GoLang - Three Layered Architecture

Project report submitted in partial fulfillment of the requirement
for the degree of Bachelor of Technology

in
Computer Science and Engineering/Information Technology
By Rashi Singh (181228)

Under the supervision of

Dr. Himanshu Jindal to

,D'F 'IN"':'.l'-i'_l.lm_:i,I
I
Py 1
&)
= m
= &
i =
3 l 3
- “Bﬂl M’)
‘e @)

fam T

Department of Computer Science & Engineering and Information
Technology

Jaypee University of Information Technology Waknaghat,
Solan-173234, Himachal Pradesh

Candidate’s Declaration

I hereby declare that the work presented in this report ontitled “GoLang - Three Layered
Architectyre» ; i

5 " » Y r
¢ In partia| fulfillment ol the requirements for the award of the degree of Bachelo
"rT‘?Ch"UlOgy in Computer Science ang Engineering/Information Technology submitted in
the departmen of Compure & Engineering and Information Technology, Jaypee

Univcrsity y Waknaghat is an authentic record of my own work carried

bruary 2022 (o July 2022 under the supervision of Dr. Himanshu
ant Professor (

SG), Dept. CSE & IT)

I Science
of Information TCChﬂDlug
out over a periog from Fe
Jindal (Assis _

The martter cmbodied ip ¢

he report hag not been submined for the
diploma.

award of any other degree or

Rashi Singh, 181228

This is to certify that the above statement made by the candidate is true to the best of my

knowledge. B
L)
LS
o
o //
“ Maitreyi Bilugu
Dr. Himanshu Jindal S;l,;ry[_,ead Ifnginccr
Assistant Professor (SG) ZopSmart
Dept. CSE & IT

Technologies

ACKNOWLEDGEMENT

Firstly, I express my heartiest thanks and gratefulness to Almighty God for his divine

blessing that makes it possible to complete the project work successfully.

I am really grateful and wish my profound indebtedness to Supervisor Dr. Himanshu
Jindal, Assistant Professor(SG), Department of CSE & IT, Jaypee University of
Information Technology, Wakhnaghat. His endless patience, scholarly guidance, continual
encouragement, constant and energetic supervision, constructive criticism, valuable
advice, reading many inferior drafts, and correcting them at all stages have made it

possible to complete this project.

I would like to express my heartiest gratitude to Dr. Himanshu Jindal, Department of
CSE, for his kind help to finish my project and ZopSmart Technologies for providing
me with the opportunity to work on this project.

I would also generously welcome each one of those individuals who have helped me
straightforwardly or in a roundabout way in making this project a win. In this unique
situation, I might want to thank the various staff individuals, both educating and
non-instructing, which have developed their convenient help and facilitated my

undertaking.

Finally, I must acknowledge with due respect the constant support and patience of my

parents.

Rashi Singh (181228)

1. Certificate
2. Acknowledgement
3. List of Abbreviations
4. List of Figures
5. List of Graphs
6. List of Tables
7. Abstract
8. Chapter-1 Introduction
8.1. Introduction
8.2. Problem Statement
8.3. Objectives
8.4. Methodology
8.5. Organization
9. Literature Survey
10. System Development
11. Performance Analysis
12. Conclusions

12.1. Conclusions

TABLE OF CONTENTS

12.2. Applications Contributions

13. References

14. Appendices

—_—

© 00 3 & w»n o~ W BN

LIST OF ABBREVIATIONS

. Go: GoLang

. CSP: communicating sequential processes
. SQL: Structured Query Language

. DB: database

. HTTP: hyper-text transfer protocol

. VSCode: visual studio code

. VCS: version control system

. OS: operating system

. CRUD: create, read, update, delete

e A e

LIST OF FIGURES

Fig.1 SQL/ Employee1 table

Fig.2 Connect Go to SQL

Fig.3 Employee Structure

Fig.4 Store Layer/ EmpByID function
Fig.5 Store Layer/ AddEmp, Employeeupdate, DelEmp functions
Fig 6. Service Layer/ GetByID, GetAll, Delete
Fig 7. Service Layer/ Create, Update

Fig.8 Handler Layer/ Get, Post function

Fig.9 Handler Layer/ Put, Delete functions

. Fig.10 SQL/ Car table

. Fig.11 SQL/ Engine table

. Fig.12 Connect Go to SQL

. Fig.13 Car Structure

. Fig.14 Engine Structure

. Fig.15 CRUD operations for store layer for the database CAR
. Fig.16 CRUD operations for store layer for the database Engine
. Fig.17 Service Layer functions

. Fig.18 Middleware

. Fig.19 Handler Layer Function - GetByID

. Fig.20 Handler Layer Function - GetByBrand

. Fig.21 Handler Layer Function - Create

. Fig.22 Handler Layer Function - Update

. Fig.23 Handler Layer Function - Delete

. Fig.24 Testing Coverage

. Fig.25 Integration Testing

. Fig.26 Git repository

ABSTRACT

Over the past few decades we have seen a lot of programming languages come up. Each of
these languages have had their own fallbacks and limitations. Therefore, GoLang was created
by the Google developers in a search for a more friendly and easier language. GoLang is
considered to be a robust system-level language that can be used for programming across big
scale network servers and large distributed systems. It has worked as an alternative to C++
and Java. The syntax for GoLang is much more similar to C while the use of brackets,
comma etc. is less which makes it similar to Python as well.

GoLang provides fast paving compilation and execution, easier to read and debug code, easy
versioning, consistent language, developing with multiple languages, easier maintenance,
concurrency and multithreading.

Go can be defined to be a statically typed, compiled programming language. It was

designed at Google by Robert Griesemer, Rob Pike and Ken Thompson. Go is considered

to be syntactically similar to C, but also has many features including memory safety,

garbage collection, structural typing, and CSP-style concurrency.

GoLang has a lot of applications in the real world. Some of the open source

applications written in Go include-

e Caddy, an open source HTTP/2 web server with automatic HTTPS capability
e CockroachDB, an open source, survivable, strongly consistent, scale-out SQL
database

e Docker, a set of tools for deploying Linux containers

e Kubernetes container management system
Some of the other companies and sites using Go include-

e Dropbox, who migrated some of their critical components from Python to Go
e Ethereum, The go-ethereum implementation of the Ethereum Virtual Machine
blockchain for the Ether cryptocurrency
e Gitlab, a web-based DevOps lifecycle tool that provides a Git-repository, wiki,
issue-tracking, continuous integration, deployment pipeline features

e Google, for many projects, notably including download server dl.google.com

In the course of my training/ internship, I have been working on the basics of GoLang
which includes but is not limited to packages, variables, functions, flow control
statements(for, if, else, switch, defer), structs, slices, and maps, methods, interfaces and
concurrency. Also, I have worked on MySQL using docker and have connected the same
to GoLang. I have made use of all the concepts learnt to create a project - “Car

Dealership” which makes use of three layered architecture.

CHAPTER 1: INTRODUCTION

1.1 Introduction

GoLang is considered to be a robust system-level language that can be used for
programming across big scale network servers and large distributed systems. It has worked as
an alternative to C++ and Java. The syntax for GoLang is much more similar to C while the
use of brackets, comma etc. is less which makes it similar to Python as well.

GoLang provides fast paving compilation and execution, easier to read and debug code, easy
versioning, consistent language, developing with multiple languages, easier maintenance,
concurrency and multithreading.

Go can be defined to be a statically typed, compiled programming language. It was

designed at Google by Robert Griesemer, Rob Pike and Ken Thompson. Go is considered

to be syntactically similar to C, but also has many features including memory safety,

garbage collection, structural typing, and CSP-style concurrency.

1.2 Problem Statement

Over the past few decades we have seen a lot of programming languages come up. Each of
these languages have had their own fallbacks and limitations. Therefore, GoLang was created
by the Google developers in a search for a more friendly and easier language. A lot of
notable companies have started to switch or at least implement some part of the code base/
architecture using GoLang because of its versatile nature providing a development friendly
environment.

Therefore, it is necessary to understand and implement the basics of GoLang which includes
but is not limited to packages, variables, functions, flow control statements(for, if, else,
switch, defer), structs, slices, and maps, methods, interfaces and concurrency. Also, I have

worked on MySQL using docker and have connected the same to GoLang.

1.3 Objectives

The main aim of this project is to understand and implement the basics of GoLang which
includes but is not limited to packages, variables, functions, flow control statements(for, if,
else, switch, defer), structs, slices, and maps, methods, interfaces and concurrency and use all
the basic concepts along with MySQL, Git etc. to create a three layered architecture for the

“Car Dealership” project.

1.4 Methodology

The training/ internship for GoLang went as follows
1. Basics of GoLang (reference: GoTour)
2. MySQL
3. Unit Testing
4. Git/ Github
5. Project

1.5 Organization

The rest of the paper is organized as follows: In chapter 2 we have presented the literature
survey. Chapter 3 highlights the methodology and system development of the project. It
represents various computational, and experimental concepts of the project. Also, we have
focused on the software and hardware platforms needed for implementation. In chapter 4 we
have presented the performance analysis of the project which specifies the coverage for the
unit testing of the project. Chapter 5 presents the conclusions of the project and the
observations seen in the results. It also provides the applications of the project and the future

scope of the same.

CHAPTER 2: LITERATURE SURVEY

Abstract and Figures

When developing software today, we still use old tools and ideas. Maybe it is time to start from
scratch and try tools and languages that are more in line with how we actually want to develop
saftware, The Go Programming Language was created al Google by a rather famous rio; Rob
Pike, Ken Thompson and Robert Griesemer. Before introducing Go, the company suffered
from their development process not scaling well due to slow builds, uncontrolled
dependencies, hard to read code, poor documenta- tion and 50 on. Go s set out to provide a
solution for these [ssues. The purpose of this master's thesis was to review the current state
of the language. This is not only a study of the language itself but am investigation of the whole
software development process using Go. The study was carried out from an embedded
development perspective which includes an investigation of compilers and cross-compilation,
We found that Go is exciting, fun to use and fuffills what is promised in many cases. However,
we think the iools nead some more time o mature, Keywords: Go, golang, language raview,
cross-compilation, developer tools, embed- ded

We have referred to this paper to understand the basics of GoLang.

CHAPTER 3: SYSTEM DEVELOPMENT

Computational

All the experiments were performed on -
Laptop: Dell Latitude E7470

OS: Ubuntu 0.02.3 LTS

Applications: VSCode

VCS: Git

Experimental

The training for GoLang went as follows
A. Basics of GoLang (reference: GoTour)

a. Packages: act as groups containing programs having similar features grouped as
a single unit; programs start running in the main package; packages need to be
imported.

b. Functions: can return any number of arguments; can be variadic

c. Variables: var statement declares a list of variables; datatype must be specified
as the last variable

d. Basic data types: bool, string, int, float complex

e. Zero values: are the values provided to variables declared without an explicit
initial value

f. Flow control statements (for, if-else, switch, defer)

g. Pointers: zero value is <nil>

h. Structs: can be declared as - type Vertex struct{}

1. Arrays: can be declared as primes:=[6]int{2,3,5,7,11,13}

j- Slices: var s[]int = primes[1:4]

k. Maps: key-value pairs; zero value is <nil>;

1. Methods: can be defined on types

m. Interfaces: a set of method signatures
n. Goroutine: lightweight threads managed by Go runtime; helps to achieve

10

concurrency

0. Channel: can send and receive values to help establish communication among

goroutines

B. MySQL

MySQL is an open-source RDBMS where RDBMS stands for relational database management
system. Its name was derived from "My", the name of co-founder Michael Widenius's daughter, and
"SQL", the abbreviation for Structured Query Language.

What does a relational database do? It organizes data into one or more data tables. In this table the
data may be related to each other and these relations structure the data.

SQL is used to create, modify and extract data from the relational database, as well as control user
access to the database.

MySQL also works with an operating system to implement a relational database in a computer's
storage system, manages users, allows for network access and facilitates testing database integrity
and creation of backups.

Movie Management
Implemented CRUD functions over a table Employee having fields as - id, name, email, role

and connected it to Go.

ate Table employee{ld Unt, mame wvarchar(2d)
, B rows affected (6.8 sec)

zql> IMSERT Into employes(id, name, ensil, role) wva

g K. 1 rom affected (6,81 s&c)

=« [NSERT Into [1d, name, emall, role) VALUES(I,

v K, 1 row aff Bl sec)
yagl> selest * From employ

M3

Fig.1 SQL/ Employee1 table

11

https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Michael_Widenius
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/Structured_Query_Language
https://en.wikipedia.org/wiki/Operating_system

package driver

import [
"database/sgl”
"Fmt"

)

func ConmectToSQL({) *sql.DB {
db, err := sgl.Open(“mysgl”, “rooct:passwordgtcp(l27.8.8.1:3386)/test"™)
if err 1= nil {
panici{err.Error())
} else {
fmt.Println{“Connected™)

}

return db

Fig.2 Connect Go to SQL

The CRUD functions were first created for the store layer.

type Employee struct{
Id int "~ json:"Id™"
Name string " json:"Name"’
Email string ~jsom:"Email™”

Role string ~json:"Role”

Fig.3 Employee Structure

12

FireadById

func EmpByID(Id int, db =sql.DB)(*Employee, error){
var emp Employee
lag.Print{Id)

ifF(Id<@){

returd nil, sql.ErrNoRows

rows, erri=db.Query(“Select = FROM employesl WHERE Id = 2%, Id)
if{errl=nil}{

log.Print{err)

return femp, err

defer rows.Close()

for rows Next(){
log.Primt({"1")

if erri=rows.Scani&esp. Id, Semp.Name, Lemp.Emall, Semp.Role); errl=nil{

return femp, err

log.Print{emp)

return &esp, nll

Fig.4 Store Layer/ EmpByID function

13

Iilssert

ten: AdsEmpissp Beployss, db “egl.Db)tegloyes, irrnrl[

_p #rri=db, Deec{ "TRSERT THTO emplogesl (1d, Mase, Fusil, Role) VALUES (7,7,7,717,eep.Td, esp.Heme, sup.Pmail, eop.Role]
if arriendl{
metien eap, ail
I
FiLerh dng, nil

Fani Emplopecupdane (eep Eeployes; db *5q]1.08] erroe {
_p #rr = db. Exec(TUPDATE ssployesl 3ET Ners = 7, Emadl=?!, Fcole=d WHERE B0 = 7", ssp.Heme, ssp.Bmsil, sop.Fcls, sep.ld]

Lf @re T= adl {
return sreoes, bea| “update Tadled™)
]

FeTEn nll

SdeletelyTE
fen: DelEspicondl imk, db "agl. D8] (wrrer]

L[conad 100 |
rirtern 841, Br iR ows

H

rown, arrcsgh.uaryd “delates from seployesl Weere 14 = 35, condd)
Lf werl=nil§
retuen Er

defer rows.{lowe[]

retern nll

Fig.5 Store Layer/ AddEmp, Employeeupdate, DelEmp functions

14

Fune (sa "service) GetByID(id Imt) {"mdels. Mowie, efror) -[

If §d <= @ {

return ndl; errors.dew(“error Anvalid 1473

i
mowiedb], err = o, store.GetByI0(1d)
if &rr |= mil {

return ndl, are

}

raturn mowiedb], nil

func (ze "service) Getdll(] {[]*models.Mowie, error) {

svieldb], err = S, store.Getalll)
if &rr |= mil {
raturn nil, are

¥

raturn mwiedby, nil

func (ze "service) Deletel(dd int) erros

}

i §d <= @ |
return @rrors . Nesl "erroe invalid 1d7)
H
e WP !m Bk Stoee GatByID{id)
if ®rp |= mil {
Faburn @
H
err = e store Deleve{ld)
if err 1= nil {
return ser
}

retwrn ndl

Fig 6. Service Layer/ GetByID, GetAll, Delete

15

fune {se "service]} Creste{movielb] *wodels . Moviel [("models.Movie, error) {

if movieOby.Name == == {

return nll, errors. Mew“erree invalid name®]
I
if moviedby. Plok == == {

return nll, @rrecs.Mew("erree invalfd plet™)
¥
movielbds, mrr = me, store, Creste{moviedby)
iF are B= nll

return nil, ere

)

raturn movielbjs, nil

funs {se "service) Update{moviedb] *wodels Movie) (*models.Movie, error) {
if movielbi. Id <« & {
return nll, erroes. Mow("erros invalid id7)
]
I movielby, Nase == =" [
return nil, errors.Mewerror invalid nase™)
i
Lf movieObj.Flat == == {
return nll, errors.Mewl “error invalid plot®)
]
movielb]s, err != se.store.Update(mowiedb])
if mpr I= nil §
raturs nll, are
1
return mavielBis, nil

Fig 7. Service Layer/ Create, Update

16

/ /get
func EmpByID{w http.Responselriter, r *http.Request){

db:=driver.ConnectToSQL()
defer db.Close()

params :=mux.Vars{r)
id, _:=strconwv.Atol(params[“1d47])
log.Print{id)
use, erri=store.EmpByID{id, db)
i+f¢ﬁr!-nil]{
wW.krite{[Jbyte("Employes dossn't exist™))
}elsef
res, _:=json.Marshalluse)
W.krite(res)

/{post
func AddEmp(w http.Responseblriter, r *http.Request) {

dbi: =driver. Connect ToSQL()
defer db.Close()

var emp store.Employes

emp.Id, _=strconv.Atoi{r.PostForaValue("Id™))
emp. Hame=r . PostForaValue(“Nama")

emp. Email=r.PostFormalue{“Email™)

emp. Role=r.PostForaValue("Role™)

_serri=store, AddEmp{emp, db)
if{err!=nil){

w.hWrite{[]byte{ "Failed to add new emp™))
}elsef

w.hrite([Jbyte{ "Successfully added™))

Fig.8 Handler Layer/ Get, Post function

17

func Employesupdate(w http.Responsedriter, r *hitp.Request) {

db:=driver.ConnectTaSQL()
defer db.Close()

params = mux,Vars(r)
id, :=streonv. Atoilparams[=id"])

use, err:=stere.EmpByID{id, db)
use . Name=r . PostFormalue("Hame")
use, Emall=r. PostFormalus{“Emall"”)
use.Role=r PostFormValue{"Role")

err=store.Employesupdate(use, db)
if{err!l=nil}{

w.brite([]Jbyte("Failed to update emp"))
1else{

w.Write([Jbyte("Successfully updated”))

Jideleta
func DelEmp(w http.ResponseWriter, r *http.Request) {

db: =drdver.ConnectToS0L()
defer db.Close()

params = mux,Vars{r])
id,_:=strconv,Atoi(params[~id”])
eprr:=store. Delbnp(id, db)

if err 1= nil {

w.Write([Jbyte("Failed to delete amp”))
}else{

w.Write][Joytel "Successfully deleted”))

Fig.9 Handler Layer/ Put, Delete functions

Car Dealership

The Car-Dealership project consists of two tables in the database for car and engine. Below are their
descriptions in MySQL.

mysqgl> describe CAR;

| Field | Type | Null | Key | Default | Extra |

| ID | varchar(36) | NO | PRI | NULL | |

| Name | varchar(25) | YES | | NULL | |

| Year | int | YES | | NULL | |

| Brand | varchar(25) | YES | | NULL | |

| FuelType | varchar(25) | YES | | NULL | |

| Engine | varchar(36) | YES | | NULL | |

6 rows in set (0.00 sec)

Fig.10 SQL/ Car table

mysgl> describe ENGINE;
Field	Type	Null	Key	Default	Extra
ID	varchar(36)	NO	PRI	NULL	
Displacement	int	YES		NULL	
NoCYLINDERS	int	YES		NULL	
ENGRANGE	int	YES		NULL	
4 rows in set (0.01 sec)

Fig. 11 SQL/ Engine table

19

dbConnect() (db *sql.DB) {
db, err := sql.0Open(

err =
fmt.Println(

Fig.12 Connect Go to SQL

The CRUD functions were first created for the store layer.

Car {

ID vuid.UUID
Name
Year

Brand BrandType
FuelType FuelType

Engine Engine

Fig.13 Car Structure

20

models

Engine {
ID
Displacement
NoCYLINDERS
@ ENGRANGE

].

CreateCar

(c storeCar) CreateCar(ctx context.Context

vuid.New()
c.db.ExecContext(ctx
car.Brand, car.FuelType

id :=
err :=

car.ID = id

Update

(c storeCar) Update(ctx context.Context
:= c.db.ExecContext(ctx

car.Name

car.Year, car.Brand

err I=

Delete
(c storeCar) Delete(ctx context.Context
err := c.db.ExecContext(ctx

GetByID

(c storeCar) GetByID(ctx context.Context
rows := c.db.QueryRowContext(ctx
car models.Car

:= rows.Scan(&car.ID, &car.Name

vuid.UUID

car.FuelType

&car.

json:
json:
json:

json:

Fig.14 Engine Structure

car *models.Car)

CAR (2, 2,?2,2,2,2)

car.Engine.ID.String())

car *models.Car) {
CAR NAME = ?,YEAR =
car.ID.String())

id vuid
id.String())

id vuid.UUID) (models.Car
* CAR

) {
id.String())

Year, &car.Brand, &car.FuelType, &car.Engine.ID)

id.String()

car.Name

car.Year

GetByBra
(c sto
rows, e
err

car

row

err

err = r
err

r

nd
reCar) GetByBrand(ctx context.Context, brand) ([Imodels.Car) {
rr := c.db.QueryContext(ctx * CAR ? brand)

s [Imodels.cCar

s.Next() {
car models.Car

= rows.Scan(&car.ID, &car.Name, &car.Year, &car.Brand, &car.FuelType, &car.Engine.ID)

err !=

(cars, car)

ows.Err()

ows.Close()

Fig.15 CRUD operations for store layer for the database CAR

22

GetEngine
(e storeEngine) GetEngine(ctx context.Context, id uuid.UUID) (models.Engine) {
rows := e.db.QueryRowContext(ctx * ENGINE = ?", id.String())
eng := models.Engine{}
rows.Scan(&eng.ID, &eng.Displacement, &eng.NoCYLINDERS, &eng.ENGRANGE)

CreateEngine
(e storeEngine) CreateEngine(ctx context.Context, eng *models.Engine) (uuid.UUID) o
id := vuid.New()
err := e.db.ExecContext(ctx ENGINE (?, ?,2,2)", id.String(), eng.Displacement
eng.NoCYLINDERS, eng.ENGRANGE)
eng.ID = id

err !=

id

UpdateEngine

(e storeEngine) UpdateEngine(ctx context.Context, eng *models.Engine)
err := e.db.ExecContext(ctx ENGINE
eng.Displacement, eng.NoCYLINDERS, eng.ENGRANGE, eng.ID.String())

err !=

DeleteEngine
(e storeEngine) DeleteEngine(ctx context.Context, id vuid.UUID)
err := e.db.ExecContext(ctx ENGINE 2", id.String())

err !=

Fig.16 CRUD operations for store layer for the database Engine

To add an extra layer of security, after the implementation of store layer functions we implemented
business logic.

23

isValidYear
isValidYear(y) {
y < |1 v > time.Now() .Year() {

isValidElectricEngine
isValidElectricEngine(eng *models.Engine) {
eng.ENGRANGE == || eng.Displacement != || eng.NoCYLINDERS !=

isValidPetrolEngine Engine
isvalidPetrolEngine(eng *models.Engine) {
eng.ENGRANGE != || eng.NoCYLINDERS == || eng.Displacement ==

isValidEngine Engine
isValidEngine(car *models.Car) {
car.FuelType == models. || car.FuelType == models.

isValidPetrolEngine(&car.Engine)

isValidElectricEngine(&car.Engine)

Fig.17 Service Layer functions

We also implemented middleware to provide authorization.

AuthenticationMiddleware
AuthenticationMiddleware(handler http.Handler) http.Handler {
http.HandlerFunc((w http.ResponseWriter, req xhttp.Request) {
val := req.Header.Get()
val != {
http.Error(w

b

handler.ServeHTTP(w, req)

Fig.18 Middleware
After the above implementation the CRUD functions were executed using the handler layer

i.e. gorilla.mux.

GetByID

(c handler) GetByID(w http.ResponseWriter, req *http.Request) {

w.Header().Set()

ctx := req.Context()
Vars := mux.Vars(req)
carID := Vars[1

id, err := vuid.Parse(carID)
err I= 1l
log.Println(Cerr)
w.WriteHeader (http.

res, err := c.service.GetByID(ctx
I {
w.WriteHeader (http.

_ = w.Write([]

data, err := json.Marshal(res)

err I= 1l
= w.Write([]

w.WriteHeader(http.
_ = w.Write(data)

Fig.19 Handler Layer Function - GetByID

25

GetByBrand
(c handler) GetByBrand(w http.ResponseWriter, req *http.Request) {
ctx := req.Context()
brand := req.URL.Query().Get(
engine := req.URL.Query().Get(

res, err := c.service.GetByBrand(ctx, brand, engine)
erp != {
w.WriteHeader (http.

= w.Write([]

data, err := json.Marshal(res)

err = {
w.WriteHeader(http.
_ = w.Write([]

w.WriteHeader(http.
_ = w.Write(data)

Fig.20 Handler Layer Function - GetByBrand

Create

(c handler) Create(w http.ResponseWriter, req *http.Request) {
ctx := req.Context()

body, err := io.ReadAll(req.Body)

E {
w.WriteHeader (http.
fmt.Println(err)

car models.Car

err = json.Unmarshal(body, &car)
err I= {
w.WriteHeader (http.

= w.Write([]

err = c.service.Create(ctx, &car)
E {
w.WriteHeader (http.)
—, — = w.Write([] Cerr. (OD))]

w.WriteHeader(http.

data := fmt.Sprintf(
= w.Write([] (data))

Fig.21 Handler Layer Function - Create

Update

(c handler) Update(w http.ResponseWriter, req *http.Request) {

ctx := req.Context()
Vars := mux.Vars(req)

carID := Vars[]

body, err := io.ReadAll(req.Body)
err = {
w.WriteHeader(http.
_ = w.Write([]

msg models.Car

err = json.Unmarshal(body, &msg)
err != {
w.WriteHeader(http.

_ = w.Write([]

msg.ID, err = vuid.Parse(carID)

err != {

log.Println(err)

w.WriteHeader(http.

err = c.service.Update(ctx, &msg)
err = {
w.WriteHeader(http.
_ = w.Write([]

w.WriteHeader(http.
_ = w.Write([]

Fig.22 Handler Layer Function - Update

27

Delete

(c handler) Delete(w http.ResponseWriter, req *http.Request) {

ctx := req.Context()
Vars := mux.Vars(req)

carID := Vars[]

id, err := vuid.Parse(carID)
err != {

w.WriteHeader(http.

err = c.service.Delete(ctx, id)
err != {
w.WriteHeader(http.
_ = w.Write([]

w.WriteHeader(http.
_ = w.Write([]

Fig.23 Handler Layer Function - Delete

28

CHAPTER 4: PERFORMANCE ANALYSIS

Movie Management

Fig.24 Testing Coverage

Car Dealership

A. Integration Testing: It is done to test different units and modules as a combined entity.
Performed Integration Testing over the CRUD functions across all the three layers and was

able to achieve a coverage of .

Tests passed: 1

tool test2json -t /private/var/folders/hb/x4rt9x7s51dgfb1881sstspc0600gp/T/GoLand/___Test_Main_in_github_com_zopsmart_carDealership3Layer.test -test.|
=== RUN Test_Main
Database Connected Successfully
--- PASS: Test_Main (0.05s)
PASS

Process finished with the exit code ©

Fig.25 Integration Testing

B. Unit Testing: It is done to test smallest testable units individually.
Coverage obtained across the three layers are as follows -

Store Layer: 100%

Service Layer: 100%

Handler Layer: 92.4%

Middleware: 100%

B. Git/ Github:
Git is a version control system and is defined as a software for tracking changes in any set of files,
usually used for coordinating work among programmers collaboratively developing source code

during software development.
Its goals include speed, data integrity, and support for distributed, non-linear workflows.

29

Learned the basics of Git and pushed the CRUD functions file and testing file to

github.

¥ main + ¥ 1branch 0 tags

RashiZop Initial commit

carDealership3Layer

3 README.md

README.md

Major-Project

Initial commit

Initial commit

This repo contains the Car-Dealership project

Fig.26 Git repository

Go to file

c98f6a5 now)2 commits

now

4 minutes ago

z

30

CHAPTER 5: CONCLUSION

5.1 Conclusions

The main aim of the training was to be able to understand and implement the concepts of
GoLang, MySQL, Unit Testing, Integration Testing, implementation of middleware, being able to

create a layered architecture and Git/ Github which has been achieved in the past three weeks.

5.2 Applications Contributions

GoLang has a lot of applications in the real world. Some of the open source

applications written in Go include-

e Caddy, an open source HTTP/2 web server with automatic HTTPS capability
e CockroachDB, an open source, survivable, strongly consistent, scale-out SQL
database

e Docker, a set of tools for deploying Linux containers

e Kubernetes container management system
Some of the other companies and sites using Go include-

e Dropbox, who migrated some of their critical components from Python to Go
e Ethereum, The go-ethereum implementation of the Ethereum Virtual Machine
blockchain for the Ether cryptocurrency

e Gitlab, a web-based DevOps lifecycle tool that provides a Git-repository, wiki,
issue-tracking, continuous integration, deployment pipeline features

e Google, for many projects, notably including download server dl.google.com

31

REFERENCES

Westrup, E., & Pettersson, F. (2014). Using the Go Programming Language in Practice.
Department of Computer Science, Faculty of Engineering LTH.
https://go.dev/tour/welcome/1

https://en.wikipedia.org/wiki/MySQL

32

https://go.dev/tour/welcome/1
https://en.wikipedia.org/wiki/MySQL

RASHI SINGH 181228

ORIGINALITY REPORT

20, 19% 4 154

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

PRIMARY SOURCES

en.wikipedia.org 90/
0

Internet Source

wikimili.com 40/
0

Internet Source

Submitted to VIT University 4.,
0

Submitted to University of Greenwich ’] o
0

Student Paper

pastebin.com 1
Internet Source %

6

www.ncbi.nlm.nih.gov '] o
0

Internet Source

Exclude quotes On Exclude matches <14 words

Exclude bibliography On

{ "type": "Document", "isBackSide": false }

