2015 Jul-2016 Apr-2017 Jan-2018 Oct-2018 Jul-2019 Apr-2020 Jan-20:

Express.js is one of the most popular backend frameworks in the world

22

4.4.1 Security considerations with Express.js

Some security best practices to use with express.js

1.

Secure the connection and data - We can make use of Helmet - a Node.js package. It is a

collection of 13 middleware functions to set up appropriate response headers for security.

Protect your cookies - The best practice here is to not use the in-built storage and use some
sort of session stored in a database because it’s very easy to get the cookie from the browser
and tamper with it. Any malicious script run on the browser can access the cookies and

tamper with. Also cookies can only be used to store little information because it comes with

an overhead

Secure your dependencies - NPM is a very versatile package manager but it's always a
good habit to make sure that your project dependencies are free from any vulnerabilities. We
can use NPM in built features to check for it. Use ‘npm audit’ to check the severity of

vulnerability of each and every package and its dependencies.

Validate the input of the users - It is very important to validate the input of the users. In
compatibility between the provided input type and the expected input type can cause errors
at the back-end and cause it to crash. It can be avoided by placing the input procession logic
inside a try-catch block. But it’s a very crucial step to validate and possibly sanitize user

input before calling other services such as the database.

22

23
4.5 Code snippets for back-end modules

The backend code is divided into multiple files for the sake of modularity. Routes are clubbed into
categories and kept in separate files. Express provides an interface to separate routes and make them
a part of the middleware chain. Express Router is used to achieve that.

1. LoginRoutes.js - Handle the user login - POST : http://localhost:8000/api/login

router.posttl’/login’, {req, res)
try {

{ user_email, user_pa d}

q-= it db.guery(
'SELECT user_id,username,email,pa from users WHERE email = 7
[user_email]

)
if {(qg.length} {

it (comparePasswordWithHash(r p jord' 13} {
session.user_id = g[@] [
session.username = qla] [
session.email = g[@]['email
res.status{lﬂﬂ}.jsnn[ﬂ
status: 2088,
code: '
message: 'Use

res.status (488). json({
status: 488,

code:
message:
H
}

} else {
res.status{488). json({
status: 488,
code: ' 2
message:
3|
¥
¥ catch (e} {
res.status(588).json({
status: 588,
code:
message:
H
}
M

23

http://localhost:8000/api/login

24
2. SignupRoutes.js - Handle the user signup - POST : http://localhost:8000/api/signup

router.post{'/signup", (req, res) {
{ firstName, lastMame, userMame, email, userPassword } = req.body
{ session } = reg
userData = {
user_id: getuid(},
username: userhame
first_name: Tir z
last_name: lastMame,
email: email,
password: getHash{userPassword),
}
tr':.-' {

{ affectedRows } = await db.query('INSERT INTO USERS SET 7', userData)

if {(affectedRows) f
console. log{userData)
{ user_id, username, email } = userData
session.id = user_id
session.email = email
session.username = username

res.status{200}.json({
status: 208,
code: 'Succ
message: 'U registered. ',

+)

} catch {e) {
res.status(50@).json({
status: 588,
code: 'Internal Server Error.',
message: e,
1
}
H

modu le.exports = router

24

http://localhost:8000/api/signup

3. PostRoutes.js - Create posts - POST : http://localhost:8000/api/posts

data
data.append(
try {

, data, {

25

25

http://localhost:8000/api/posts

4. PostRoutes.js - Get posts - GET : http://localhost:8000/api/posts?user=username

tus(408)
¢ 4@,
Bad reqguest.

Mo query param

FLARE]

"} = reqg.query
N
1

26

http://localhost:8000/api/posts

27

4.6 Docker - Run API’s in isolation in containers

*docker

Docker provides the ability to package and run an application in a loosely isolated

environment called a container. The isolation and security allow you to run many
containers simultaneously on a given host. Containers are lightweight and contain
everything needed to run the application, so you do not need to rely on what is

currently installed on the host.

Docker in out project

Main API Microservice

N

docker

i

docker

Im API Microservi
age croservice EC2 Instance

27

28

4.7 Microservices architecture

Microservice architecture is a cluster of self contained, isolated services connected to each other.
Each microservice in the network is responsible for exactly one task.

e Microservices are small, independent, and loosely coupled. A single small team of
developers can write and maintain a service.

e [FEach service is a separate codebase, which can be managed by a small development team.

e Services can be deployed independently. A team can update an existing service without
rebuilding and redeploying the entire application.

e Services are responsible for persisting their own data or external state. This differs from the
traditional model, where a separate data layer handles data persistence.

e Services communicate with each other by using well-defined APIs. Internal implementation
details of each service are hidden from other services.

e Supports polyglot programming. For example, services don't need to share the same
technology stack, libraries, or frameworks.

MySQL

Main API Microservice

Image API Microservice

28

29

4.7.1 Benefits of microservice architecture

1. Microservices are individually scalable - Since microservices are separate from each other
we can scale them individually without affecting the characteristics of other services.

2. Microservice reduces downtime by fault isolation - Since the services are isolated from
each other either physically or at the software level, in case once service goes down it does
not affect the fidelity of the other services and it can be attended to separately.

3. Microservice make development easier - A team of people can work separately on a very
specific service without messing with the code of the other services which may require some
other set of professionals. Thus microservice makes it very easy to work on the code base as
compared to a monolith application.

4. Each microservice can be deployed independently - Since each microservice is a
standalone API in itself. It can be deployed separately from others. Each API is a modular

piece of code.

4.7.2 Microservices in our project

Our Project involves two microservices

1) Main API - Handling user related functions
2) Image API - Storing and fetching images from the S3 storage

Image API Microservice
Main API Microservice

29

30

4.8 AWS EC2 - Linux compute instance on the cloud

Amazon EC2 is a web service that provides secure and resizable computing capacity on the cloud.
It is used to make scalable web applications. It has a very simple interface to manage the instance
with ease. It also includes automatic scaling features as the project grows and also provides

analytics.

EC2 Dashboard

Resources

EC2 Global view [|| C || & |

You are using the following Amazon EC2 resources in the Asia Pacific (Mumbai) Region:

Instances (running)

Elastic IPs

Key pairs

Placement groups

Snapshots

Dedicated Hosts 0
Instances 0
Load balancers 0
Security groups 2
Volumes 0

30

31

Launching an EC2 instance

Launch instance

To get started, launch an Amazon EC2 instance, which is a virtual server in the cloud.

Launch instance ¥ Migrate a server [

Mote: Your instances will launch in the Asia Pacific (Mumbai) Region

Launch the instance with the OS of choice - Ubuntu

® Ubuntu Server 18.04 LTS (HVM), SSD Volume Type - ami-00782a7608c71c226 (64-bit x86) / ami-090fa20d1b48d8c81 (84-bit Arm)
Ubuntu Server 18.04 LTS (HVM),EBS General Purpose (SSD) Volume Type. Support available from Canonical (http://www.ubuntu.com/cloud/services). ® 64-bit (x86)
Virtualization type: hvm ENA Enabled: Yes O 64-bit (Arm)

Free tier eligible

Root device type: ebs

Configure the instance

Step 3: Configure Instance Details

Configure the instance to suit your requirements. You can launch multiple instances from the same AMI, request Spot instances to take advantage of the lower pricing, assign an access management role to the instance, and

more.

Number of instances (i)

Purchasing option

Network (i)

Subnet (j)

Auto-assign Public IP ()

Hostname type (i)

DNS Hostname (i)

Placement group (i)

Capacity Reservation

Domain join directory (i)

1AM role

Launch into Auto Scaling Group (i)

[JJRequest Spot instances

| vpe-47c0fe2f (default) 4| C Create new VPC
|Ne (default subnet in any Availability Zone ¥ Greate new subnet
| Use subnet setting (Enable) e

| Use subnet setting (IP name} e

Enable IP name IPv4 (A record) DNS requests
Enable resource-based IPv4 (A record) DNS requests

Enable resource-based IPv6 (AAAA record) DNS requests

[Add instance to placement group

| Open R
|_No directory ¢ C Create new directory
| None 4| C Create new IAM role

Cancel Previous Review and Launch Next: Add Storage

31

32
4.9 AWS S3 - object storage

amazon
S3

Amazon S3 is an object storage offering competitive data storage offering scalability, data
availability, security and speed. All kinds of applications can use S3 as its storage. It offers cost
effective storage and easy to use features. It is based on a proprietary storage technology developed
by Amazon.

AWS S3 Dashboard

Buckets (1) info

Buckets are containers for data stored in 53. Learn more [7

Q 1 &
Name A AWS Region v Access v Creation date v
elasticbeanstalk-ap-south-1- Asia Pacific (Mumbai) ap- Objects can be February 17, 2021, 16:40:26
286091103006 south-1 public (UTC+05:30)

32

Images stored in the database

Objects Properties Permissions Metrics Management Access Points

Objects (15)

Objects are the fundamental entities stored in Amazon S3. You can use Amazon S3 inventory [to get a list of all objects in your bucket. For others to access your objects, you'll need te explicitly grant them
permissions. Learn more [

Actions ¥ || Create folder |

Q 1
Name A Type @ Last modified v Size v Storage class
D 1a%eea313dec6cal56cdf71ec67deeea - December 2, 2021, 02:42:12 (UTC+05:30) 49.2 KB Standard
D 1e8749999e634d3e8c8fdf0322daa212 - December 2, 2021, 03:14:58 (UTC+05:30) 49.2 KB Standard
B leec89456d84afbbf4267¢2053da4800 - December 2, 2021, 03:28:12 (UTC+05:30) 492 KB Standard
D 20b6faae59956a4f0045836e0a9¢ced5h - December 2, 2021, 02:35:50 (UTC+05:30) 49.2 KB Standard
D 3dec83567caee8385fe1cccf7oceal1sf - December 2, 2021, 02:42:53 (UTC+05:30) 49.2 KB Standard
D 41641e07717c7e50f5bd7647¢5113a81 - December 2, 2021, 03:23:48 (UTC+05:30) 49.2 KB Standard
[4f1d1aa0eb3ff785¢899ddfdObag9283 - December 2, 2021, 03:30:10 (UTC+05:30) 492 KB Standard
B 5a9762410d5038f009b3be15cc28b90d - December 2, 2021, 02:42:36 (UTC+05:30) 492 KB Standard
D 65e5b04947e9ab9a8ccfIaf6f98caBTe - December 1, 2021, 23:54:52 (UTC+05:30) 49.2 KB Standard
D 7af367267c¢7f8f32cb333bff04038497 - December 2, 2021, 03:18:29 (UTC+05:30) 49.2 KB Standard
m 7d7¢b914073f9¢57f5e1a992449a8d2¢ - December 2, 2021, 02:32:46 (UTC+05:30) 492 KB Standard
B a7aB8a53dcd963529e67bada19be7d6bY - December 2, 2021, 03:17:08 (UTC+05:30) 492 KB Standard
D achf75f9515dff7976796f13a5ecc6b6 - December 2, 2021, 03:18:46 (UTC+05:30) 49.2 KB Standard
D b212a455c6a40e277bab49caf81e3bbd - December 2, 2021, 02:31:55 (UTC+05:30) 49.2 KB Standard
D c78eb3b7c073c18b48ab2e525d39104b - August 4, 2021, 17:51:05 (UTC+05:30) 533 KB Standard

33

34
4.10 AWS DynamoDB - Key-value pair storage for session data

Amazon DynamoDB is a serverless, No-Sql database. It is designed to run high-performance
applications at any scale. It offers built-in security with continuous backup and automatic multi
region replication.

DynamoDB - Dashboard

DynamoDB Tables

Tables (1) info ‘ (@] H Actions ¥

Q Any table tag v 1 (o}
Name & Status Partition key Sort key Indexes Read capacity mode Write capacity mode Table class
sessions © Active sessionld (String) -] Provisioned (5) Provisioned (5) DynamoDB S

34

DynamoDB - Session Data

¥ sessions

‘ Scan ‘ Query ‘

Table or index

35

View table details

sessions v
» Filters
@ Completed Read capacity units consumed: 0.5
Items returned (2) ‘ & ‘ ‘ Actions ¥ ‘ ‘ Create item
1 © X
sessionld « expires v sess v
sess:WSTup... 1638478832 { "cookie”: {"M": {"path": {"S":"/"}, "expires”: { "M": {}}, "_expires” : {"M": {}}, "data": { "M": ...
sess:I8AKI_... 1638478928 { "cookie": { "M": {"path": {"S":"/" }, "expires” : { "M" : { } }, "_expires” : { "M" : { } }, "data” : { "M": ...

35

4.11 Integration of Node.js back-end with DynamoDB

Set up options

dynamoDBOptions = {

dynamoConfig: {
accessKeyId: AWS_ACC
secretAccessKey: AWS_SECRET_KEY,
region: AWS_REGION,

}l

keepExpired: 0

touchInterval: 30000,

ttl: 600000,

Use dynamoDB as a store for session information

app.use(
session ({
cookieName: 'oreo',
secret: SESSION SECRET,
resave: -
savelninitialized: ’
cookie: { maxAge: 1000 x 60 * 30 },
store: dynamoDBStore(dynamoDBOptions),

Set data in the session when the user logs in

if (q.length) {

if (comparePasswordWithHash(user_password, q[@]['password'])) {
session.user_id = q[@] ['user_id’]
session.username = q[@]['username']

session.email = q[@]['email']
res.status(200).json({

status: 200,

code: 'Succ 'y

message: ‘'User logged in successfully.',

36

36

37
4.12 Nginx setup in ubuntu

Install Nginx

ubuntu@ip-172-31-12-112:/% sudo apt install nginx
Reading package lists... Done
Building dependency tree

Reading state information... Done
nginx is already the newest version (1.14.0-@ubuntul.9).
@ upgraded, @ newly installed, @ to remove and 28 not upgraded.

Setup Nginx as a reverse proxy

##

ssl_protocols TLSv1 TLSv1.1 TLSv1.2; # Dropping SSLv3, ref: POODLE
ssl_prefer_server_ciphers on;

##
Logging Settings
##

i

access_log /var/log/nginx/access.log;
error_log /var/log/nginx/error.log;

##
Gzip Settings
##

CeRrNWAEUS

NN NN NN

gzip on;

gzip_vary on;

gzip_proxied any;

gzip_comp_level 6;

gzip_buffers 16 8k;

gzip_http_version 1.1;

gzip_types text/plain text/css application/json application/javascript text/xml application/xml application/xml+rss text/javascript;
##

Virtual Host Configs

##

include /etc/nginx/conf.d/*.conf;
include /etc/nginx/sites-enabled/*;

server {
listen 80;

#proxy pass to ||

VEPWNRERORFRNWREUON®

-- INSERT --

37

38

include /etc/nginx/conf.d/*.conf;
#include /etc/nginx/sites-enabled/*;

server {
listen 8@;

#proxy pass to user API
location /userapi {

proxy_pass "http://localhost:8000/";
}

#proxy pass to the image API
location /imageapi {

proxy_pass "http://localhost:3000/';
}

Start Nginx server

ubuntu@ip-172-31-12-112:/% systemctl status nginx
® nginx.service - A high performance web server and a reverse proxy server
Loaded: loaded (/lib/systemd/system/nginx.service; enabled; vendor preset: enabled)
Active: active (running) since Sat 2021-12-@4 15:8@:12 UTC; 6min ago
Docs: man:nginx(8)
Main PID: 2634 (nginx)
Tasks: 2 (limit: 536)
CGroup: /system.slice/nginx.service
2634 nginx: master process /usr/sbin/nginx -g daemon on; master_process on;
L2637 nginx: worker process

:00:12 ip-172-31-12-112 systemd[1]: Starting A high performance web server and a reverse proxy server...
112 ip-172-31-12-112 systemd[1]: nginx.service: Failed to parse PID from file /run/nginx.pid: Invalid argument
:@@:12 ip-172-31-12-112 systemd[1]: Started A high performance web server and a reverse proxy server.

4.12 PM2 Process manager setup

Start PM2 process manager

ubuntu@ip-172-31-12-112: $ pm2 start server
Applying action restartProcessId on app [server](ids: @)
[server](@) «
Process successfully started

| derver | default | 1.0. | 12245 | | online | | 37. | ubuntu | disabled |
| server | default | 1.0. | 12203 | | online | | 3- | ubuntu | disabled |

38

39

PM2 dashboard

Process List - server Logs
[1] derver Mem: : 0% o | server > Hit
[@] server Mem: CPU: @% on | > Hit

| > Hit
> Hit

Custom Metrics — Metadata —
| Heap Size 11.50 MiBll || App Name server
| Heap Usage 84.31 % || Namespace default
| Used Heap Size 9.70 MiB || Version 1.0.0
| Active requests || Restarts ")
| Active handles || Uptime 2m
| Event Loop Latency 5 11 Script path /home/ubuntu/server/server.js
| Event Loop Latency p95 . || script args
| HTTP Mean Latency || Interpreter

left/right: switch boards | up/down/mouse: scroll | Ctrl-C: exit

39

40

CHAPTER 5 : CONCLUSION

5.1 Results Achieved

An image sharing application successfully deployed onto the cloud on AWS.

5.2 Applications

This application can be used by people to share pictures with other people.

5.3 Limitations

This app lacks a lot of features that some of the other large scale apps have such as the ability to
follow other people and like and comment and stuff like that.

5.4 Future Work / Scope

1. Ability to like and comment on posts
2. Follow other people and see their posts in your feed
3. Implement messaging facility in the app

40

REFERENCES

1. https://docs.aws.amazon.com/
2. https://docs.docker.com/reference/

3. https://expressjs.com/en/4x/api.html

4. https://arpadt.com/articles/persisting-espress-session-in-dynamodb

41

41

https://docs.aws.amazon.com/
https://docs.docker.com/reference/
https://expressjs.com/en/4x/api.html
https://arpadt.com/articles/persisting-espress-session-in-dynamodb

