BIG MART SALES PREDICTION USING MACHINE
LEARNING

Project report submitted in partial fulfillment of the requirement for
the degree of Bachelor of Technology
in
COMPUTER SCIENCE AND ENGINEERING
By

Khushi Agarwal(181487)

Under the supervision of

Dr. Ekta Gandotra
Assistant Professor (SG)

to
A\ \WNFO R,
& > A qu >,
o) A)

Q= AN >
& ; \ L
= s .6{18;&-3 4 T\'(_\)
= P8 2
wd 17T =
‘s .) S
0‘;23. SRz S

R w

Department of Computer Science & Engineering and Information
Technology
Jaypee University of Information Technology Waknaghat, Solan-
173234, Himachal Pradesh

CERTIFICATE

This is to certify that the work which is being presented in the project report
titled “Big Mart Sales Prediction Using Machine Learning” in partial
fulfillment of the requirements for the award of the degree of B.Tech in CSE and
submitted to the Department of CSE, Jaypee University of Information
Technology, Waknaghat is an authentic record of work carried out by Khushi
Agarwal (181487) during the period from January 2022 to May 2022 under the
supervision of Dr. Ekta Gandotra Assistant Professor (SG), Department of CSE,
Jaypee University of Information Technology, Waknaghat.

Kot

Khushi Agarwal (181487)

The above statement made is correct to the best of our knowledge.
P et

Dr. Ekta Gandotra
Assistant Professor(S.G)
Computer Science & Engineering and Information Technology

Jaypee University of Information Technology

ACKNOWLEDGEMENT

Firstly, We express our heartiest thanks and gratefulness to almighty God for His

divine blessing makes us possible to complete the project work successfully.

We are really grateful and wish our profound indebtedness to Supervisor Dr.
Ekta Gandotra, Assistant Professor, Department of CSE Jaypee University of
Information Technology, Wakhnaghat . Deep Knowledge & keen interest of my
supervisor in the field of ML to carry out this project. Her endless patience,
scholarly guidance, continual encouragement, constant and energetic supervision,
constructive criticism, valuable advice, reading many inferior drafts and

correcting them at all stages have made it possible to complete this project.

We would like to express our heartiest gratitude to Dr. Ekta Gandotra
Department of CSE, for her kind help to finish this project.

We would also generously welcome each one of those individuals who have
helped me straightforwardly or in a roundabout way in making this project a win.
In this unique situation, We might want to thank the various staff individuals,
both educating and non-instructing, which have developed their convenient help

and facilitated my undertaking.

Finally, we must acknowledge with due respect the constant support and patients

of our parents.

II

TABLE OF CONTENTS

CONTENT

PAGE NO.

Certificate.....covueieeiieeciee e q))
Acknowledgement............ccccuveieeiiieniiieeeieee e (11)
Table of Content...........ccoeevviiiiiiiiiiieeceee e, (I1T)
List of Abbreviations............ccccceeevveeeeeecciieee e, V)
ADSLIACE.....viiiiiciiiee e (VD)
Candidate’s Declaration.............cccceeeevveeeeeccnneeeenn, (VII)

CHAPTER 1: INTRODUCTION

1.1 Introduction...........ccceeeeeiieeieeeniie e 01
1.2 Problem Statement...........ccccceevveeecveeeniieeieeenee. 02
1.3 ObJECHIVES....uvieeeiieeeiieeeee ettt 03
1.4 Methodology Used.........cccceovvieeiiiiciiieieeenens 04

CHAPTER 2: LITERATURE SURVEY
2.1 Literature SUIVEY......c.eeerveeereveeerreenreeenveeseveenns 05

CHAPTER 3: SYSTEM DEVELOPMENT
3.1 Algorithms employed..........cccevevieniiiiieniiennn. 07
3.2 Phase of model.........cccoouvvviiiiiiiiiiiiieeee, 12

III

CHAPTER 4: PERFORMANCE ANALYSIS

4.1 Performance compariSon............cccevveerveeereveeennen. 40

CHAPTER 5: CONCLUSIONS

5.1 ConcluSIONS........ccoeviieiiieeciie et 44
5.2 FUture SCope......cceevviiieeiiiiieeieeeeeiee e 44

v

LIST OF ABBREVIATIONS

ABBREVIATION WORD

Ml MACHINE LEARNING

EDA EXPLORATORY DATA ANALYSIS
FIG FIGURE

DESCR DESCRIPTION

RF RANDOM FOREST

LR LINEAR REGRESSION

CSE COMPUTER SCIENCE AND

ENGINEERING

LIST OF FIGURES

DESCRIPTION

Fig 3.5 Depicting the feature of the dataset

Fig 3.6 How libraries, train and test datasets are imported
Fig 3.7 Head function representing first five dataset

Fig 3.8 Description of dataset using info() function

Fig 3.9 Description of dataset using describe() function
Fig 3.10 Depicts the number of missing values

Fig 3.11 Datatype of various features of dataset

Fig 3.12 Missing value in outlet size column=2410

Fig 3.13 Filling values in outlet_size

Fig 3.14 No missing values in item_weight and outer_size
Columns.
Fig 3.15 Representing how to import dtale library

Fig 3.16 The Dtale window

Fig 3.21 Color-encoded correlation matrix

Fig 3.23 Correlation between different features
Fig 3.24 Cleaning the data using Klib library

Fig 3.26 Represents the 12 features of the dataset
Fig 3.27 Converting to more efficient data types.
Fig 3.28 Label encoding code

Fig 3.29 Splitting of data into train and test dataset
Fig 3.30 Standardization of dataset

Fig 3.31 X train std array and X _test std array
Fig 3.32' Y train array and Y _test array

Fig 3.35 Value of R? value in LR

Fig 3.36 Value of R? value in RF

Fig 3.38 Value of R? value in XGBoost Regression
Fig 3.39 Value of R? value in Decision Tree

Fig 3.40 Value of R? value in Ridge Regression

Vil

PAGE NO.

Fig 4.1 Performance of LR 40

Fig 4.2 Performance of RF 41
Fig 4.3 Performance of Hyper Tuning Parameter 41
Fig 4.4 Performance of Decision Tree 42
Fig 4.5 Performance of XGBoost Regression 42
Fig 4.6 Performance of Ridge Regression 43
LIST OF GRAPHS
DESCRIPTION PAGE NO.
Fig 1.1 Process of building a model 03
Fig 1.2 Working procedure of proposed model 03
Fig 3.1 Figure represent line of regression 08
Fig 3.2 Flowchart of RF 09
Fig 3.3 Relationship between Feature Importance and their 10
F score in Hyper Parameter Tuning
Fig 3.4 Types of XGBoost Regression 1
Fig 3.17 Frequency of values in the columns 22
Fig 3.18 Item_weight value range 23
Fig 3.19 Categorical dat plot using Klib library 24
Fig 3.20 Feature correlation using Klib library 25
Fig 3.22 Distribution plot for every numeric feature 26
Fig 4.7 Comparison of RMSE and MSE values 45
Fig 4.8 Comparison of R? and MAE values 46
LIST OF TABLE
DESCRIPTION PAGE NO

Table 4.1 Algorithms Performance 44

Vil

ABSTRACT

Nowadays many shopping malls keep track of individual item sales data in order
to forecast future client demand and adjust inventory management. In order to be
ahead of the competition and earn more profit one needs to create a model
which will help to predict and find out the sales of the various product present in
the particular store.So to predict out the sales for the big mart one need to use
the very important tool i.e. Machine Learning (ML). ML is that field of computer
science which gives machines ie computers the ability to learn without doing any
type of programming.Using the concepts of machine and basics of data science
one can build a model which can help to predict the sales of the big
mart.Because of increasing competition among various shopping complex one
needs to have some predictive model which could help to gain some useful

insights so as to maximize the profit and be ahead of the competitors.

Vil

CANDIDATE'S DECLARATION

I hereby declare that the work presented in this report entitled “Big Mart Sales Prediction
Using ML” in partial fulfillment of the requirements for the award of the degree of Bachelor
of Technology in CSE submitted in the department of Computer Science & Engineering and
Information Technology, Jaypee University of Information Technology Waknaghat is an
authentic record of my own work carried out over a period from August 2021 to December

2021 under the supervision of Dr. Ekta Gandotra (Assistant Professor(SG)).

The matter embodied in the report has not been submitted for the award of any other degree or
diploma.

Kot

(Student Signature)
Student Name: Khushi Agarwal
Roll no: 181487

This is to certify that the above statement made by the candidate is true to the best of my
knowledge.

Bt

(Supervisor Signature)

Supervisor Name : Dr. Ekta Gandotra
Designation: Assistant Professor

Department name: CSE

IX

Chapter 1
INTRODUCTION

1.1 INTRODUCTION

The daily competition between different malls as well as big malls is becoming more and
more intense because of the rapid rise of international supermarkets and online shoppings.
Every mall or mart tries to provide personal and short-term donations or benefits to attract
more and more customers on a daily basis, such as the sales price of everything which is
usually predicted to be managed through different ways such as corporate asset management,
logistics, and transportation service, etc. Current machine learning algorithms that are very
complex and provide strategies for predicting or predicting long-term demand for a company's

sales, which now also help in overcoming budget and computer programs.

In this report, we basically discuss the subject of specifying a large mart sale or predicting an
item for a customer’s future need in a few supermarkets in various locations and products that
support the previous record. Various ML algorithms such as linear regression, random forest,
etc. are used to predict sales volume. As we know, good marketing is probably the lifeblood of
all organizations, so sales forecasting now plays an important role in any shopping mall. It is
always helpful to predict the best, and develop business strategies about useful markets and to
improve market knowledge. Regular sales forecasting research can help in-depth analysis of
pre-existing conditions and conditions and then, assumptions are often used in terms of
customer acquisition, lack of funding, and strength before setting budgets and marketing plans

for the coming year.

In other words, sales forecasts are predicted on existing services of the past. In-depth
knowledge of the past is required to develop and enhance market opportunities no matter what

the circumstances, especially the external environment, which allows to prepare for the future

needs of the business. Extensive research is ongoing in the retailer’s domain to predict long-
term sales demand. An important and effective method used to predict the sale of a
mathematical method, also called the conventional method, but these methods take more time
to predict sales. And these methods could not manage indirect data so to overcome these
problems in traditional methods the machine learning techniques used. ML methods can

handle not only indirect data but also large data sets well.

1.2 PROBLEM STATEMENT

Due to increasing competition many malls and bigmart are trying their best to stay ahead in
competition.In order to find out what are the various factors which affect the sales of bigmart
and what strategies one needs to employ in order to gain more profit one need to have some
model on which they can rely .So a predictive model can be made which could help to gain

useful information and increase profit.

1.3 OBJECTIVES

Objectives of these project are:
a) Predicting future sales from a given dataset.
b) To understand the key features that are responsible for the sale of a particular product.

c¢) Find the best algorithm that will predict sales with the greatest accuracy.

1.4 METHODOLOGY

Figure 1.1 represents the steps of building a model. Following are the steps which one needs
to follow while creating a model.

Raw

data

o

Pre-

Training of
> dataset

processing

Implementing
machine

learnine model

Result

Fig 1.1: Process of building a model.

DATA

DATA PREPROCESSING

EDA (DTALE AND KLIB LIBRARY

FEATURE ENGINEERING

\I

TRAINING DATA

LINEAR REGRESSION

| RAMDOM FORESTS

1

il

XEBOOST
REGRESSION

S N

| RIDGE REGRESSION -!
i I

1 DECISION TREE

TESTING DATA

|

Fig 1.2:Working procedure of proposed model

Data collection- The step of every project is to collect the data.
We collected our data from the Kaggle whose link is given below-

https://www.kaggle.com/brijbhushannandal979/bigmart-sales-data/code

Data preprocessing-In this step we basically clean our dataset for example check for
any missing value in the dataset , if present then handle the missing values. In our

dataset attributes like Item Weight and Outlet Size had the missing value.

EDA-This part is considered as one of the most important parts when it comes to data
analysis.To gain important insights of our data one must need to do exploratory data

analysis.Here in our project we used two libraries i.e. klib and dtale library.

Tested various algorithms-Then various algorithms like simple LR, xgboost algorithm

were applied in order to find out which algorithm can be used to predict the sales.

Building the model -After completing all the previous phases which are mentioned
above, now our dataset is ready for further phases that is to build the model.
Once we built the model now it is ready to be used as a predictive model to forecast

sales of Big Mart.

Web deployment-Finally once the prediction can be made for making it more user

friendly we have used web development.

https://www.kaggle.com/brijbhushannanda1979/bigmart-sales-data/code

CHAPTER 2

LITERATURE SURVEY

2.1. LITERATURE SURVEY

Kadam,et.al [1] have suggested when the prediction for the sales for bigmart was done using
the algorithm like random forest and LR for prediction analysis it gave lesser accuracy.So to
overcome this problem we can use another algorithm which is XG boost algorithm which not

only gives better accuracy but also is more efficient.

Makridakis, et.al [2] have suggested predicting methods and applications containing Data
Lack and short life cycles. So some data like historical data, consumer-focused markets face

uncertain needs, which can be an accurate predictor of outcome.

C. M. Wu , et.al [3] have suggested comparison of Different ML Algorithms for Multiple
Regression on Black Friday Sales Data used the concept of neural network to compare the
various different algorithms.Using neural network as the concept which is very complex and

less efficient concluded that we should use much simpler algorithm for the prediction purpose.

Das, et.al [4] have suggested in the prediction of retail sales of footwear which used recurrent
Neural Networks and feed forward used the neural network to predict the sales.Using neural
network for predicting the sales which is not an efficient method so XGboost algorithm can be

used.

S. Cheriyan, et.al [5] have suggested in the study they implemented three ML algorithms on
the given dataset and the models for evaluating the performance. Based upon the testing the
algorithm which gave maximum accuracy was chosen for the prediction which was found to

be a gradient boosting algorithm.

A. Krishna, et.al[6] have suggested that both the normal regression and boosting algorithms
were implemented and found out that boosting algorithms have better results than the regular

algorithms.

CHAPTER 3

SYSTEM DEVELOPMENT

3.1 ALGORITHMS EMPLOYED

3.1.1 LINEAR REGRESSION (LR)

As we know Regression can be termed as a parametric technique which means we can predict
a continuous or dependent variable on the basis of a provided datasets of independent

variables.

The Equation of simple LR is:

Y=Bo+PIX+ E--romemmmm- (1)

where,

Y : It is basically the variable which we used as a predicted value.
X : It is a variable(s) which is used for making a prediction.

Bo : It is said to be a prediction value when X=0.

B1 : when there is a change in X value by 1 unit then Y value is also changed. It can also be

said as slope term €

Dependent Variable

» X

Independent Variable

Fig 3.1 Given figure represent line of regression

3.1.2 RANDOM FOREST REGRESSION

Random Forest is a tree-based bootstrapping algorithm based on that tree that includes a
certain number of decision trees to build a powerful predictive model. Individual learners, a
set of random lines and a randomly selected few variables often create a tree of choice. The
final prediction may be the function of all predictions made by each learner. In the event of a

regression. The final prediction may be the meaning of all the predictions.

e

Random subset Random subset Random subset

B 4

¥17¥2] ¥t [¥g ¥1{¥2]¥3t- | ¥g —~Vote— ajv2}¥st- | ¥

Fig 3.2 : Flowchart of Random Forest Regression

HYPER PARAMETER TUNING

In ML, optimization of the hyperparameter or problem solving by selecting the correct set of
parameters for the learning algorithm. To control the learning process a hyperparameter

parameter value is used.In contrast, the values of some parameters are calculated.

The same type of ML model may require different types of weights, learning scales or
constraints in order to make different data and information patterns more general. The steps

are also called hyperparameters and must be used for the model to solve the ML problem.

Feature importance

Item VESlblllt‘f 525
438
Item VISIb:IItr Maswﬂgtm 54
outet Type' 3 =41 =
+19
Cubiet JYRES =
ltem_Fat_Content”2 {1~
Outlet=2 15
W 1
- ltem Fat Conteﬁl"ﬂ Hi
v Qutlet Location Type™0 :-_-13
2 BuHeEEss EBWBE g
o Item_Type Comdined 0 17
tI t‘B Zf?;
ltem Fat Cﬂenﬁ g
Item_Type Combined”1 T
Outlet-] 16
Qutlet Size™1 12
Outiep 3252 17
Item Type Combmed‘l 13
et Type™2 :3
D
Outlet™3 {1 -
0 100 200 300 400 500
F score

Fig 3.3: Relationship between Feature Importance and their F score in Hyper parameter tuning

XGBOOST REGRESSION

XGBoost stands for eXtreme Gradient Boosting. The implementation of an algorithm
designed for the efficient operation of computer time and memory resources. Boosting is a
sequential process based on the principle of the ensemble. This includes a collection of lower
learners as well improves the accuracy of forecasts.No model prices n heavy for any minute t,

based on the results of the previous t-speed. Well-calculated results are given less weight, and

the wrong ones are weighed down. With this algorithm system

10

The XGBoost model uses stepwise, ridge regression internally, automatically selecting

features as well as deleting multicollinearity.

0.0175 -

0.0150 1

0.0125 1

0.0100 1

0.0075 1

Prediction Times

0.0050 -

0.0025 1

0.0000 -

Fig 3.4 : Represents the types of XGBoost regression

11

3.2 PHASE OF MODEL

3.2.1 DATA AND ITS PREPROCESSING

In our work, we have used the 2013 Big Mart sales data as a database. Where the data set
contains 12 features such as Item Fat, Item Type, MRP Item, Output Type, Object Appearance,
Object Weight, Outlet Indicator, Outlet Size, Outlet Year of Establishment, Type of Exit, Exit
Identity, and Sales. In these different aspects of responding to the Item Outlet Sales features as
well, the other features are also used as the predictive variables. Our dataset has in total 8523
products in various regions and cities. The data set is also based on product level and store-
level considerations . Where store level includes features such as city, population density,

store capacity, location, etc. and product-level speculation involves factors such as product, ad,
etc. After all considerations, a data set is finally created, then the data set is split into two parts

that are tested and trained in a ratio of 80:20.

Variable Description
Item_ldentifier Unique product ID
Item_Weight Weight of product
Item_Fat_Content Whether the product is low fat or not

S The % of total display area of all products in a store allocated to the particular
Item_Visibility

product
Item_Type The category to which the product belongs
Item_MRP Maximum Retail Price (list price) of the product
Outlet_ldentifier Unique store ID

OQutlet_Establishment_Year The year in which store was established

Qutlet_Size The size of the store in terms of ground area covered
Qutlet Location_Type The type of city in which the store is located
Outlet_Type Whether the outlet is just a grocery store or some sort of supermarket

Sales of the product in the particulat store. This is the outcome variable to be
Item_Outlet_Sales .
predicted

Fig 3.5: Depicting the features of the dataset

12

|impor‘t pandas as pd

import numpy as np

%matplotlib inline

import matplotlib.pyplot as plt
import seaborn as sns

Fig 3.6 : How libraries, train and test datasets are imported.

7 @ df_train.head()

() Item_Identifier Item_Weight Item_Fat_Content Item Visibility Item_Type Item MRP Outlet_Identifier oOutlet_Establishment_Year oOutlet_Size oOutlet_Location_Type
0 FDA15 9.30 Low Fat 0.016047 Dairy 249.8092 QouT049 1999 Medium Tier 1
4 DRC01 592 Regular 0.019278 SoftDrinks ~ 48.2692 0ouTo18 2009 Medium Tier 3
2 FDN15 17.50 Low Fat 0.016760 Meat 141.6180 QUT049 1999 Medium Tier 1
3 FDX07 19.20 Regular 0000000 V;’j‘e‘?a :igg 182.0050 ouTo10 1998 NaN Tier 3
4 NCD19 893 Low Fat 0.000000 Household 53.8614 ouT013 1987 High Tier 3

Fig 3.7 Head function representing first five dataset

Item Visibility has a value = 0 as values which have no meaning, Item_Identifier is a

character string with some specific code used by the bigmart and Outlet Size contains some

missing values as well.

13

[] df_train.info()

¢class 'pandas.core.frame.DataFrame’>
RangeIndex: 8523 entries, @ to 8522
Data columns (total 12 columns):

Column Non-Null Count Dtype
@ Item Identifier 8523 non-null object
1 Item Weight 7868 non-null float6d
2 Item Fat Content 8523 non-null object
3 Item Visibility 8523 non-null float6d
4 TItem Type 8523 non-null object
5 Item MRP 8523 non-null floatbd
6 OQutlet Identifier 8523 non-null object
7 Outlet Establishment Year 8523 non-null int64
8 Outlet Size 6113 non-null object
9 Qutlet_Location_Type 8523 non-null object
18 Outlet_Type 8523 non-null object
11 Item Outlet Sales 8523 non-null float6d

dtypes: float64(4), int64(1), object(7)
memory usage: 799.2+ KB

Fig 3.8 : Description of dataset using info() method

In figure 3.8 we can clearly see that there are in total 12 features out of which Numeric data
count is 5 and Categorical data count is 7.

14

[] df traln.describe()

Iten Weight Item Visibility Item MRP Outlet Establishment Year Item Qutlet Sales

count 7060000000 6523.000000 8523.000000 §323.000000 8523000000
mean 12657645 0066132 140992762 1997831867 2151.286914

std 4 643436 0051539 62275067 B.371760 1706.49%16
min 4555000 0.000000 31.250000 1985.000000 33.290000
%% B3N 0026389 93.626500 1967.000000 §34 247400
§0% 12600000 0053931 143.012800 1999.000000 1794 331000
78% 16.650000 0.094585 185.643700 2004,000000 3101.296400
max 21350000 0326391 266.868400 2009.000000 13086.964800

Fig 3.9 : Description of dataset using describe() method

In figure 3. Item_Visibility feature has a minimum value of 0.00 and Item weight has count
of 7060.

15

3.2.2 HANDLING MISSING VALUES

While analyzing the dataset we come across some missing values in the dataset.In order to

check for the missing value we have the following code-

© df_train.isnull().sum()

[» Item_Identifier 5]
Item Weight 1463
Item Fat Content e
Item VWisibility a
Item_Type e
Item MRP 8
Outlet TIdentifier e
Outlet Establishment_Year 8
Outlet Size 2418
Cutlet Location Type g
Qutlet Type a
Item Qutlet Sales a8
dtype: intsd

[5] df test.isnull{).sum()

Item Identifier a8
Item Weight 976
Item _Fat Content e
Item Visibility g
Item Type a8
Item_ MRP e
Qutlet Identifier a8
Outlet Establishment Year e
CQutlet Size 1688
Outlet Location Type g
Cutlet Type g

dtype: ints4

Fig 3.10 Depicts the number of missing value

16

From the above Fig 3.10 we can clearly see that column names item weight and outlet size

have 976 and 1606 missing values respectively.

In order to handle these missing values we have different approaches for e.g. dropping the
rows having missing value or filling the missing value with suitable values using different
methods. Looking at our dataset we have 8523 rows so dropping would not be a better option

as it would lead to decrease the prediction accuracy.

df train.info()

<class 'pandas.core.frame.DataFrame’>
Rangelndax: 8523 entries, @ to 8522
Data columns (total 12 columns):

Column Mon-Null Count Dtype

@ Item_Identifier 8523 non-null object
1 Item Weight 7868 non-null floats4
2 Item Fat Content 8523 non-null objact
3 Item Visibility 8523 non-null floats4d
4 Item Type 8523 non-null object
5 Item MRP 8523 non-null floatéd
& Outlet_Identifier 8523 non-null object
7 Outlet Establishment Year 8523 non-null int64

8 OQutlet Size 6113 non-null objeact
8 Qutlet Location Type 8523 non-null object
1@ OQutlet Type 8523 non-null object
11 TItem OQutlet Sales 8523 non-null floatéd

dtypes: floatéd(4), inte4(1l), object(7)
memory usage: 799.2+ KB

Fig 3.11 Datatype of various features of dataset

17

Since item_weight is a numerical feature, filling its missing value using the average
imputation method.

“ [8] df_train['Item Weight'].fillna(df train['Item Weight'].mean(),inplace=True)
df test['Item Weight'].fillna(df test['Item Weight'].mean(),inplace=True)

~ [9] df train.isnull().sum(}

Item Identifier

Item Weight

Item Fat_Content

Item Visibility

Item Type

Item MRP

Qutlet Identifier

Outlet Establishment Year
CQutlet Size 241
Outlet Location Type
Qutlet Type

Item Qutlet Sales

ditype: ints4d

DO Do 6000068 0006

Fig 3.12 Missing value in outlet_size column = 2410

df _train'Outlet Size'].fillna{df train['Outlet Size'].mode()[@],inplace=True)
df test['Outlet Size'].fillna(df test['Outlet Size'].mode()[@],inplace=True)

Fig 3.13: Filling Values in Outlet Size.

Outlet size is a categorical feature so filling the value using the mode imputation method

18

So finally -
df train.isnull(}.sum()

Item Identifier

Item Weight
Item_Fat_Content
Item Visibility
Item_Type

Item_MRP

Outlet Identifier
Outlet Establishment Year
Outlet Size

Outlet Location Type
Outlet Type

Item Outlet Sales
dtype: intb4

e v T v B v e e I v T R e v v R ¥

Fig 3.14 : Now there are no missing values in the item_weight and Outer size columns.

3.23 EDA
a) EDA WITH DTALE LIBRARY

D-Tale is a Flask and React-based powerful tool which is used to analyze and visualize

pandas' data structure seamlessly.

D-Tale also supports objects like Data Frame, Series, etc.

19

[]

[1 #dtale.show(df train)
import dtale.app as dtale_app

import dtale

dtale_app.USE COLAB = True

dtale.show(df_train)

https://rehxjuyyoz-496ff2e9c6d22116-48@88-colab.googleusercontent. com/dtale/main/2

Fig 3.15: Represents how to import dtale library and display the table

20

E\\m Item_Weight : Item_Fat_Content : Item_Visibility : Item_Type i Item_MRP : OQutlet_Establishment_Year : Outlet_Size : Outlet_Location_Type : Outlet_Type i Item_Outlet_Sales :
0 930 Low Fat 0.02 Dairy 24981 1999 Medium Tier 1 Supermarket Type! 37384
1 592 Regular 0.02 Soft Drinks 827 2009 Medium Tier 3 Supermarket Type2 44347
2 1750 Low Fat 0.02 Meat 14162 1999 Medium Tier 1 Supermarket Typel 200721
3 19.20 Reqular 0.00 Fruits and Vegetables 18210 1998 nan Tier 3 Grocery Store 73238
4 893 Low Fat 0.00 Household 53.86 1987 High Tier3 Supermarket Type! 9941
5 1040 Reqular 0.00 Baking Goods 5140 2009 Medium Tier 3 Supermarket Type2 556 61

13.65 Regular 001 Snack Foods 5766 1987 High Tier 3 Supermarket Type! 4355

7 1286 Low Fat 013 Snack Foods 10776 1985 Medium Tier 3 Supermarket Type3 402276

8 16.20 Regular 0.02 Frozen Foods 96.97 2002 nan Tier 2 Supermarket Typel 1076.60

9 19.20 Regular 0.09 Frozen Foods 18782 2007 nan Tier 2 Supermarket Typel 471054

10 1180 Low Fat 0.00 Fruits and Vegetables 4554 1999 Medium Tier 1 Supermarket Type! 1516.03
il 18.50 Reqular 0.0 Datry Han 1997 Small Tier 1 Supermarket Type! 218715
12 15.10 Reqgular 0.10 Fruits and Vegetables 14548 1999 Medium Tier 1 Supermarket Type! 1589.26
13 17.60 Regular 005 Snack Foods 119.68 1997 Small Tier 1 Supermarket Typel 25
3 16.35 Low Fat 0.07 Fruits and Vegetables 196.44 1987 High Tier 3 Supermarket Type! 197743
15 900 Regular 007 Breakfast 56.36 1997 Small Tier 1 Supermarket Type! 1547.32
16 1180 Low Fat 0n Health and Hygiene 15.35 2009 Medium Tier 3 Supermarket Type2 162189
i 9.00 Regular 0.07 Breakfast 543 1999 Medium Teer1 Supermarket Type! 71840
18 1286 Low Fat 0.03 Hard Drinks 11328 1985 Medium Tier 3 Supermarket Type3 230367
19 1335 Low Fat 010 Dairy 230.54 2004 Small Tier 2 Supermarket Type! 214842
20 18.85 Reqular 014 Snack Foods 25087 1987 High Tier 3 Supermarket Type! 317509

21

23
24
25
2%
21
28
29
30
3
2
k)

35

37

38

39

40

2
4

45

1286
14.60

1286 ||

1385
13.00
765
1165
593
1286
1925
18.60
18.70
17.85
1750
10.00
1286
885
12.86
1286
1335
980
13.60
2135
1215
642
19.60

Low |

Reqular

Low Fat

Reqular
Low Fat
Regular
low fat
Regular
Regular
Low Fat
Low Fat
Low Fat
Low Fat
Low Fat
Low Fat
Regular
Regular
Regular
Low Fat
Low Fat
Low Fat
Low Fat
Low Fat
Regular
LF

Low Fat

0.04
003
0.06
0.03
010
007
0.02
016
007
017
0.08
0.00
0.00
010
0.09
0.06
on
012
0.03
010
003
0
0.07
0.04
0.09
0.00

Baking Goods.
Household

Baking Goods
Frozen Foods
Household

Snack Foods

Hard Drinks.

Dairy

Canned

Dairy

Health and Hygiene
Snack Foods
Breads

Soft Drinks.

Health and Hygiene
Fruits and Vegetables
Soft Drinks

Snack Foods
Snack Foods

Dairy

Meat

Snack Foods
Canned

Canned

Dairy

Health and Hyglene

14454
196 51
107.69
165.02
4591
23
3912
4551
4365
55.80
9%.44
256.67
93.14
174.87
1671
128.07
12254
36.99
87.62
23064
126.00
19291
25993
126.50
178.10
153.30

1985
2004
1985
1997
2007
2004
1987
1998
1985
1998
2009
2009
2002
1997
1999
1985
2009
1985
1985
1997
1987
1999
2009
1987
1998
2002

Medium
Small
Small
Small

Small
High

Small
nan
Medium
Medium
nan
Small
Medium
Medium
Medium
Medium
Medium
Small
High
Medium
Medium
High

nan

Fig 3.16: The Dtale Window

21

Tier 3
Tier 2
Tier 1
Tier 1
Tier 2
Tier 2
Tier 3
Tier 3
Tier 1
Tier 3
Tier 3
Tier 3
Tier 2
Tier 1
Tier 1
Tier 3
Tier 3
Tier 3
Tier 3
Tier 1
Tier 3
Tier 1
Tier 3
Tier 3
Tier 3
Tier 2

Supermarket Type3
Supermarket Typel

Grocery Store
Supermarket Typel
Supermarket Typel
Supermarket Typel
Supermarket Typel

Grocery Store

Grocery Store

Grocery Store
Supermarket Type2
Supermarket Type2
Supermarket Typel
Supermarket Typel
Supermarket Typel
Supermarket Type3
Supermarket Type2
Supermarket Type3
Supermarket Type3
Supermarket Typel
Supermarket Typel
Supermarket Typel
Supermarket Type2
Supermarket Typel

Grocery Store
Supermarket Typel

4064 04
1587.27
214.39
4078.03
83891
1065.28
308.93
178.43
125.84
163.79
274176
3068.01
217450
2085.29
379107
279769
1609.90
388.16
2180.50
343553
215053
252738
6768.52
37351
358.20
242884

6,000

5,000

4000 |

Frequency
[#%)
]
=
=

2,000
1,000
0
Medium Small High
Value

Unique Row Values:
Medium (5203), Small (2388), High (932)

Fig 3.17: Frequency of values in the column name Outlet Size

22

25

20

15

10

ltem_Weight

Fig 3.18 : This figure represents the Item Weight value range

b) EDA USING KLIB LIBRARY

Klib is a python library which is used for importing, cleaning, analyzing and

preprocessing the data.

23

© «lib.cat_plot(df_train)

GridSpec(6, 5)

5000 -
4000 -
000 -
2000 -
1000 -
0- A corpes
4 5 f
L

Unique values: 5

Regular

Ihern_Fat;Cnntent

—
E
g

Categorical data plot

200 - 3000 -
: 2000 -
i 1500 - s
= 500 -
- 0- T . g y o
;b f Py

:
]

Unique values: 16 Unique values: 3 Unique values: 3

HENBEEE

Vegetable
Snack Foods
Household
Starchy Foods. .
Breaktast
Seafood -I

Item_Type Cutlet Size QOutlet_Location_Type QOutlet_Type

Fig 3.19 : Categorical data plot of all variables present in dataset using Klib Library

24

‘, klib.corr_plot(df _train) # returns a color-encoded heatmap, ideal for correlations

<matplotlib.axes. subplots.AxesSubplot at ex7f31545a4358>
Feature-correlation (pearson)

Itern_Weight -

Item_Visibility -

Item_MRP -

Outlet Establishment Year -

Item_Outlet_Sales -

o klib.corr_mat(df_train) # returns a color-encoded correlation matrix

1)
ltem_Weight
Item _Visibility
Item_MRP
Qutlet Establishment_Year

Item_Outlet_Sales

0.01

0.01

Item_Weight -

1.00

0.02

0.01

-0.00

0.07

Item Visibility -

00

1.00

Qutlet Establishment Year -

0.5

04

o3

—02

-01

-00

Item_Outlet Sales -

0.02

1.00

0.01

Ttem Weight Item Visibility Item MRP oOutlet Establishment_Year

0.01

1.00

Fig 3.20 : Feature- correlation using klib Library

Ttem_Outlet Sales

00

Fig 3.21 :Color- encoded correlation matrix.

25

° klib.dist plot(df_train) # returns a distribution plot for every numeric feature

<matplotlib.axes._subplots.AxesSubplot at ex7f31631762%@>

0201 Mean: 12.86 253 .97.55%
015 - Std. dew: 4.23 mean
SN 1O median
& T % . |\ %
% o Skew: 0.09 pto
3 Kurtosis: -0.86
0.05
Count: 8523
0.00 - .
5 10 15 0
Iterm_Weight
Mean: 0.07 2 5% .07.5%
10.0
Std. dev: 0.05 e,
e - . N b median
i skew: 117 S iTSSL e pto
g 50
o Kurtosis: 1.68
25
Count: 8523
LR
00 - - T 7 T
-0.05 0.00 005 (B 1] 015 020 025 030 035
Item Visibility
So0e Mean: 140.99 25% - 97.5%
Std. dev: 62.28 e
Borwos b v gemme CONEEEEEEESC CZEEEEEEEEES, 000 e median
E 0004 1Skew: 013 /S N /S NN e ptao
17
o e
0.002 Kurtosis: -0.89
Count: 8523
0.000 "
0 50 100 150 200 250 300
Item_MRP
0.08 Mean: 1997 83 2.5% .07.5%
Std. dev: B.37 s
., 006 median
] Skew:040 Y EBan e pto
g 0.04
a Kurtosis: -1.21
002
Count: 8523
0.00 T T T T T T
1900 1925 1950 1975 2025 2050

Outlet_Establishment_Year

Fig 3.22: Distribution plot for every numeric feature.

c) EDA WITH SEABORN LIBRARY- Seaborn is a data visualization library built on
top of matplotlib

26

EDA using seaborn library

[1 sns.heatmap(df_train.corr(),annct=True)
plt.show()
-140

Item_Weight - 0.012 0025 40.0083 0012
-0.8

ltem Visibility -SSR 1 0.0013 0.075
- 0.6
Item MRP 0.025 0.0013 1 0005 ;
Outlet Establishment Year SEURHKEE 0.075 0.005 0.049 -0z

-0.0

=t

Item_Outlet_Sales 057 0.049

ltem MRP

Item Weight

ltem Visibility -
[tem_Cutlet_Sales -

Outlet_Establishment_fear -

Fig 3.23 : Correlation between different features

From the figure 3.23 we can clearly see that item_visibility attribute has the lowest
correlation with the other target variables and Item MRP has strong positive correlation with
target variables i.e. 0.57.

3.2.4 DATA CLEANING USING KLIB LIBRARY

Data cleaning is basically the process where the corrupt recordset, tables or databases are

detected and then corrected by replacing, modifying, or deleting the dirty or coarse data.

27

i ° # klib.clean - functions for cleaning datasets
klib.data_cleaning(df_train) # performs datacleaning (drop duplicates & empty rows/cols, adjust dtypes,...)

[» Shape of cleaned data: (8523, 1@)Remaining NAs: 241@

Changes:

Dropped
Dropped

Dropped
Reduced

’ [1085]

8518

8519

8520

8521

8522

rows: @

of which @ duplicates. (Rows: [])

columns: @

of which @ single valued.

item_weight

9.300000

5.920000

17.500000

19.200001

8.930000

6.865000

8.380000

10.600000

7.210000

14.800000

missing values: @
memory by at least: 0.46 MB (-70.77%)

Fig 3.24 :Cleaning the data using klib library

item_fat_content item_visibility

Low Fat

Regular

Low Fat

Regular

Low Fat

Low Fat

Regular

Low Fat

Regular

Low Fat

8523 rows * 10 columns

0.016047

0.019278

0.016760

0.000000

0.000000

0.056783

0.046982

0.035186

0.145221

0.044878

Columns:

item_type

Dairy

Soft Drinks

Meat

Fruits and
Vegetables

Household

Snack
Foods

Baking
Goods

Health and
Hygiene

Snack
Foods

Soft Drinks

[1

item_mrp outlet_establishment_year

249.809204

48.269199

141.617996

182.085001

53.861401

214.521805

108.156998

85.122398

103.133202

75.467003

28

1999

2009

1999

1998

1987

1987

2002

2004

2009

1997

outlet_size outlet_location_type

Medium

Medium

Medium

NaN

High

High

NaN

Small

Medium

Small

Tier 1

Tier3

Tier 1

Tier 3

Tier 3

Tier 3

Tier2

Tier 2

Tier3

Tier 1

outlet_type

Supermarket
Type1
Supermarket
Type2

Supermarket
Typel

Grocery
Store

Supermarket
Typel

Supermarket
Type1

Supermarket
Typet

Supermarket
Typel

Supermarket
Type2

Supermarket
Typel

item_outlet_sal

3735.1379

4434227

2097.2700

732.3800

994.7052

2778.3833

549.2849

1193.1136

1845.5976

765.6699

7 [107] df train.info()

C

<class 'pandas.core.frame.DataFrame’>
RangeIndex: 8523 entries, @ to 8522
Data columns (total 1@ columns):

Column Non-Null Count Dtype

@ item weight 8523 non-null floatb4
1 item fat content 8523 non-null object
2 item visibility 8523 non-null floatb4
3 item type 8523 non-null object
4 item mrp 8523 non-null floath4
5 outlet establishment year 8523 non-null int64

6 outlet size 6113 non-null object
7 outlet location type 8523 non-null object
8 outlet type 8523 non-null object
9 1item outlet sales 8523 non-null float64

dtypes: float64(4), int64(1), object(5)
memory usage: 666.8+ KB

Fig 3.26 : Represents the 12 features of the dataset ie numerical and categorical

U8] df train=klib.convert datatypes(df train) # converts existing to more efficient dtypes, also called inside data cleaning()

df_train.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8523 entries, @ to 8522
Data columns (total 16 columns):

Column Non-Null Count Dtype

9 item_weight 8523 non-null float32
1 item_fat content 8523 non-null category
2 item_visibility 8523 non-null float32
3 item_type 8523 non-null category
4 item mrp 8523 non-null float32
5 outlet_establishment_year 8523 non-null intl6

6 outlet_size 6113 non-null category
7 outlet location type 8523 non-null category
8 outlet type 8523 non-null category
9 item_outlet_sales 8523 non-null float32

dtypes: category(5), float32(4), intle(1)
memory usage: 192.9 KB

Fig 3.27 : Converting to more efficient data types using convert_datatypes function

29

3.2.5 FEATURE ENGINEERING

Feature Engineering is a way of using domain data to understand how to build mechanical
operations learning algorithms. When feature engineering is done properly, the ability to
predict ML algorithms are developed by creating useful raw data features that simplify the ML
process. Feature engineering including correction of incorrect values. In the device database,
object visibility has a small value of 0 which is unacceptable, because the object must be

accessible to all, and so it is replaced by the mean of the column.

1) Label Encoding

[] from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()

° df train['item fat content']= le.fit transform(df train['item_fat content'])
df_train['item_type']= le.fit_transform(df_train['item_type'])
df train['outlet size']= le.fit transform(df train['outlet size'])
df train['outlet location type']= le.fit transform(df train['outlet location type’'])
df train['outlet type']= le.fit transform(df train['outlet type'])

30

©Q cf_train
(k4 item_weight item_fat_content item_visibility item_type item_mrp outlet_establishment_year outlet_size outlet_location_type outlet_type
0 9.300000 1 0.016047 4 249.809204 1999 1 0 1
1 5.820000 2 0.019278 14 48.269199 2008 1 2 2
2 17.500000 1 0.016760 10 141.6179986 1999 1 0 1
3 19.200001 2 0.000000 6 182.095001 1998 3 2 0
4 8.930000 1 0.000000 9 53.861401 1987 0 2 1
8518 6.865000 1 0.056783 13 214521805 1987 0 2 1
8519 8.380000 2 0.046982 0 108.156998 2002 3 1 1
8520 10.600000 1 0.035186 8 85.122398 2004 2 1 1
8521 7.210000 2 0.145221 13 103.133202 2009 1 2 2
8522 14.800000 1 0.044878 14 75.467003 1997 2 0 1

8523 rows x 10 columns

Fig 3.28 : Label Encoding Code

2) Splitting our data into train and test
[1 X=df_train.drop('item_outlet sales',axis=1)
[1 Y=df_train['item outlet sales']

N
:°) from sklearn.model_selection import train_test_split

A B T

item_outlet_sal
3735.1379
4434227
2097.2700
732.3800

994.7052

2778.3833

549.2849
1193.1136
1845.5976

765.6699

X _train, X test, Y_train, Y test = train_test split(X,Y, random_state=101, test size=0.2)

Fig 3.29 : Splitting of data into train and test data set.

31

3) Standarization

[] X.describe()

item_weight item_fat_content item_visibility

count 8523.000000 8523.000000
mean 12.858088 1.369354
std 4226130 0.644810
min 4555000 0.000000
25% 9.310000 1.000000
50% 12.857645 1.000000
75% 16.000000 2.000000
max 21.350000 4.000000

[1 X train_std

array([[1.52290023, -@.

1.98786619, -0
[-1.239856 , -O.
-0.13870429, -8.
[1.54667619, 0.
-0.13870429, -0.

B
[-0.08197109, -8.
-1.36527477, -0.
[-0.74838436, 0.
-0.13870429, -0.
[©.67885675, -B.

1.08786619, 0.

° X test std

C array([[-0.44354743, -@.

1.1067281 , 1.
[1.18274465, -0.
1.1067281 , -8.
[-1.20558148, 0.
-1.38596862, -0.

sz
[@.62515889, -B.

1.1067281 , -1.
[0.97365005, -0.

1.1067281 , 1.
[-1.54477944, @.
-0.13962026, -0

Fig 3.31 X train_std array and X test std array

8523.000000
0.066132
0.051598
0.000000
0.026989
0.053931
0.084585

0.328391

Fig 3.30 : Standardization of dataset

57382672, @.

.25964107],

57382672, -0.
25964107],
97378832, -@.
25964107],

57382672, -8.
25964107],
97378032, 1.
25964167],
57382672, 1.
98524841]])

56892467, -8.
07886076],
56892467, -0.
22387125],
99561817, .
22387125],

56892467, O.
52660325],
56802467, -1.
07886076],
99561817, -1.

.22387125]])

item_type
8523.000000
7.226681
4.209990
0.000000
4.000000
6.000000
10.000000

15.000000

68469731,
09514746,

2883859 ,

91916229,
21363045,

83915361,

19868257,
51369355,

18237795,

90184011,
27256347,

98005617,

item_mrp outlet_establishment_year outlet_size outlet_location_type outlet_type

8523.000000

140.992767

62.275051

31.280001

93.826500

143.012802

185.643700

266.888397

=

.7578342 ,

=

.28755895,

=

.28755895,

=

.27269457,

[y

.28755895,

@

.74216982,

=

.75373281,

=y

.74994556,

@

. 24247994,

[

.23869268,

o

.75373281,

=

.23869268,

32

8523.000000 8523.000000

1997.831867

8.371760
1985.000000
1987.000000
1899.000000
2004.000000

2009.000000

1.736360
0.989181
0.000000
1.000000
2.000000
3.000000

3.000000

8523.000000 8523.000000

1.112871
0.812757
0.000000
0.000000
1.000000
2.000000

2.000000

1.201220
0.796459
0.000000
1.000000
1.000000
1.000000

3.000000

[] Y_train

3684 163.786884
1335 1687.241211
5142 1518. 834424
4978 1784.343994
2299 3558.835156

599 55082.836914
5695 1436.796387
8086 2167.844727
1361 2700 . 484863
1547 829.586792
Mame: item outlet sales, Length: 6818, dtype: float32

[1 ¥ test

8179 9e4.822285
8355 2795.694092
3411 1947 . 464966
7689 872.863770
6954 2458.1446843

1317 1721.893018
4596 914.80852084
331 376.184814
3891 1358.232856
6629 2418.185547
Mame: item outlet sales, Length: 1785, dtype: float32

Fig 3.32 Y train array and Y _test array

In figures 3.33 and 3.34 we just split the train and test data into X train_std, Y _train,
X test stdand Y _test.

33

3.2.6 MODEL BUILDING

Now the dataset is ready to fit a model after performing Data Preprocessing and Feature
Transformation. The training set is fed into the algorithm in order to learn how to predict
values. Testing data is given as input after Model Building a target variable to predict. The

models are built using:

a) LR

b) RF Regression

c) Hyper Parameter Tuning
d) XGBoost Regression

e) Decision Tree

f) Ridge Regression

Model building

1. Linear regression

[1 from sklearn.linear model import LinearRegression
lr= LinearRegression()

[1 le.fit(X train std,¥ train)

LinearRegression()

34

lr.predict(X test std)

array([21108.22755889, 2147.54273582, 1241.33875785, ..., 1253.48857534,
2475 .63758688, 2378.49866982])

¥ _pred lr=Ilr.predict(X test std)
from sklearn.metrics import r2_score, mean_absolute _error, mean_squared error

print(r2 score(¥Y_test,¥ pred 1lr))
print({mean_absclute error(¥Y_test,¥ pred 1r))
print{np.sart({mean_squared _error(¥_test,¥ pred lr)))

6.5028654a27342816
285.78168693115644
1164 .996528679539

Fig 3.35: Value of R? in Linear Regression = 0.50

2) RANDOM FOREST REGRESSION

[1 from sklearn.ensemble import RandomForestRegressor
r+= RandomForestRegressor(n_estimators=1888)

[1 rffit(X train std,Y train)

RandomForestRegrassor(n_estimators=1688)

[1 ¥ pred rf= rf.predict{X test std)

[1 print(r2 score(¥Y_test,Y_pred rf))
print(mean_absoclute error(¥ test,Y pred rf))
print(np.sgrt(mean_squared error(¥ test,Y pred rf}))

8.5589957386177873
777.7411339188328
1186.26859854454175

Fig 3.36: Value of R? in Random Forest Regression = 0.55

35

Hyperparameter Tuning

(]

from sklearn.model selection import RepeatedStratifiedKFold
from sklearn.model_selection import GridSearchCV

define models and parameters

model = RandomForestRegressor()
n_estimators = [18, 188, 1808]
max_depth=range(1,31)

min_samples leaf=np.linspace(8.1, 1.8)
max_features=["aute”, "sgrt", "log2"]
min_samples split=np.linspace(8.1, 1.8, 18)

define grid search
grid = dict(n estimators=n_estimators)

#cv = RepeatedStratifiedKFold(n_splits=5, n_repeats=3, random_state=181)

grid search forest = GridSearchCV{estimator=model, param grid=grid, n jobs=-1,
scoring="r2',error_score=8,verbose=2,cv=2)

grid_search_forest.fit(X_train_std, ¥_train)

summarize results
print(f"Best: {grid_search_forest.best_score_:.3f} using {grid_search_forest.best params_}")
means = grid search_forest.cv_results ['mean_test score']
stds = grid search forest.cv results ['std test score’]
params = grid search_forest.cv_results_['params']
for mean, stdev, param in zip(means, stds, params):
print(f"{mean:.3f} ({stdev:.3f}) with: {param}")

Fitting 2 folds for each of 3 candidates, totalling 6 fits
Best: 8.551 using {'n_estimators': 1888}

8.509 (8.887) with: {'n_estimators': 18}

@.546 (8.@86) with: {'n_estimators': 18&}

8.551 (8.886) with: {'n_estimators': 1eeo}

grid search_forest.best_params_

I'n_estimators’': 1eee}
¥ _pred rf grid=grid search_forest.predict(X test_ std)

r2_ score(Y test.¥Y_pred_rf_grid)

B.5566742823512964

36

grid search forest.best params_

{'n_estimators': 18887

¥ _pred rf grid=grid search forest.predict(X test std)

r2 score(¥Y test,Y pred rf grid)

8.5566742823512964

Fig 3.37: Value of R2 =0.55

4) XGBOOST REGRESSION

[] from xgboost import XGBRegressor
from sklearn import metrics

[] regressor = XGBRegressor()

[1 regressor.fit{X train, ¥_train)

[13:25:22] WARNING: /fworkspace/src/objective/regression_obj.cu:152: reg:linear is now deprecated in faveor of reg:squarederror.
XGBRegressor()

[1 # prediction on training data
training_data_prediction = regressor.predict(X_train)
prediction on test data
test_data_prediction = regressor.predict(X_test)

[1 # R squared Value
r2_train = metrics.r2_score(Y_train, training_data_prediction)
r2_test = metrics.r2 score(Y_test, test data_prediction)

[1 print('R Squared value = ', r2 train)
print('R Squared value = ', r2 test)

R Squared value = @.635441553583312
R Sguared value = @.5977658125516876

Fig 3.38: Value of R? in XGBoost Regression = 0.63

37

3) DECISION TREE

[1]

from sklearn.tree import DecisionTreeRegressor

dr = DecisionTreeRegressor()

dr.fit(X_train_std,Y_train)

DecisionTreeRegressor()

X_test.head()

item_weight item_fat_content item_visibility

8179 1.0
8355 18.0
un i1

7089 20700001
6354 7.55

¥_pred_dr= dr.predict{X_test_std)

from sklearn.metrics import r2_score, mean_absolute error, mean_squared error

from sklearn import metrics
value=r2_score(Y_test,Y_pred_dr)

1
1

0.055163
0.038979
0.074731
0.049035
0.027225

item_type
8

13

1

&

3

print(’MAE:",metrics.mean_absolute_error(Y_test,Y_pred_dr))
print(AMSE: ' ,np.sqrt{metrics.mean_squared_error(Y_test,Y pred dr)))
print(‘MSE:', metrics.mean_squared_error(Y_test,Y pred dr))

print(R2:",{value))

MAE: 1851.4840754329902
RMSE: 1580.682614470758
MSE: 2252048.3093747837
R2: 8.173670855708430163

Fig 3.39: Value of R? in Decision Tree = 0.17

item_mrp outlet_establishment_year outlet size outlet_location_type outlet_type

100.3358
1486418
77.596602
399506
152 934006

38

2009
1987
1997
2007
2002

1
0

2
2

2
4

5) RIDGE REGRESSION

from sklearn.linear model import Ridge

rr = Ridge()

rr.fit(X_train_std,¥_train)

Ridge()

X_test.head()

item weight item fat_content item visibility item type item mrp outlet_establishment year

8179 10 1 0.055163 & 1003358 2009
8355 18.0 1 0.038979 13 1486418 1987
341 172 2 0.074731 1 71.598602 1997
7089 20.700001 1 0.049038 6 39.9506 2007
6954 755 i 0.027225 3 152.934006 2002

Y_pred_rr= rr.predict(X test_std)

from sklearn.metrics import r2_score, mean_sbsolute_error, mean_squared_error

from sklearn import metrics

value=r2_score(Y_test,Y_pred_rr)
print('MAE:",metrics.mean_absolute error(Y_test,Y pred rr))

print(RMSE:",np.sqrt(metrics.mean_squared_error(Y_test,Y_pred_rr)})
print('MSE:", metrics.mean_squared error(Y_test,Y pred rr))
print{'R2:",(value))

MAE: B93.898025301489
RMSE: 1177.8331952260133
MSE: 1385487.1426639582
R2: 8.4916617490250573

Fig 3.40: Value of R? in Ridge Regression = 0.4916

39

1
0
2

2
2
]

outlet_size outlet location_type outlet_type

2
1
1

CHAPTER 4
4 . PERFORMANCE ANALYSIS

For the purpose of performance analysis we can go and look for the R? value of the different

algorithm performed and check for which algorithm gives us the best performance

LR

value=r2 score(Y test,Y pred 1r)

print({mean absolute error(¥ test,¥ pred 1r))
print{np.sqrt(mean squared error{¥ test,¥ pred 1r)))
print{"R2:';{value)*188)

893.1898219165341
1177 .84255879686395
R2: 49.1653668487346084

Fig 4.1 Performance of Linear Regression

40

RF regression

[1 wvalue = r2_score(Y_test,Y pred rf)
print(mean_absolute error(Y test,Y pred rf))
print(np.sqrt(mean_sgquared_error(Y_test,Y pred rf)))
print('R2:', (value)*1088)

776.9585233226115
1106. 2543507541138
R2: 55.8959666368735546

Fig 4.2 :Performance of Random Forest Regression

Hyper parameter tuning

¥ pred rf grid=grid search forest.predict(X test std)

value= r2 score(Y test,Y pred rf grid)
print{ 'R2:", (value)*188)

R2: 54.02L565881882437

Fig 4.3: Performance of Hyper Tuning Parameter

41

Decision Tree

° from sklearn import metrics

value=r2 score(Y_test,Y pred dr)

print(MAE: " ,metrics.mean_absolute_error(Y_test,Y_pred_dr))
print('RMSE:"',np.sqrt(metrics.mean_squared error(Y_test,Y pred dr)))
print('MSE:", metrics.mean_ squared error(¥Y_test,Y pred dr))
print('R2:",(value)*100)

> MAE: 1057.1568508002765
RMSE: 1508.469906849536
MSE: 2275481.459870648
R2: 16.507268425656818
Fig 4.4: Performance of Decision Tree
XGBoost Regression

=

from sklearn import metrics

value=r2_score(Y_test,¥Y_pred_regressor)

print('MAE: ' ,metrics.mean absolute error(Y test,Y pred regressor))
print('RMSE: " ,np.sgrt(metrics.mean_squared_error(Y_test,¥Y pred regressor)))
print('MSE: ", metrics.mean_squared_error(Y_test,¥Y pred regressor))
print('R2: "', (value)*168)

MAE: 742.4536

RMSE: 1847.2457

MSE: 1©96723.6
R2: 59.75864575943323

Fig 4.5: Performance of XgBoost Regression

42

Ridge Regression

[1 from sklearn import metrics
value=r2 score(Y_test,Y pred rr)
print('MAE:",metrics.mean absolute error(Y test,Y pred rr))
print('RMSE:',np.sqrt(metrics.mean squared error(Y test,Y pred rr)))
print('MSE:", metrics.mean squared error(Y test,Y pred rr))
print('R2:",(value))
MAE: 893.@98825301489
RMSE: 1177.8331952260133

MSE: 1385407.1426639582
R2: ©.4916617498256573

Fig 4.6: Performance of Ridge Regression

43

TABLE 4.1 : Algorithms Performance

ALGORITHM R2 RMSE MSE

Linear Regression 49.165 1177.04 1385429.18
Random Forest 55.09 1105 12222736.57
Regression

Decision Tree 16.50 1508.46 2275481.45
XGBoost Regression 59.75 1047 1096723.67
Ridge Regression 49.166 117.03 1385407.14

To forecast BigMart’s revenue, simple to advanced ML algorithms have been implemented,

such as LR, Decision Tree, RF regression and XGBoost.

From the above table, we conclude that the XGBoost algorithm is more efficient and gives

accurate and fast results.

44

PERFORMANCE ANALYSIS USING GRAPHS
RMSE AND MSE VALUES

RMSE AND MSE VALUES

—— RMSE

= MSE

2000

1500

1000

Random Forest
Decision Tree
XGBaost Regression
Ridge Regression

Linear Regression

ALGORITHMS

Fig 4.7:Comparison of RMSE and MSE values for ML Algorithms used

Figure 4.7 shows the comparative analysis of RMSE and MSE values. RMSE is the squared
root of MSE and MSE is calculated by the squared difference between the original and
predicted values in the data set. In this experiment Decision tree has the highest RMSE and

MSE value and XgBoost Regression has the lowest RMSE and MSE value.

45

R2AND MAE VALUES

R2Z AND MAE VALUES

1000

Random Forest
Decision Tree

Linear Ragression

XGBoost Regression
Ridge Regression

ALGORITHMS

Fig 4.8:Comparison of R? and MAE values for ML Algorithms used

Figure 4.8 shows the comparative analysis of R?and MAE values. MAE is calculated by the
average of the absolute difference between the actual and predicted values in the dataset and
R2is calculated by the sum of the residuals squared, and the total sum of squares is the sum of
all the data's deviations from the mean. In this experiment Decision tree has the highest MAE
value whereas XgBoost has the lowest and in case of R? XgBoost has the highest value

whereas Decision tree has the lowest value.

It has been observed that increased efficiency is observed with XGBoost algorithms with

lower RMSE, MSE and MAE rating and higher R? rating

46

CHAPTER S

5. CONCLUSIONS

5.1 CONCLUSION

So from this project we conclude that a smart sales forecasting program is required to manage
vast volumes of knowledge for business organizations.

The Algorithms which are presented in this report , LR, RF regression, Decision tree and
XGBoost regression provide an effective method for data sharing as well as decision-making
and also provide new approaches that are used for better identifying consumer needs and
formulate marketing plans that are going to be implemented.

The outcomes of ML algorithms which are done in this project will help us to pick the
foremost suitable demand prediction algorithm and with the aid of which BigMart will prepare

its marketing campaigns.

5.2 FUTURE SCOPE

The future scope of this project is that this project can further collaborate with any other
devices which are supported with an in-built intelligence by virtue of the Internet of Things
(I0T) which makes it more feasible to use.

Multiple instances parameters and various factors are also make this sales prediction project
more

innovative and successful.

The most important term for any prediction-based system that is accuracy, is often
significantly increased

because of the increase in the number of parameters.

47

6. REFERENCES

1. Beheshti-Kashi, S., Karimi, H.R., Thoben, K.D., Lutjen, M., Teucke, M.: A survey on retail
sales forecasting and prediction in fashion markets. Systems Science &Control Engineering

3(1), (2015), pp.154-161

2. Bose, I, Mahapatra, R.K.: Business data mining ML perspective. Information &
management 39(3),(2001), pp. 211-225

3.Mitchell, T. M. ML and data mining. Communications of the ACM, 42(11) , (1999), pp. 30-
36.

4. Das, P., Chaudhury, S.: Prediction of retail sales of footwear using feedforward and

recurrent neural networks. Neural Computing and Applications 16(4-5),(2007), pp. 491-502
5. Punam, K., Pamula, R., Jain, P.K.: A two-level statistical model for big mart sales

prediction. In: 2018 International Conference on Computing, Power and Communication

Technologies (GUCON), IEEE (2018). pp. 617-620.

48

	COMPUTER SCIENCE AND ENGINEERING
	Khushi Agarwal(181487)
	Jaypee University of Information Technology Waknag
	ACKNOWLEDGEMENT
	TABLE OF CONTENTS
	CHAPTER 1: INTRODUCTION
	LIST OF FIGURES
	DESCRIPTIONPAGE NO.

	LIST OF GRAPHS
	DESCRIPTIONPAGE NO.

	LIST OF TABLE
	DESCRIPTIONPAGE NO

	ABSTRACT
	CANDIDATE'S DECLARATION
	Chapter 1 INTRODUCTION
	1.1INTRODUCTION
	1.2PROBLEM STATEMENT
	1.3OBJECTIVES
	1.4METHODOLOGY

	.CHAPTER 2
	2.1. LITERATURE SURVEY

	CHAPTER 3 SYSTEM DEVELOPMENT
	3.1ALGORITHMS EMPLOYED
	3.1.2RANDOM FOREST REGRESSION
	HYPER PARAMETER TUNING
	XGBOOST REGRESSION
	3.2PHASE OF MODEL
	3.2.2HANDLING MISSING VALUES
	3.2.3EDA
	b)EDA USING KLIB LIBRARY
	PERFORMANCE ANALYSIS USING GRAPHS RMSE AND MSE VAL
	R2 AND MAE VALUES

	CHAPTER 5
	6. REFERENCES

