# BIG MART SALES PREDICTION USING MACHINE LEARNING

Project report submitted in partial fulfillment of the requirement for

the degree of Bachelor of Technology

in

# **COMPUTER SCIENCE AND ENGINEERING**

By

### Khushi Agarwal(181487)

Under the supervision of

Dr. Ekta Gandotra

Assistant Professor (SG)



Department of Computer Science & Engineering and Information

Technology

Jaypee University of Information Technology Waknaghat, Solan-

173234, Himachal Pradesh

### CERTIFICATE

This is to certify that the work which is being presented in the project report titled **"Big Mart Sales Prediction Using Machine Learning"** in partial fulfillment of the requirements for the award of the degree of B.Tech in CSE and submitted to the Department of CSE, Jaypee University of Information Technology, Waknaghat is an authentic record of work carried out by Khushi Agarwal (181487) during the period from January 2022 to May 2022 under the supervision of Dr. Ekta Gandotra Assistant Professor (SG), Department of CSE, Jaypee University of Information Technology, Waknaghat.

Khushi

Khushi Agarwal (181487)

The above statement made is correct to the best of our knowledge.

Epta:

Dr. Ekta Gandotra

Assistant Professor(S.G)

Computer Science & Engineering and Information Technology

Jaypee University of Information Technology

### ACKNOWLEDGEMENT

Firstly, We express our heartiest thanks and gratefulness to almighty God for His divine blessing makes us possible to complete the project work successfully.

We are really grateful and wish our profound indebtedness to Supervisor Dr. Ekta Gandotra, Assistant Professor, Department of CSE Jaypee University of Information Technology, Wakhnaghat . Deep Knowledge & keen interest of my supervisor in the field of ML to carry out this project. Her endless patience, scholarly guidance, continual encouragement, constant and energetic supervision, constructive criticism, valuable advice, reading many inferior drafts and correcting them at all stages have made it possible to complete this project.

We would like to express our heartiest gratitude to Dr. Ekta Gandotra Department of CSE, for her kind help to finish this project.

We would also generously welcome each one of those individuals who have helped me straightforwardly or in a roundabout way in making this project a win. In this unique situation, We might want to thank the various staff individuals, both educating and non-instructing, which have developed their convenient help and facilitated my undertaking.

Finally, we must acknowledge with due respect the constant support and patients of our parents.

### **TABLE OF CONTENTS**

# CONTENT

### PAGE NO.

| Certificate             | (I)   |
|-------------------------|-------|
| Acknowledgement         | (II)  |
| Table of Content        | (III) |
| List of Abbreviations   | (V)   |
| Abstract                | (VI)  |
| Candidate's Declaration | (VII) |

### **CHAPTER 1: INTRODUCTION**

| 1.1 Introduction      |    |
|-----------------------|----|
| 1.2 Problem Statement |    |
| 1.3 Objectives        |    |
| 1.4 Methodology Used  | 04 |

### **CHAPTER 2: LITERATURE SURVEY**

| 2. | 1 | Literature survey | 0 | 5 | 5 |
|----|---|-------------------|---|---|---|
|----|---|-------------------|---|---|---|

### **CHAPTER 3: SYSTEM DEVELOPMENT**

| 3.1 Algorithms employed | 07 |
|-------------------------|----|
| 3.2 Phase of model      | 12 |

| <b>CHAPTER 4: PERFORMANCE ANALYSIS</b> |      |
|----------------------------------------|------|
| 4.1 Performance comparison             | . 40 |

# **CHAPTER 5: CONCLUSIONS**

| 5.1 Conclusions  | . 44 |
|------------------|------|
| 5.2 Future Scope | . 44 |

# LIST OF ABBREVIATIONS

| ABBREVIATION | WORD                                |
|--------------|-------------------------------------|
| Ml           | MACHINE LEARNING                    |
| EDA          | EXPLORATORY DATA ANALYSIS           |
| FIG          | FIGURE                              |
| DESCR        | DESCRIPTION                         |
| RF           | RANDOM FOREST                       |
| LR           | LINEAR REGRESSION                   |
| CSE          | COMPUTER SCIENCE AND<br>ENGINEERING |

# **LIST OF FIGURES**

| DESCRIPTION                                                  | PAGE NO. |
|--------------------------------------------------------------|----------|
| Fig 3.5 Depicting the feature of the dataset                 | 12<br>12 |
| Fig 3.6 How libraries, train and test datasets are imported  | 13<br>13 |
| Fig 3.7 Head function representing first five dataset        | 13<br>13 |
| Fig 3.8 Description of dataset using info() function         | 14       |
| Fig 3.9 Description of dataset using describe() function     | 15       |
| Fig 3.10 Depicts the number of missing values                | 16       |
| Fig 3.11 Datatype of various features of dataset             | 17       |
| Fig 3.12 Missing value in outlet size column=2410            | 18       |
| Fig 3.13 Filling values in outlet size                       | 18       |
| Fig 3.14 No missing values in item weight and outer size     | 19       |
| Columns.                                                     | 20       |
| Fig 3.15 Representing how to import dtale library            | 21       |
| Fig 3.16 The Dtale window                                    | 25       |
| Fig 3.21 Color-encoded correlation matrix                    | 27       |
| Fig 3.23 Correlation between different features              | 28       |
| Fig 3.24 Cleaning the data using Klib library                | 29       |
| Fig 3.26 Represents the 12 features of the dataset           | 29       |
| Fig 3.27 Converting to more efficient data types.            | 31       |
| Fig 3.28 Label encoding code                                 | 31       |
| Fig 3.29 Splitting of data into train and test dataset       | 32       |
| Fig 3.30 Standardization of dataset                          | 32       |
| Fig 3.31 X_train_std array and X_test_std array              | 33       |
| Fig 3.32 Y_train array and Y_test array                      | 35       |
| Fig 3.35 Value of R <sup>2</sup> value in LR                 | 35       |
| Fig 3.36 Value of R <sup>2</sup> value in RF                 | 37       |
| Fig 3.38 Value of R <sup>2</sup> value in XGBoost Regression | 38       |
| Fig 3.39 Value of R <sup>2</sup> value in Decision Tree      | 39       |
| Fig 3.40 Value of R <sup>2</sup> value in Ridge Regression   |          |

| Fig 4.1 Performance of LR                     | 40 |
|-----------------------------------------------|----|
| Fig 4.2 Performance of RF                     | 41 |
| Fig 4.3 Performance of Hyper Tuning Parameter | 41 |
| Fig 4.4 Performance of Decision Tree          | 42 |
| Fig 4.5 Performance of XGBoost Regression     | 42 |
| Fig 4.6 Performance of Ridge Regression       | 43 |

# LIST OF GRAPHS

| DESCRIPTION                                               | PAGE NO. |
|-----------------------------------------------------------|----------|
| Fig 1.1 Process of building a model                       | 03       |
| Fig 1.2 Working procedure of proposed model               | 03       |
| Fig 3.1 Figure represent line of regression               | 08       |
| Fig 3.2 Flowchart of RF                                   | 09       |
| Fig 3.3 Relationship between Feature Importance and their | 10       |
| Fig 3.4 Types of XGBoost Regression                       | 11       |
| Fig 3.17 Frequency of values in the columns               | 22       |
| Fig 3.18 Item_weight value range                          | 23       |
| Fig 3.19 Categorical dat plot using Klib library          | 24       |
| Fig 3.20 Feature correlation using Klib library           | 25       |
| Fig 3.22 Distribution plot for every numeric feature      | 26       |
| Fig 4.7 Comparison of RMSE and MSE values                 | 45       |
| Fig 4.8 Comparison of R <sup>2</sup> and MAE values       | 46       |

# LIST OF TABLE

| DESCRIPTION                      | PAGE NO |
|----------------------------------|---------|
| Table 4.1 Algorithms Performance | 44      |

### ABSTRACT

Nowadays many shopping malls keep track of individual item sales data in order to forecast future client demand and adjust inventory management. In order to be ahead of the competition and earn more profit one needs to create a model which will help to predict and find out the sales of the various product present in the particular store.So to predict out the sales for the big mart one need to use the very important tool i.e. Machine Learning (ML). ML is that field of computer science which gives machines ie computers the ability to learn without doing any type of programming.Using the concepts of machine and basics of data science one can build a model which can help to predict the sales of the big mart.Because of increasing competition among various shopping complex one needs to have some predictive model which could help to gain some useful insights so as to maximize the profit and be ahead of the competitors.

### **CANDIDATE'S DECLARATION**

I hereby declare that the work presented in this report entitled "**Big Mart Sales Prediction Using ML**" in partial fulfillment of the requirements for the award of the degree of Bachelor of Technology in CSE submitted in the department of Computer Science & Engineering and Information Technology, Jaypee University of Information Technology Waknaghat is an authentic record of my own work carried out over a period from August 2021 to December 2021 under the supervision of Dr. Ekta Gandotra (Assistant Professor(SG)).

The matter embodied in the report has not been submitted for the award of any other degree or diploma.

hushi

(Student Signature) Student Name: Khushi Agarwal Roll no: 181487

This is to certify that the above statement made by the candidate is true to the best of my knowledge.

Epta.

(Supervisor Signature) Supervisor Name : Dr. Ekta Gandotra Designation: Assistant Professor Department name: CSE

# Chapter 1 INTRODUCTION

#### **1.1 INTRODUCTION**

The daily competition between different malls as well as big malls is becoming more and more intense because of the rapid rise of international supermarkets and online shoppings. Every mall or mart tries to provide personal and short-term donations or benefits to attract more and more customers on a daily basis, such as the sales price of everything which is usually predicted to be managed through different ways such as corporate asset management, logistics, and transportation service, etc. Current machine learning algorithms that are very complex and provide strategies for predicting or predicting long-term demand for a company's sales, which now also help in overcoming budget and computer programs.

In this report, we basically discuss the subject of specifying a large mart sale or predicting an item for a customer's future need in a few supermarkets in various locations and products that support the previous record. Various ML algorithms such as linear regression, random forest, etc. are used to predict sales volume. As we know, good marketing is probably the lifeblood of all organizations, so sales forecasting now plays an important role in any shopping mall. It is always helpful to predict the best, and develop business strategies about useful markets and to improve market knowledge. Regular sales forecasting research can help in-depth analysis of pre-existing conditions and conditions and then, assumptions are often used in terms of customer acquisition, lack of funding, and strength before setting budgets and marketing plans for the coming year.

In other words, sales forecasts are predicted on existing services of the past. In-depth knowledge of the past is required to develop and enhance market opportunities no matter what the circumstances, especially the external environment, which allows to prepare for the future

needs of the business. Extensive research is ongoing in the retailer's domain to predict longterm sales demand. An important and effective method used to predict the sale of a mathematical method, also called the conventional method, but these methods take more time to predict sales. And these methods could not manage indirect data so to overcome these problems in traditional methods the machine learning techniques used. ML methods can handle not only indirect data but also large data sets well.

#### **1.2 PROBLEM STATEMENT**

Due to increasing competition many malls and bigmart are trying their best to stay ahead in competition. In order to find out what are the various factors which affect the sales of bigmart and what strategies one needs to employ in order to gain more profit one need to have some model on which they can rely .So a predictive model can be made which could help to gain useful information and increase profit.

#### **1.3 OBJECTIVES**

Objectives of these project are:

- a) Predicting future sales from a given dataset.
- b) To understand the key features that are responsible for the sale of a particular product.
- c) Find the best algorithm that will predict sales with the greatest accuracy.

### **1.4 METHODOLOGY**

Figure 1.1 represents the steps of building a model. Following are the steps which one needs to follow while creating a model.







Fig 1.2:Working procedure of proposed model

1. Data collection- The step of every project is to collect the data.

We collected our data from the Kaggle whose link is given below-

https://www.kaggle.com/brijbhushannanda1979/bigmart-sales-data/code

- Data preprocessing-In this step we basically clean our dataset for example check for any missing value in the dataset, if present then handle the missing values. In our dataset attributes like Item Weight and Outlet Size had the missing value.
- 3. EDA-This part is considered as one of the most important parts when it comes to data analysis.To gain important insights of our data one must need to do exploratory data analysis.Here in our project we used two libraries i.e. klib and dtale library.
- 4. Tested various algorithms-Then various algorithms like simple LR, xgboost algorithm were applied in order to find out which algorithm can be used to predict the sales.
- Building the model -After completing all the previous phases which are mentioned above, now our dataset is ready for further phases that is to build the model.
   Once we built the model now it is ready to be used as a predictive model to forecast sales of Big Mart.
- 6. Web deployment-Finally once the prediction can be made for making it more user friendly we have used web development.

#### **CHAPTER 2**

#### LITERATURE SURVEY

#### **2.1. LITERATURE SURVEY**

Kadam,et.al [1] have suggested when the prediction for the sales for bigmart was done using the algorithm like random forest and LR for prediction analysis it gave lesser accuracy.So to overcome this problem we can use another algorithm which is XG boost algorithm which not only gives better accuracy but also is more efficient.

Makridakis, et.al [2] have suggested predicting methods and applications containing Data Lack and short life cycles. So some data like historical data, consumer-focused markets face uncertain needs, which can be an accurate predictor of outcome.

C. M. Wu, et.al [3] have suggested comparison of Different ML Algorithms for Multiple Regression on Black Friday Sales Data used the concept of neural network to compare the various different algorithms. Using neural network as the concept which is very complex and less efficient concluded that we should use much simpler algorithm for the prediction purpose.

Das, et.al [4] have suggested in the prediction of retail sales of footwear which used recurrent Neural Networks and feed forward used the neural network to predict the sales.Using neural network for predicting the sales which is not an efficient method so XGboost algorithm can be used. S. Cheriyan, et.al [5] have suggested in the study they implemented three ML algorithms on the given dataset and the models for evaluating the performance. Based upon the testing the algorithm which gave maximum accuracy was chosen for the prediction which was found to be a gradient boosting algorithm.

A. Krishna, et.al[6] have suggested that both the normal regression and boosting algorithms were implemented and found out that boosting algorithms have better results than the regular algorithms.

### **CHAPTER 3**

### SYSTEM DEVELOPMENT

#### **3.1 ALGORITHMS EMPLOYED**

#### **3.1.1 LINEAR REGRESSION (LR)**

As we know Regression can be termed as a parametric technique which means we can predict a continuous or dependent variable on the basis of a provided datasets of independent variables.

The Equation of simple LR is:

where,

Y : It is basically the variable which we used as a predicted value.

X : It is a variable(s) which is used for making a prediction.

 $\beta$ o : It is said to be a prediction value when X=0.

 $\beta$ 1 : when there is a change in X value by 1 unit then Y value is also changed. It can also be said as slope term  $\in$ 



Fig 3.1 Given figure represent line of regression

#### **3.1.2 RANDOM FOREST REGRESSION**

Random Forest is a tree-based bootstrapping algorithm based on that tree that includes a certain number of decision trees to build a powerful predictive model. Individual learners, a set of random lines and a randomly selected few variables often create a tree of choice. The final prediction may be the function of all predictions made by each learner. In the event of a regression. The final prediction may be the meaning of all the predictions.



Fig 3.2 : Flowchart of Random Forest Regression

#### HYPER PARAMETER TUNING

In ML, optimization of the hyperparameter or problem solving by selecting the correct set of parameters for the learning algorithm. To control the learning process a hyperparameter parameter value is used. In contrast, the values of some parameters are calculated.

The same type of ML model may require different types of weights, learning scales or constraints in order to make different data and information patterns more general. The steps are also called hyperparameters and must be used for the model to solve the ML problem.



Fig 3.3: Relationship between Feature Importance and their F score in Hyper parameter tuning

#### **XGBOOST REGRESSION**

XGBoost stands for eXtreme Gradient Boosting. The implementation of an algorithm designed for the efficient operation of computer time and memory resources. Boosting is a sequential process based on the principle of the ensemble. This includes a collection of lower learners as well improves the accuracy of forecasts.No model prices n heavy for any minute t, based on the results of the previous t-speed. Well-calculated results are given less weight, and the wrong ones are weighed down. With this algorithm system

The XGBoost model uses stepwise, ridge regression internally, automatically selecting features as well as deleting multicollinearity.



Fig 3.4 : Represents the types of XGBoost regression

#### **3.2 PHASE OF MODEL**

#### **3.2.1 DATA AND ITS PREPROCESSING**

In our work, we have used the 2013 Big Mart sales data as a database. Where the data set contains 12 features such as Item Fat, Item Type, MRP Item, Output Type, Object Appearance, Object Weight, Outlet Indicator, Outlet Size, Outlet Year of Establishment, Type of Exit, Exit Identity, and Sales. In these different aspects of responding to the Item Outlet Sales features as well, the other features are also used as the predictive variables. Our dataset has in total 8523 products in various regions and cities. The data set is also based on product level and store-level considerations . Where store level includes features such as city, population density, store capacity, location, etc. and product-level speculation involves factors such as product, ad, etc. After all considerations, a data set is finally created, then the data set is split into two parts that are tested and trained in a ratio of 80:20.

| Variable                  | Description                                                                                 |
|---------------------------|---------------------------------------------------------------------------------------------|
| Item_Identifier           | Unique product ID                                                                           |
| Item_Weight               | Weight of product                                                                           |
| Item_Fat_Content          | Whether the product is low fat or not                                                       |
| Item_Visibility           | The % of total display area of all products in a store allocated to the particular product  |
| Item_Type                 | The category to which the product belongs                                                   |
| Item_MRP                  | Maximum Retail Price (list price) of the product                                            |
| Outlet_Identifier         | Unique store ID                                                                             |
| Outlet_Establishment_Year | The year in which store was established                                                     |
| Outlet_Size               | The size of the store in terms of ground area covered                                       |
| Outlet_Location_Type      | The type of city in which the store is located                                              |
| Outlet_Type               | Whether the outlet is just a grocery store or some sort of supermarket                      |
| Item_Outlet_Sales         | Sales of the product in the particulat store. This is the outcome variable to be predicted. |

#### Fig 3.5: Depicting the features of the dataset

import pandas as pd import numpy as np %matplotlib inline import matplotlib.pyplot as plt import seaborn as sns

Fig 3.6 : How libraries, train and test datasets are imported.

| 0  | df_ | train.head()    |             |                  |                 |                          |                         |                   |                           |             |                      |
|----|-----|-----------------|-------------|------------------|-----------------|--------------------------|-------------------------|-------------------|---------------------------|-------------|----------------------|
| C≁ |     | Item_Identifier | Item_Weight | Item_Fat_Content | Item_Visibility | Item_Type                | Item_MRP                | Outlet_Identifier | Outlet_Establishment_Year | Outlet_Size | Outlet_Location_Type |
|    | 0   | FDA15           | 9.30        | Low Fat          | 0.016047        | Dairy                    | 249.8092                | OUT049            | 1999                      | Medium      | Tier 1               |
|    | 1   | DRC01           | 5.92        | Regular          | 0.019278        | Soft Drinks              | 48.2692                 | OUT018            | 2009                      | Medium      | Tier 3               |
|    | 2   | FDN15           | 17.50       | Low Fat          | 0.016760        | Meat                     | 14 <mark>1.6</mark> 180 | OUT049            | 1999                      | Medium      | Tier 1               |
|    | 3   | FDX07           | 19.20       | Regular          | 0.000000        | Fruits and<br>Vegetables | 182.0950                | OUT010            | 1998                      | NaN         | Tier 3               |
|    | 4   | NCD19           | 8.93        | Low Fat          | 0.000000        | Household                | 53.8614                 | OUT013            | 1987                      | High        | Tier 3               |
|    | _   |                 |             |                  |                 |                          |                         |                   |                           |             |                      |

Fig 3.7 Head function representing first five dataset

Item\_Visibility has a value = 0 as values which have no meaning, Item\_Identifier is a character string with some specific code used by the bigmart and Outlet\_Size contains some missing values as well.

### [] df\_train.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8523 entries, 0 to 8522
Data columns (total 12 columns):
                              Non-Null Count Dtype
#
    Column
    -----
                                              ----
----
   Item Identifier
                              8523 non-null object
0
   Item Weight
                              7060 non-null float64
1
                              8523 non-null object
2
   Item Fat Content
3
   Item Visibility
                              8523 non-null float64
                              8523 non-null object
4
    Item_Type
5
                              8523 non-null float64
   Item MRP
                              8523 non-null object
   Outlet Identifier
6
7 Outlet_Establishment_Year 8523 non-null int64
                              6113 non-null object
8 Outlet Size
   Outlet_Location_Type
                              8523 non-null object
9
                              8523 non-null object
10 Outlet Type
11 Item Outlet Sales
                              8523 non-null float64
dtypes: float64(4), int64(1), object(7)
memory usage: 799.2+ KB
```

Fig 3.8 : Description of dataset using info() method

In figure 3.8 we can clearly see that there are in total 12 features out of which Numeric data count is 5 and Categorical data count is 7.

### [ ] df\_train.describe()

|       | Item_Weight | Item_Visibility | Item_MRP                | Outlet_Establishment_Year | <pre>Item_Outlet_Sales</pre> |
|-------|-------------|-----------------|-------------------------|---------------------------|------------------------------|
| count | 7060.000000 | 8523.000000     | 8523.000000             | 8523.00000                | 8523.000000                  |
| mean  | 12.857645   | 0.066132        | 140.992782              | 1997.831867               | 2181.288914                  |
| std   | 4.643456    | 0.051598        | 62.275067               | 8.371760                  | 1706.499616                  |
| min   | 4.555000    | 0.000000        | 31.290000               | 1985.000000               | 33.290000                    |
| 25%   | 8.773750    | 0.026989        | 93.826500               | 1987.000000               | 834.247400                   |
| 50%   | 12.600000   | 0.053931        | 143.012800              | 1999.000000               | 1794.331000                  |
| 75%   | 16.850000   | 0.094585        | <mark>185.643700</mark> | 2004.000000               | 3101.296400                  |
| max   | 21.350000   | 0.328391        | 266.888400              | 2009.000000               | 13086.964800                 |

Fig 3.9 : Description of dataset using describe() method

In figure 3. Item\_Visibility feature has a minimum value of 0.00 and Item\_weight has count of 7060.

#### 3.2.2 HANDLING MISSING VALUES

While analyzing the dataset we come across some missing values in the dataset. In order to check for the missing value we have the following code-

| 0   | df_train.isnull(). <mark>sum</mark> () |      |  |  |  |  |  |  |
|-----|----------------------------------------|------|--|--|--|--|--|--|
| C≁  | Item_Identifier                        | 0    |  |  |  |  |  |  |
| _   | Item_Weight                            | 1463 |  |  |  |  |  |  |
|     | Item_Fat_Content                       | 0    |  |  |  |  |  |  |
|     | Item_Visibility                        | 0    |  |  |  |  |  |  |
|     | Item_Type                              | 0    |  |  |  |  |  |  |
|     | Item_MRP                               | 0    |  |  |  |  |  |  |
|     | Outlet_Identifier                      | 0    |  |  |  |  |  |  |
|     | Outlet_Establishment_Year              | 0    |  |  |  |  |  |  |
|     | Outlet_Size                            | 2410 |  |  |  |  |  |  |
|     | Outlet_Location_Type                   | 0    |  |  |  |  |  |  |
|     | Outlet_Type                            | 0    |  |  |  |  |  |  |
|     | Item_Outlet_Sales                      | 0    |  |  |  |  |  |  |
|     | dtype: int64                           |      |  |  |  |  |  |  |
| [5] | <pre>df_test.isnull().sum()</pre>      |      |  |  |  |  |  |  |
|     | Item_Identifier                        | 0    |  |  |  |  |  |  |
|     | Item_Weight                            | 976  |  |  |  |  |  |  |
|     | Item_Fat_Content                       | 0    |  |  |  |  |  |  |
|     | Item_Visibility                        | 0    |  |  |  |  |  |  |
|     | Item_Type                              | 0    |  |  |  |  |  |  |
|     | Item_MRP                               | 0    |  |  |  |  |  |  |
|     | Outlet_Identifier                      | 0    |  |  |  |  |  |  |
|     | Outlet_Establishment_Year              | 0    |  |  |  |  |  |  |
|     | Outlet_Size                            | 1606 |  |  |  |  |  |  |
|     | Outlet_Location_Type                   | 0    |  |  |  |  |  |  |
|     | Outlet_Type                            | 0    |  |  |  |  |  |  |
|     | dtype: int64                           |      |  |  |  |  |  |  |

Fig 3.10 Depicts the number of missing value

From the above Fig 3.10 we can clearly see that column names item\_weight and outlet\_size have 976 and 1606 missing values respectively.

In order to handle these missing values we have different approaches for e.g. dropping the rows having missing value or filling the missing value with suitable values using different methods. Looking at our dataset we have 8523 rows so dropping would not be a better option as it would lead to decrease the prediction accuracy.

```
df_train.info()
```

| Data | i columns (total 12 columns) | :     |            |         |
|------|------------------------------|-------|------------|---------|
| #    | Column                       | Non-I | Null Count | Dtype   |
|      |                              |       |            |         |
| 0    | Item_Identifier              | 8523  | non-null   | object  |
| 1    | Item_Weight                  | 7060  | non-null   | float64 |
| 2    | Item_Fat_Content             | 8523  | non-null   | object  |
| 3    | Item_Visibility              | 8523  | non-null   | float64 |
| 4    | Item_Type                    | 8523  | non-null   | object  |
| 5    | Item_MRP                     | 8523  | non-null   | float64 |
| 6    | Outlet_Identifier            | 8523  | non-null   | object  |
| 7    | Outlet_Establishment_Year    | 8523  | non-null   | int64   |
| 8    | Outlet_Size                  | 6113  | non-null   | object  |
| 9    | Outlet_Location_Type         | 8523  | non-null   | object  |
| 10   | Outlet_Type                  | 8523  | non-null   | object  |
| 11   | Item Outlet Sales            | 8523  | non-null   | float64 |

Fig 3.11 Datatype of various features of dataset

Since item\_weight is a numerical feature, filling its missing value using the average imputation method.

```
[8] df_train['Item_Weight'].fillna(df_train['Item_Weight'].mean(),inplace=True)
     df_test['Item_Weight'].fillna(df_test['Item_Weight'].mean(),inplace=True)
[9] df_train.isnull().sum()
                                      0
     Item Identifier
     Item Weight
                                      0
     Item Fat Content
                                      0
     Item Visibility
                                      0
                                      0
     Item_Type
     Item MRP
                                     0
     Outlet_Identifier
                                     0
     Outlet Establishment Year
                                     0
     Outlet Size
                                   2410
     Outlet_Location_Type
                                     0
     Outlet_Type
                                     0
     Item Outlet Sales
                                      0
```

Fig 3.12 Missing value in outlet\_size column = 2410

dtype: int64

```
df_train['Outlet_Size'].fillna(df_train['Outlet_Size'].mode()[0],inplace=True)
df_test['Outlet_Size'].fillna(df_test['Outlet_Size'].mode()[0],inplace=True)
```

Fig 3.13: Filling Values in Outlet\_Size.

Outlet size is a categorical feature so filling the value using the mode imputation method

So finally -

| df_train.isnull().sum()   |   |
|---------------------------|---|
| Item_Identifier           | 0 |
| Item_Weight               | 0 |
| Item_Fat_Content          | 0 |
| Item_Visibility           | 0 |
| Item_Type                 | 0 |
| Item_MRP                  | 0 |
| Outlet_Identifier         | 0 |
| Outlet_Establishment_Year | 0 |
| Outlet_Size               | 0 |
| Outlet_Location_Type      | 0 |
| Outlet_Type               | 0 |
| Item_Outlet_Sales         | 0 |
| dtype: int64              |   |

Fig 3.14 : Now there are no missing values in the item\_weight and Outer\_size columns.

#### 3.2.3 EDA

### a) EDA WITH DTALE LIBRARY

D-Tale is a Flask and React-based powerful tool which is used to analyze and visualize pandas' data structure seamlessly.

D-Tale also supports objects like Data Frame, Series, etc.



import dtale.app as dtale\_app
dtale\_app.USE\_COLAB = True
dtale.show(df\_train)

https://rehxjuyyoz-496ff2e9c6d22116-40000-colab.googleusercontent.com/dtale/main/2

### Fig 3.15: Represents how to import dtale library and display the table

| ▶ 10<br>8523 | Item_Weight | Item_Fat_Content | Item_Visibility : | Item_Type             | Item_MRP | Outlet_Establishment_Year | Outlet_Size | Outlet_Location_Type : | Outlet_Type       | Item_Outlet_Sales |
|--------------|-------------|------------------|-------------------|-----------------------|----------|---------------------------|-------------|------------------------|-------------------|-------------------|
| 0            | 9.30        | Low Fat          | 0.02              | Dairy                 | 249.81   | 1999                      | Medium      | Tier 1                 | Supermarket Type1 | 3735.14           |
| 1            | 5.92        | Regular          | 0.02              | Soft Drinks           | 48.27    | 2009                      | Medium      | Tier 3                 | Supermarket Type2 | 443.42            |
| 2            | 17.50       | Low Fat          | 0.02              | Meat                  | 141.62   | 1999                      | Medium      | Tier 1                 | Supermarket Type1 | 2097.27           |
| 3            | 19.20       | Regular          | 0.00              | Fruits and Vegetables | 182.10   | 1998                      | nan         | Tier 3                 | Grocery Store     | 732.38            |
| 4            | 8.93        | Low Fat          | 0.00              | Household             | 53.86    | 1987                      | High        | Tier 3                 | Supermarket Type1 | 994.71            |
| 5            | 10.40       | Regular          | 0.00              | Baking Goods          | 51.40    | 2009                      | Medium      | Tier 3                 | Supermarket Type2 | 556.61            |
| 6            | 13.65       | Regular          | 0.01              | Snack Foods           | 57.66    | 1987                      | High        | Tier 3                 | Supermarket Type1 | 343.55            |
| 7            | 12.86       | Low Fat          | 0.13              | Snack Foods           | 107.76   | 1985                      | Medium      | Tier 3                 | Supermarket Type3 | 4022.76           |
| 8            | 16.20       | Regular          | 0.02              | Frozen Foods          | 96.97    | 2002                      | nan         | Tier 2                 | Supermarket Type1 | 1076.60           |
| 9            | 19.20       | Regular          | 0.09              | Frozen Foods          | 187.82   | 2007                      | nan         | Tier 2                 | Supermarket Type1 | 4710.54           |
| 10           | 11.80       | Low Fat          | 0.00              | Fruits and Vegetables | 45.54    | 1999                      | Medium      | Tier 1                 | Supermarket Type1 | 1516.03           |
| 11           | 18.50       | Regular          | 0.05              | Dairy                 | 144.11   | 1997                      | Small       | Tier 1                 | Supermarket Type1 | 2187.15           |
| 12           | 15.10       | Regular          | 0.10              | Fruits and Vegetables | 145.48   | 1999                      | Medium      | Tier 1                 | Supermarket Type1 | 1589.26           |
| 13           | 17.60       | Regular          | 0.05              | Snack Foods           | 119.68   | 1997                      | Small       | Tier 1                 | Supermarket Type1 | 2145.21           |
| 14           | 16.35       | Low Fat          | 0.07              | Fruits and Vegetables | 196.44   | 1987                      | High        | Tier 3                 | Supermarket Type1 | 1977.43           |
| 15           | 9.00        | Regular          | 0.07              | Breakfast             | 56.36    | 1997                      | Small       | Tier 1                 | Supermarket Type1 | 1547.32           |
| 16           | 11.80       | Low Fat          | 0.01              | Health and Hygiene    | 115.35   | 2009                      | Medium      | Tier 3                 | Supermarket Type2 | 1621.89           |
| 17           | 9.00        | Regular          | 0.07              | Breakfast             | 54.36    | 1999                      | Medium      | Tier 1                 | Supermarket Type1 | 718.40            |
| 18           | 12.86       | Low Fat          | 0.03              | Hard Drinks           | 113.28   | 1985                      | Medium      | Tier 3                 | Supermarket Type3 | 2303.67           |
| 19           | 13.35       | Low Fat          | 0.10              | Dairy                 | 230.54   | 2004                      | Small       | Tier 2                 | Supermarket Type1 | 2748.42           |
| 20           | 18.85       | Regular          | 0.14              | Snack Foods           | 250.87   | 1987                      | High        | Tier 3                 | Supermarket Type1 | 3775.09           |

| 21 | 12.86 | Regular | 0.04 | Baking Goods          | 144.54 | 1985 | Medium | Tier 3 | Supermarket Type3 | 4064.04 |
|----|-------|---------|------|-----------------------|--------|------|--------|--------|-------------------|---------|
| 22 | 14.60 | Low Fat | 0.03 | Household             | 196.51 | 2004 | Small  | Tier 2 | Supermarket Type1 | 1587.27 |
| 23 | 12.86 | Low Fat | 0.06 | Baking Goods          | 107.69 | 1985 | Small  | Tier 1 | Grocery Store     | 214.39  |
| 24 | 13.85 | Regular | 0.03 | Frozen Foods          | 165.02 | 1997 | Small  | Tier 1 | Supermarket Type1 | 4078.03 |
| 25 | 13.00 | Low Fat | 0.10 | Household             | 45.91  | 2007 | nan    | Tier 2 | Supermarket Type1 | 838.91  |
| 26 | 7.65  | Regular | 0.07 | Snack Foods           | 42.31  | 2004 | Small  | Tier 2 | Supermarket Type1 | 1065.28 |
| 27 | 11.65 | low fat | 0.02 | Hard Drinks           | 39.12  | 1987 | High   | Tier 3 | Supermarket Type1 | 308.93  |
| 28 | 5.93  | Regular | 0.16 | Dairy                 | 45.51  | 1998 | nan    | Tier 3 | Grocery Store     | 178.43  |
| 29 | 12.86 | Regular | 0.07 | Canned                | 43.65  | 1985 | Small  | Tier 1 | Grocery Store     | 125.84  |
| 30 | 19.25 | Low Fat | 0.17 | Dairy                 | 55.80  | 1998 | nan    | Tier 3 | Grocery Store     | 163.79  |
| 31 | 18.60 | Low Fat | 0.08 | Health and Hygiene    | 96.44  | 2009 | Medium | Tier 3 | Supermarket Type2 | 2741.76 |
| 32 | 18.70 | Low Fat | 0.00 | Snack Foods           | 256.67 | 2009 | Medium | Tier 3 | Supermarket Type2 | 3068.01 |
| 33 | 17.85 | Low Fat | 0.00 | Breads                | 93.14  | 2002 | nan    | Tier 2 | Supermarket Type1 | 2174.50 |
| 34 | 17.50 | Low Fat | 0.10 | Soft Drinks           | 174.87 | 1997 | Small  | Tier 1 | Supermarket Type1 | 2085.29 |
| 35 | 10.00 | Low Fat | 0.09 | Health and Hygiene    | 146.71 | 1999 | Medium | Tier 1 | Supermarket Type1 | 3791.07 |
| 36 | 12.86 | Regular | 0.06 | Fruits and Vegetables | 128.07 | 1985 | Medium | Tier 3 | Supermarket Type3 | 2797.69 |
| 37 | 8.85  | Regular | 0.11 | Soft Drinks           | 122.54 | 2009 | Medium | Tier 3 | Supermarket Type2 | 1609.90 |
| 38 | 12.86 | Regular | 0.12 | Snack Foods           | 36.99  | 1985 | Medium | Tier 3 | Supermarket Type3 | 388.16  |
| 39 | 12.86 | Low Fat | 0.03 | Snack Foods           | 87.62  | 1985 | Medium | Tier 3 | Supermarket Type3 | 2180.50 |
| 40 | 13.35 | Low Fat | 0.10 | Dairy                 | 230.64 | 1997 | Small  | Tier 1 | Supermarket Type1 | 3435.53 |
| 41 | 9.80  | Low Fat | 0.03 | Meat                  | 126.00 | 1987 | High   | Tier 3 | Supermarket Type1 | 2150.53 |
| 42 | 13.60 | Low Fat | 0.12 | Snack Foods           | 192.91 | 1999 | Medium | Tier 1 | Supermarket Type1 | 2527.38 |
| 43 | 21.35 | Low Fat | 0.07 | Canned                | 259.93 | 2009 | Medium | Tier 3 | Supermarket Type2 | 6768.52 |
| 44 | 12.15 | Regular | 0.04 | Canned                | 126.50 | 1987 | High   | Tier 3 | Supermarket Type1 | 373.51  |
| 45 | 6.42  | LF      | 0.09 | Dairy                 | 178.10 | 1998 | nan    | Tier 3 | Grocery Store     | 358.20  |
| 46 | 19.60 | Low Fat | 0.00 | Health and Hygiene    | 153.30 | 2002 | nan    | Tier 2 | Supermarket Type1 | 2428.84 |
|    |       |         |      |                       |        |      |        |        |                   |         |

Fig 3.16: The Dtale Window



Unique Row Values: Medium (5203), Small (2388), High (932)





Fig 3.18 : This figure represents the Item\_Weight value range

### b) EDA USING KLIB LIBRARY

Klib is a python library which is used for importing, cleaning, analyzing and preprocessing the data.





Fig 3.19 : Categorical data plot of all variables present in dataset using Klib Library



Fig 3.20 : Feature- correlation using klib Library

| 3                         | Item_Weight | Item_Visibility | Item_MRP | Outlet_Establishment_Year | <pre>Item_Outlet_Sales</pre> |  |  |  |  |
|---------------------------|-------------|-----------------|----------|---------------------------|------------------------------|--|--|--|--|
| Item_Weight               | 1.00        | -0.01           | 0.02     | -0.01                     | 0.01                         |  |  |  |  |
| Item_Visibility           | -0.01       | 1.00            | -0.00    | -0.07                     | -0.13                        |  |  |  |  |
| Item_MRP                  | 0.02        | -0.00           | 1.00     | 0.01                      | 0.57                         |  |  |  |  |
| Outlet_Establishment_Year | -0.01       | -0.07           | 0.01     | 1.00                      | -0.05                        |  |  |  |  |
| Item_Outlet_Sales         | 0.01        | -0.13           | 0.57     | -0.05                     | 1.00                         |  |  |  |  |

Fig 3.21 :Color- encoded correlation matrix.



Fig 3.22: Distribution plot for every numeric feature.

c) EDA WITH SEABORN LIBRARY- Seaborn is a data visualization library built on top of matplotlib

#### EDA using seaborn library



# [ ] sns.heatmap(df\_train.corr(),annot=True) plt.show()

Fig 3.23 : Correlation between different features

From the figure 3.23 we can clearly see that item\_visibility attribute has the lowest correlation with the other target variables and Item\_MRP has strong positive correlation with target variables i.e. 0.57.

#### **3.2.4 DATA CLEANING USING KLIB LIBRARY**

Data cleaning is basically the process where the corrupt recordset, tables or databases are detected and then corrected by replacing, modifying, or deleting the dirty or coarse data.

```
    * klib.clean - functions for cleaning datasets
klib.data_cleaning(df_train) # performs datacleaning (drop duplicates & empty rows/cols, adjust dtypes,...)
    Shape of cleaned data: (8523, 10)Remaining NAs: 2410
    Changes:
Dropped rows: 0
of which 0 duplicates. (Rows: [])
```

Dropped columns: 0 of which 0 single valued. Columns: [] Dropped missing values: 0 Reduced memory by at least: 0.46 MB (-70.77%)

### Fig 3.24 :Cleaning the data using klib library

| [105] |                        | item_weight                 | <pre>item_fat_content</pre> | item_visibility | item_type                | item_mrp   | <pre>outlet_establishment_year</pre> | outlet_size | <pre>outlet_location_type</pre> | <pre>outlet_type</pre> | item_outlet_sal |
|-------|------------------------|-----------------------------|-----------------------------|-----------------|--------------------------|------------|--------------------------------------|-------------|---------------------------------|------------------------|-----------------|
| C+    | 0                      | 9.300000                    | Low Fat                     | 0.016047        | Dairy                    | 249.809204 | 1999                                 | Medium      | Tier 1                          | Supermarket<br>Type1   | 3735.1379       |
|       | 1                      | 5.920000                    | Regular                     | 0.019278        | Soft Drinks              | 48.269199  | 2009                                 | Medium      | Tier 3                          | Supermarket<br>Type2   | 443.4227        |
|       | 2                      | 17.500000                   | Low Fat                     | 0.016760        | Meat                     | 141.617996 | 1999                                 | Medium      | Tier 1                          | Supermarket<br>Type1   | 2097.2700       |
|       | 3                      | 19.200001                   | Regular                     | 0.000000        | Fruits and<br>Vegetables | 182.095001 | 1998                                 | NaN         | Tier 3                          | Grocery<br>Store       | 732.3800        |
|       | 4                      | 8.930000                    | Low Fat                     | 0.000000        | Household                | 53.861401  | 1987                                 | High        | Tier 3                          | Supermarket<br>Type1   | 994.7052        |
| ٤     |                        |                             |                             |                 |                          |            |                                      |             |                                 |                        |                 |
|       | 8518                   | 6.865000                    | Low Fat                     | 0.056783        | Snack<br>Foods           | 214.521805 | 1987                                 | High        | Tier 3                          | Supermarket<br>Type1   | 2778.3833       |
|       | 8519                   | 8.380000                    | Regular                     | 0.046982        | Baking<br>Goods          | 108.156998 | 2002                                 | NaN         | Tier 2                          | Supermarket<br>Type1   | 549.2849        |
| 1     | 8520                   | 10.600000                   | Low Fat                     | 0.035186        | Health and<br>Hygiene    | 85.122398  | 2004                                 | Small       | Tier 2                          | Supermarket<br>Type1   | 1193.1136       |
| 1     | 8521                   | 7.210000                    | Regular                     | 0.145221        | Snack<br>Foods           | 103.133202 | 2009                                 | Medium      | Tier 3                          | Supermarket<br>Type2   | 1845.5976       |
| 1     | 8522                   | 14.800000                   | Low Fat                     | 0.044878        | Soft Drinks              | 75.467003  | 1997                                 | Small       | Tier 1                          | Supermarket<br>Type1   | 765.6699        |
| 8     | 8 <b>522</b><br>523 ro | 14.800000<br>ws × 10 column | Low Fat                     | 0.044878        | Soft Drinks              | 75.467003  | 1997                                 | Small       | Tier 1                          | Supermarket<br>Type1   | 765.6699        |

### [107] df\_train.info()

| <classifier (class<="" (classifier="" th=""><th>ss 'pandas.core.frame.DataF</th><th>rame'&gt;</th><th></th></classifier> | ss 'pandas.core.frame.DataF                        | rame'>         |         |
|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------|---------|
| Range                                                                                                                    | eIndex: 8523 entries, 0 to                         | 8522           |         |
| Data                                                                                                                     | columns (total 10 columns)                         | :              |         |
| #                                                                                                                        | Column                                             | Non-Null Count | Dtype   |
| 222                                                                                                                      |                                                    |                | 22222   |
| 0                                                                                                                        | item_weight                                        | 8523 non-null  | float64 |
| 1                                                                                                                        | item_fat_content                                   | 8523 non-null  | object  |
| 2                                                                                                                        | item_visibility                                    | 8523 non-null  | float64 |
| 3                                                                                                                        | item_type                                          | 8523 non-null  | object  |
| 4                                                                                                                        | item_mrp                                           | 8523 non-null  | float64 |
| 5                                                                                                                        | outlet_establishment_year                          | 8523 non-null  | int64   |
| 6                                                                                                                        | outlet_size                                        | 6113 non-null  | object  |
| 7                                                                                                                        | <pre>outlet_location_type</pre>                    | 8523 non-null  | object  |
| 8                                                                                                                        | outlet_type                                        | 8523 non-null  | object  |
| 9                                                                                                                        | item_outlet_sales                                  | 8523 non-null  | float64 |
| dtype                                                                                                                    | es: float64(4), int64(1), o<br>ry usage: 666.0+ KB | bject(5)       |         |

Fig 3.26 : Represents the 12 features of the dataset ie numerical and categorical

|  | Data | columns (total 10 columns)           | :    |            |          |
|--|------|--------------------------------------|------|------------|----------|
|  | #    | Column                               | Non- | Null Count | Dtype    |
|  |      |                                      |      |            |          |
|  | 0    | item weight                          | 8523 | non-null   | float32  |
|  | 1    | item_fat_content                     | 8523 | non-null   | category |
|  | 2    | item visibility                      | 8523 | non-null   | float32  |
|  | 3    | item_type                            | 8523 | non-null   | category |
|  | 4    | item_mrp                             | 8523 | non-null   | float32  |
|  | 5    | <pre>outlet_establishment_year</pre> | 8523 | non-null   | int16    |
|  | 6    | outlet_size                          | 6113 | non-null   | category |
|  | 7    | outlet_location_type                 | 8523 | non-null   | category |
|  | 8    | outlet_type                          | 8523 | non-null   | category |
|  | 9    | item outlet sales                    | 8523 | non-null   | float32  |

Fig 3.27 : Converting to more efficient data types using convert\_datatypes function

#### 3.2.5 FEATURE ENGINEERING

Feature Engineering is a way of using domain data to understand how to build mechanical operations learning algorithms. When feature engineering is done properly, the ability to predict ML algorithms are developed by creating useful raw data features that simplify the ML process. Feature engineering including correction of incorrect values. In the device database, object visibility has a small value of 0 which is unacceptable, because the object must be accessible to all, and so it is replaced by the mean of the column.

### 1) Label Encoding

[ ] from sklearn.preprocessing import LabelEncoder le=LabelEncoder()

df\_train['item\_fat\_content']= le.fit\_transform(df\_train['item\_fat\_content'])
df\_train['item\_type']= le.fit\_transform(df\_train['item\_type'])
df\_train['outlet\_size']= le.fit\_transform(df\_train['outlet\_size'])
df\_train['outlet\_location\_type']= le.fit\_transform(df\_train['outlet\_location\_type'])
df\_train['outlet\_type']= le.fit\_transform(df\_train['outlet\_type'])

| df_tra  | in             |                  |                 |           |            |                           |             |                      | T V O L     |                        |
|---------|----------------|------------------|-----------------|-----------|------------|---------------------------|-------------|----------------------|-------------|------------------------|
|         | item_weight    | item_fat_content | item_visibility | item_type | item_mrp   | outlet_establishment_year | outlet_size | outlet_location_type | outlet_type | item_outlet_sal        |
| 0       | 9.300000       | 1                | 0.016047        | 4         | 249.809204 | 1999                      | 1           | 0                    | 1           | 3735.1379              |
| 1       | 5.920000       | 2                | 0.019278        | 14        | 48.269199  | 2009                      | 1           | 2                    | 2           | 443.4227               |
| 2       | 17.500000      | 1                | 0.016760        | 10        | 141.617996 | 1999                      | 1           | 0                    | 1           | 2097.2700              |
| 3       | 19.200001      | 2                | 0.000000        | 6         | 182.095001 | 1998                      | 3           | 2                    | 0           | 732.3800               |
| 4       | 8.930000       | 1                | 0.000000        | 9         | 53.861401  | 1987                      | 0           | 2                    | 1           | 994.7052               |
|         |                |                  |                 |           |            |                           |             |                      |             |                        |
| 8518    | 6.865000       | 1                | 0.056783        | 13        | 214.521805 | 1987                      | 0           | 2                    | 1           | 2778.3833              |
| 8519    | 8.380000       | 2                | 0.046982        | 0         | 108.156998 | 2002                      | 3           | 1                    | 1           | 549.2849               |
| 8520    | 10.600000      | 1                | 0.035186        | 8         | 85.122398  | 2004                      | 2           | 1                    | 1           | <mark>1193.1136</mark> |
| 8521    | 7.210000       | 2                | 0.145221        | 13        | 103.133202 | 2009                      | 1           | 2                    | 2           | 1845.5976              |
| 8522    | 14.800000      | 1                | 0.044878        | 14        | 75.467003  | 1997                      | 2           | 0                    | 1           | 765.6699               |
| 8523 ro | ws × 10 columr | IS               |                 |           |            |                           |             |                      |             |                        |



#### 2) Splitting our data into train and test

- [ ] X=df\_train.drop('item\_outlet\_sales',axis=1)
- [ ] Y=df\_train['item\_outlet\_sales']

from sklearn.model\_selection import train\_test\_split

X\_train, X\_test, Y\_train, Y\_test = train\_test\_split(X,Y, random\_state=101, test\_size=0.2)

Fig 3.29 : Splitting of data into train and test data set.

#### 3) Standarization

[ ] X.describe()

|       | item_weight | <pre>item_fat_content</pre> | item_visibility | item_type   | item_mrp    | outlet_establishment_year | <pre>outlet_size</pre> | <pre>outlet_location_type</pre> | <pre>outlet_type</pre> |
|-------|-------------|-----------------------------|-----------------|-------------|-------------|---------------------------|------------------------|---------------------------------|------------------------|
| count | 8523.000000 | 8523.000000                 | 8523.000000     | 8523.000000 | 8523.000000 | 8523.000000               | 8523.000000            | 8523.000000                     | 8523.000000            |
| mean  | 12.858088   | 1.369354                    | 0.066132        | 7.226681    | 140.992767  | 1997.831867               | 1.736360               | 1.112871                        | 1.201220               |
| std   | 4.226130    | 0.644810                    | 0.051598        | 4.209990    | 62.275051   | 8.371760                  | 0.989181               | 0.812757                        | 0.796459               |
| min   | 4.555000    | 0.000000                    | 0.000000        | 0.000000    | 31.290001   | 1985.000000               | 0.000000               | 0.000000                        | 0.000000               |
| 25%   | 9.310000    | 1.000000                    | 0.026989        | 4.000000    | 93.826500   | 1987.000000               | 1.000000               | 0.000000                        | 1.000000               |
| 50%   | 12.857645   | 1.000000                    | 0.053931        | 6.000000    | 143.012802  | 1999.000000               | 2.000000               | 1.000000                        | 1.000000               |
| 75%   | 16.000000   | 2.000000                    | 0.094585        | 10.000000   | 185.643700  | 2004.000000               | 3.000000               | 2.000000                        | 1.000000               |
| max   | 21.350000   | 4.000000                    | 0.328391        | 15.000000   | 266.888397  | 2009.000000               | 3.000000               | 2.000000                        | 3.000000               |

Fig 3.30 : Standardization of dataset

```
[] X_train_std
```

#### X\_test\_std

Fig 3.31 X train std array and X test std array

[] Y\_train

| 3684  | 163.786804                    |         |       |        |         |
|-------|-------------------------------|---------|-------|--------|---------|
| 1935  | 1607.241211                   |         |       |        |         |
| 5142  | 1510.034424                   |         |       |        |         |
| 4978  | 1784.343994                   |         |       |        |         |
| 2299  | 3558.035156                   |         |       |        |         |
|       |                               |         |       |        |         |
| 599   | 5502.836914                   |         |       |        |         |
| 5695  | 1436.796387                   |         |       |        |         |
| 8006  | 2167.844727                   |         |       |        |         |
| 1361  | 2700.484863                   |         |       |        |         |
| 1547  | 829.586792                    |         |       |        |         |
| Name: | <pre>item_outlet_sales,</pre> | Length: | 6818, | dtype: | float32 |

[] Y\_test

| Name: | <pre>item_outlet_sales,</pre> | Length: | 1705, | dtype: | float32 |
|-------|-------------------------------|---------|-------|--------|---------|
| 6629  | 2418.185547                   |         |       |        |         |
| 3891  | 1358.232056                   |         |       |        |         |
| 531   | 370.184814                    |         |       |        |         |
| 4996  | 914.809204                    |         |       |        |         |
| 1317  | 1721.093018                   |         |       |        |         |
|       |                               |         |       |        |         |
| 6954  | 2450.144043                   |         |       |        |         |
| 7089  | 872.863770                    |         |       |        |         |
| 3411  | 1947.464966                   |         |       |        |         |
| 8355  | 2795.694092                   |         |       |        |         |
| 8179  | 904.822205                    |         |       |        |         |

Fig 3.32 Y\_train array and Y\_test array

In figures 3.33 and 3.34 we just split the train and test data into X\_train\_std , Y\_train, X\_test\_std and Y\_test.

#### **3.2.6 MODEL BUILDING**

Now the dataset is ready to fit a model after performing Data Preprocessing and Feature Transformation. The training set is fed into the algorithm in order to learn how to predict values. Testing data is given as input after Model Building a target variable to predict. The models are built using:

- a) LR
- b) RF Regression
- c) Hyper Parameter Tuning
- d) XGBoost Regression
- e) Decision Tree
- f) Ridge Regression

### Model building

#### 1. Linear regression

- [ ] lr.fit(X\_train\_std,Y\_train)

LinearRegression()

```
lr.predict(X_test_std)
```

array([2110.22755889, 2147.54273582, 1241.33075705, ..., 1253.40857534, 2425.63758608, 2378.49866902])

```
Y_pred_lr=lr.predict(X_test_std)
```

from sklearn.metrics import r2\_score, mean\_absolute\_error, mean\_squared\_error

```
print(r2_score(Y_test,Y_pred_lr))
print(mean_absolute_error(Y_test,Y_pred_lr))
print(np.sqrt(mean_squared_error(Y_test,Y_pred_lr)))
```

```
0.5020054027842016
885.7810693115644
1164.996528679539
```

Fig 3.35: Value of  $R^2$  in Linear Regression = 0.50

```
2) RANDOM FOREST REGRESSION
```

```
[ ] from sklearn.ensemble import RandomForestRegressor
rf= RandomForestRegressor(n_estimators=1000)
```

[ ] rf.fit(X\_train\_std,Y\_train)

RandomForestRegressor(n\_estimators=1000)

[ ] Y\_pred\_rf= rf.predict(X\_test\_std)

```
[ ] print(r2_score(Y_test,Y_pred_rf))
    print(mean_absolute_error(Y_test,Y_pred_rf))
    print(np.sqrt(mean_squared_error(Y_test,Y_pred_rf)))
```

```
0.5509957886177873
777.7411339180328
1106.209854454175
```

Fig 3.36: Value of  $R^2$  in Random Forest Regression = 0.55

#### Hyperparameter Tuning

```
[ ] from sklearn.model selection import RepeatedStratifiedKFold
    from sklearn.model_selection import GridSearchCV
    # define models and parameters
    model = RandomForestRegressor()
    n_estimators = [10, 100, 1000]
    max_depth=range(1,31)
    min samples leaf=np.linspace(0.1, 1.0)
    max features=["auto", "sqrt", "log2"]
    min_samples_split=np.linspace(0.1, 1.0, 10)
    # define grid search
    grid = dict(n estimators=n estimators)
    #cv = RepeatedStratifiedKFold(n splits=5, n repeats=3, random state=101)
    grid_search_forest = GridSearchCV(estimator=model, param_grid=grid, n_jobs=-1,
                               scoring='r2',error score=0,verbose=2,cv=2)
    grid_search_forest.fit(X_train_std, Y_train)
    # summarize results
    print(f"Best: {grid search forest.best score :.3f} using {grid search forest.best params }")
    means = grid_search_forest.cv_results_['mean_test_score']
    stds = grid_search_forest.cv_results_['std_test_score']
    params = grid search forest.cv results ['params']
    for mean, stdev, param in zip(means, stds, params):
        print(f"{mean:.3f} ({stdev:.3f}) with: {param}")
    Fitting 2 folds for each of 3 candidates, totalling 6 fits
    Best: 0.551 using {'n estimators': 1000}
    0.509 (0.007) with: { 'n_estimators': 10}
```

```
0.546 (0.006) with: {'n_estimators': 100}
0.551 (0.006) with: {'n_estimators': 1000}
```

```
grid_search_forest.best_params_
{'n_estimators': 1000}
Y_pred_rf_grid=grid_search_forest.predict(X_test_std)
r2_score(Y_test,Y_pred_rf_grid)
0.5506742023512964
```

grid\_search\_forest.best\_params\_

{'n\_estimators': 1000}

Y\_pred\_rf\_grid=grid\_search\_forest.predict(X\_test\_std)

r2\_score(Y\_test,Y\_pred\_rf\_grid)

0.5506742023512964

Fig 3.37: Value of R2 = 0.55

```
4) XGBOOST REGRESSION
```

```
[ ] from xgboost import XGBRegressor
from sklearn import metrics
```

[ ] regressor = XGBRegressor()

[ ] regressor.fit(X\_train, Y\_train)

[13:25:22] WARNING: /workspace/src/objective/regression\_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror. XGBRegressor()

```
[ ] # prediction on training data
    training_data_prediction = regressor.predict(X_train)
    # prediction on test data
    test_data_prediction = regressor.predict(X_test)
```

```
[ ] # R squared Value
  r2_train = metrics.r2_score(Y_train, training_data_prediction)
  r2_test = metrics.r2_score(Y_test, test_data_prediction)
```

```
[ ] print('R Squared value = ', r2_train)
print('R Squared value = ', r2_test)
R Squared value = 0.635441553503312
```

R Squared value = 0.635441553503312 R Squared value = 0.5977658125516876

Fig 3.38: Value of  $R^2$  in XGBoost Regression = 0.63

#### 3) DECISION TREE

| ] f<br>d                                     | ] from sklearn.tree import DecisionTreeRegressor<br>dr = DecisionTreeRegressor() |                                                               |                                  |                 |           |                   |                           |             |                      |             |  |
|----------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------|-----------------|-----------|-------------------|---------------------------|-------------|----------------------|-------------|--|
| ] d                                          | dr.fit(X_train_std,Y_train)                                                      |                                                               |                                  |                 |           |                   |                           |             |                      |             |  |
| D                                            | ecisio                                                                           | onTreeRegres                                                  | sor()                            |                 |           |                   |                           |             |                      |             |  |
| ] X                                          | _test                                                                            | .head()                                                       |                                  |                 |           |                   |                           |             |                      |             |  |
|                                              |                                                                                  | item_weight                                                   | item_fat_content                 | item_visibility | item_type | item_mrp          | outlet_establishment_year | outlet_size | outlet_location_type | outlet_type |  |
|                                              | 8179                                                                             | 11.0                                                          | 1                                | 0.055163        | 8         | 100.3358          | 2009                      | 1           | 2                    | 2           |  |
|                                              | 8355                                                                             | 18.0                                                          | 1                                | 0.038979        | 13        | 1 <u>48</u> .6418 | 1987                      | 0           | 2                    | 1           |  |
|                                              | 3411                                                                             | 7.72                                                          | 2                                | 0.074731        | 1         | 77.598602         | 1997                      | 2           | 0                    | 1           |  |
|                                              | 7089                                                                             | 20.700001                                                     | 1                                | 0.049035        | 6         | 39.9506           | 2007                      | 3           | 1                    | 1           |  |
| 1                                            | 6954                                                                             | 7.55                                                          | 1                                | 0.027225        | 3         | 152.934006        | 2002                      | 3           | 1                    | 1           |  |
| <pre>Y_pred_dr= dr.predict(X_test_std)</pre> |                                                                                  |                                                               |                                  |                 |           |                   |                           |             |                      |             |  |
| M<br>R<br>M                                  | AE: 10<br>MSE: 1<br>SE: 22<br>2: 0.1                                             | 051.48407543<br>1500.6826144<br>252048.309374<br>173670855704 | 99902<br>70758<br>47897<br>30163 |                 |           |                   |                           |             |                      |             |  |

Fig 3.39: Value of  $R^2$  in Decision Tree = 0.17

#### 5) RIDGE REGRESSION

from sklearn.linear\_model import Ridge

[ ] rr = Ridge()

[ ] rr.fit(X\_train\_std,Y\_train)

Ridge()

[ ] X\_test.head()

|      | item_weight | <pre>item_fat_content</pre> | <pre>item_visibility</pre> | <pre>item_type</pre> | item_mrp   | <pre>outlet_establishment_year</pre> | outlet_size | <pre>outlet_location_type</pre> | outlet_type |
|------|-------------|-----------------------------|----------------------------|----------------------|------------|--------------------------------------|-------------|---------------------------------|-------------|
| 8179 | 11.0        | 1                           | 0.055 <mark>1</mark> 63    | 8                    | 100.3358   | 2009                                 | 1           | 2                               | 2           |
| 8355 | 18.0        | 1                           | 0.038979                   | 13                   | 148.6418   | 1987                                 | 0           | 2                               | 1           |
| 3411 | 7.72        | 2                           | 0.074731                   | 1                    | 77.598602  | 1997                                 | 2           | 0                               | 1           |
| 7089 | 20.700001   | 1                           | 0.049035                   | 6                    | 39.9506    | 2007                                 | 3           | 1                               | 1           |
| 6954 | 7.55        | 1                           | 0.027225                   | 3                    | 152.934006 | 2002                                 | 3           | 1                               | 1           |

[ ] Y\_pred\_rr= rr.predict(X\_test\_std)

[ ] from sklearn.metrics import r2\_score, mean\_absolute\_error, mean\_squared\_error

```
[ ] from sklearn import metrics
value=r2_score(Y_test,Y_pred_rr)
print('MAE'' metrics mean abcolute e
```

print('MAE:',metrics.mean\_absolute\_error(Y\_test,Y\_pred\_rr))
print('MASE:',np.sqrt(metrics.mean\_squared\_error(Y\_test,Y\_pred\_rr)))
print('MSE:', metrics.mean\_squared\_error(Y\_test,Y\_pred\_rr)))
print('R2E:',(value))

MAE: 893.098025301489 RMSE: 1177.0331952260133 MSE: 1385407.1426639582 R2: 0.4916617490250573

Fig 3.40: Value of  $R^2$  in Ridge Regression = 0.4916

### **CHAPTER 4**

### 4. PERFORMANCE ANALYSIS

For the purpose of performance analysis we can go and look for the  $R^2$  value of the different algorithm performed and check for which algorithm gives us the best performance

LR

```
value=r2_score(Y_test,Y_pred_lr)
print(mean_absolute_error(Y_test,Y_pred_lr))
print(np.sqrt(mean_squared_error(Y_test,Y_pred_lr)))
print('R2:',(value)*100)
893.1098219165341
1177.0425587900395
```

R2: 49.165366048734604

Fig 4.1 Performance of Linear Regression

#### **RF** regression

```
[ ] value = r2_score(Y_test,Y_pred_rf)
print(mean_absolute_error(Y_test,Y_pred_rf))
print(np.sqrt(mean_squared_error(Y_test,Y_pred_rf)))
print('R2:',(value)*100)
```

776.9585233226115 1106.2543507541138 R2: 55.095966630735546

Fig 4.2 :Performance of Random Forest Regression

Hyper parameter tuning

```
Y_pred_rf_grid=grid_search_forest.predict(X_test_std)
value= r2_score(Y_test,Y_pred_rf_grid)
print('R2:', (value)*100)
```

R2: 54.92565801082437

Fig 4.3: Performance of Hyper Tuning Parameter

#### Decision Tree



Fig 4.4: Performance of Decision Tree

#### XGBoost Regression



Fig 4.5: Performance of XgBoost Regression

**Ridge Regression** 

```
[ ] from sklearn import metrics
  value=r2_score(Y_test,Y_pred_rr)
  print('MAE:',metrics.mean_absolute_error(Y_test,Y_pred_rr))
  print('MSE:',np.sqrt(metrics.mean_squared_error(Y_test,Y_pred_rr)))
  print('MSE:', metrics.mean_squared_error(Y_test,Y_pred_rr))
  print('MSE:', (value))
MAE: 893.098025301489
  PMSE: 1177_0221052260122
```

RMSE: 1177.0331952260133 MSE: 1385407.1426639582 R2: 0.4916617490250573

Fig 4.6: Performance of Ridge Regression

| ALGORITHM                   | R2     | RMSE    | MSE         |
|-----------------------------|--------|---------|-------------|
| Linear Regression           | 49.165 | 1177.04 | 1385429.18  |
| Random Forest<br>Regression | 55.09  | 1105    | 12222736.57 |
| Decision Tree               | 16.50  | 1508.46 | 2275481.45  |
| XGBoost Regression          | 59.75  | 1047    | 1096723.67  |
| Ridge Regression            | 49.166 | 117.03  | 1385407.14  |

TABLE 4.1 : Algorithms Performance

To forecast BigMart's revenue, simple to advanced ML algorithms have been implemented, such as LR, Decision Tree, RF regression and XGBoost.

From the above table, we conclude that the XGBoost algorithm is more efficient and gives accurate and fast results.

### PERFORMANCE ANALYSIS USING GRAPHS RMSE AND MSE VALUES



Fig 4.7:Comparison of RMSE and MSE values for ML Algorithms used

Figure 4.7 shows the comparative analysis of RMSE and MSE values. RMSE is the squared root of MSE and MSE is calculated by the squared difference between the original and predicted values in the data set. In this experiment Decision tree has the highest RMSE and MSE value and XgBoost Regression has the lowest RMSE and MSE value.

#### **R<sup>2</sup> AND MAE VALUES**



Fig 4.8:Comparison of R<sup>2</sup> and MAE values for ML Algorithms used

Figure 4.8 shows the comparative analysis of  $R^2$  and MAE values. MAE is calculated by the average of the absolute difference between the actual and predicted values in the dataset and  $R^2$  is calculated by the sum of the residuals squared, and the total sum of squares is the sum of all the data's deviations from the mean. In this experiment Decision tree has the highest MAE value whereas XgBoost has the lowest and in case of  $R^2$ XgBoost has the highest value whereas Decision tree has the lowest value.

It has been observed that increased efficiency is observed with XGBoost algorithms with lower RMSE, MSE and MAE rating and higher R<sup>2</sup> rating

### **CHAPTER 5**

### **5. CONCLUSIONS**

#### 5.1 CONCLUSION

So from this project we conclude that a smart sales forecasting program is required to manage vast volumes of knowledge for business organizations.

The Algorithms which are presented in this report, LR, RF regression, Decision tree and XGBoost regression provide an effective method for data sharing as well as decision-making and also provide new approaches that are used for better identifying consumer needs and formulate marketing plans that are going to be implemented.

The outcomes of ML algorithms which are done in this project will help us to pick the foremost suitable demand prediction algorithm and with the aid of which BigMart will prepare its marketing campaigns.

#### **5.2 FUTURE SCOPE**

The future scope of this project is that this project can further collaborate with any other devices which are supported with an in-built intelligence by virtue of the Internet of Things (I0T) which makes it more feasible to use.

Multiple instances parameters and various factors are also make this sales prediction project more

innovative and successful.

The most important term for any prediction-based system that is accuracy, is often significantly increased

because of the increase in the number of parameters.

#### 6. REFERENCES

1. Beheshti-Kashi, S., Karimi, H.R., Thoben, K.D., Lutjen, M., Teucke, M.: A survey on retail sales forecasting and prediction in fashion markets. Systems Science &Control Engineering 3(1), (2015), pp.154–161

2. Bose, I., Mahapatra, R.K.: Business data mining ML perspective. Information & management 39(3),(2001), pp. 211–225

3.Mitchell, T. M. ML and data mining. Communications of the ACM, 42(11), (1999), pp. 30-36.

4. Das, P., Chaudhury, S.: Prediction of retail sales of footwear using feedforward and recurrent neural networks. Neural Computing and Applications 16(4-5),(2007), pp. 491–502

5. Punam, K., Pamula, R., Jain, P.K.: A two-level statistical model for big mart sales prediction. In: 2018 International Conference on Computing, Power and Communication Technologies (GUCON), IEEE (2018). pp. 617–620.