
Amazon Internship: Meridian Migration

Project report submitted in fulfillment of the requirement for the degree of
Bachelor of Technology

in
Computer Science and Engineering

By

Naina Garg 181424

Under the supervision of

Dr. Himanshu Jindal

to

Department of Computer Science & Engineering

Jaypee University of Information Technology Waknaghat,

Solan, Himachal Pradesh

1

Certificate

2

Candidate’s Declaration

I hereby declare that the work presented in this report entitled “Meridian Migration” in

partial fulfillment of the requirements for the award of the degree of Bachelor of

Technology in Computer Science and Engineering/Information Technology submitted

in the Department of Computer Science & Engineering and Information Technology,

Jaypee University of Information Technology Waknaghat, is an authentic record of my

work carried out over a period from February 2022 to May 2022 under the supervision of

Dr. Himanshu Jindal (Assistant Professor(SG), Computer Science and Engineering and

Information Technology).

The matter embodied in the report has not been submitted for the award of any other

degree or diploma.

Naina Garg
181424

This is to certify that the above statement made by the candidate is true to the best of my
knowledge.

Dr. Himanshu Jindal
Assistant Professor (SG)
Computer Science & Engineering and Information Technology
Dated: 27 May 2022

3

Acknowledgments

I would like to express my sincere gratitude to my project guide “Dr. Himanshu

Jindal” for allowing me to work on this topic. It would never be possible for me to take

this project to this level without his innovative ideas and his relentless support and

encouragement.

I also thank our family, friends, and all the faculties who gave their unfiltered suggestions

and feedback and helped me face all the challenges and hurdles which came along during

the project.

Naina Garg
181424

4

Table of Contents

Certificate 2

Candidate’s Declaration 3

Acknowledgments 4

Table of Contents 5

Abstract 6

Chapter 1: Introduction 7
1.1 Introduction 7
1.2 Problem Statement 8
1.3 Objectives 8
1.4 Methodology 10
1.5 Organization 18

Chapter 2: Literature Review 19
2.1 Literature Survey 19

Chapter 3: System Development 22
3.1 Overview 22
3.2 Assumptions 22
3.3 Requirements 22
3.4 Architecture 25
3.5 Validations 33
3.6 Design 37
3.7 TOOLS 42

Chapter 4: Performance Analysis 43

Chapter 5: Conclusions 48
5.1 Conclusions 48
5.2 Future Scope 49

REFERENCES 50

5

Abstract

The associate tools are a set of web applications that are used by 1P, 2P, and 3P associates

at Amazon Physical Stores. There are currently over a hundred unique tools that are

owned by dozens of teams distributed across multiple organizations within Amazon. The

current iteration of associate tools are embedded within IhmSeaward, which is a base tool

that loads different associate tools within an iframe. IhmSeaward is served through

IhmPewter, which is a ruby-on-rails server. IhmSeaward and the current generation of

associate tools are making use of the AngularJS framework, which is planned to reach its

end-of-life. We have found that using AngularJS also reduces team productivity as there

is less experience with the framework across the teams that need to build tools and it

lacks many features of modern frameworks like ReactJS, Angular 2 or VueJS. The

Meridian framework is the recommended framework for the IHM organization. Since

Meridian framework full support is only available in ReactJS, we decided to use ReactJS

framework for Associate Tools Platform to support Meridian migration.

KisanPoReceiveTool is an associate tool loaded as part of IhmPewterWebsite. There are

two main PO operations in Vendor POReceive flow: Get PODetails and Receive Quantity

against a PO. PO Search API should require both POId and Vendor Code. Associate is

required to Scan/manually enter Vendor Code & POId to view all the ASINs to be

inbounded for the PO.

6

Chapter 1: Introduction

1.1 Introduction

Amazon has completed the integration of its grocery stores Fresh and Pantry into a single
unified store called Amazon Fresh. The new store, available across 300+ cities in India,
continues to offer customers unbeatable savings, a wide selection of products, and fast
and convenient delivery options in one single online destination.

Driven by a commitment to be an ‘everything’ and ‘everyday’ store for customers.A
customer obsessed company and continue to listen to our customers to offer them
enhanced shopping experiences, a wide range of selection, and the best value and
convenience.Customers will continue to enjoy super value savings, a wide selection of
products, and convenient delivery options. They also get an upgraded shopping
experience, with a dedicated app-in-app for grocery, and convenient features like
personalized widgets and reminders to ensure that frequently shopped items aren't
forgotten during checkout.

We are laser-focused on providing customers the best online shopping experience,
coupled with quick and safe delivery. We know fully well that customers will shop with
us only until they find a better experience elsewhere, so we strive hard to meet their
standards. This launch has allowed us to simplify the shopping experience for groceries
via our dedicated AmazonFresh app-in-app experience, and sets us up to deliver many
new features and enhancements in the coming months. Apart from offering great savings,
Amazon Fresh will also reduce barriers to grocery shopping online.

Clicking on the Amazon Fresh icon on the homepage takes you to the dedicated grocery
shopping store, where you'll find features that help you build your weekly/monthly basket
in a few minutes. Shopping for groceries online has become more rewarding, fast, safe
and convenient with Amazon Fresh.

7

1.2 Problem Statement

We have found that using AngularJS also reduces team productivity as there is less

experience with the framework across the teams that need to build tools and it lacks many

features of modern frameworks like ReactJS, Angular 2, or VueJS. The Meridian

framework is the recommended framework for the IHM organization. Since Meridian

framework full support is only available in ReactJS, we decided to use ReactJS

framework for Associate Tools Platform to support Meridian migration.

Goal:

1. Migration for the existing APIs supported by IhmSeaward.

2. Migration of the utilities, services, and other features supported by IhmCrookhook.

3. Migration plan for existing tools: This document will just recommend migration steps

for the tools, but tool owners will own the migration.

4. Deprecation path of IhmSeaward & IhmCrookhook.

5. Deprecation of existing unused services/libraries

1.3 Objectives

KisanPoReceiveTool is an associate tool loaded as part of IhmPewterWebsite. There are

two main PO operations in Vendor POReceive flow: Get PODetails and Receive Quantity

against a PO.

1. PO Search API should require both POId and Vendor Code. Associate is required

to Scan/manually enter Vendor Code & POId to view all the ASINs to be

inbounded for the PO.

2. Need to show Zones(Ambient/Tropical) for each ASIN during Inbound and

categorize the ASINs based on zones.

8

3. Need to show the total weight received for weight based ASINs and total units

received for unit-based ASINs when PO details are retrieved during Inbound.

4. We need to show the entered Weight/Unit to the container map when an Associate

enters the weight for a scanned container during Inbound.

5. When a user enters the lotContainerCode during POReceive, there should be

multiple validations done on it before adding items in it.

6. We need to fetch disassembled relationships for a weight based ASIN during PO

Inbound. We need this data to be sent in associate audit and for showing details of

weight based ASIN during Inbound.

7. Inbounding of weight based ASINs should be done in weights only and not in

units. Users should not be allowed to enter the number of units for a weight based

ASIN as it is being done currently.

8. Weight based ASIN received in weight conversion to units for vendor payments

for phase 1 based on conversion factor : 1 unit = 1000 grams:

9. If weight is greater than 500 grams the units are rounded up and if weight is less

than 500 grams the units are rounded down.

(e.g. if total quantity being received is 100.6 KG vendor payments will be done on 101

units and qty received is 100.1 Kg vendor payments will be done on 100 units)

9

1.4 Methodology

1.4.1Perform vendor code Validation & fetch ASIN attributes

This the current architecture and sequence diagram for GetPODetails operation in
POReceive flow.

10

Following are the approaches we will use to fulfill our requirements for performing
validation on Vendor Code and fetching ASIN attributes from catalog in the new Inbound
Experience flow:

11

1.4.1.1 Approach 1: Using GradingFacadeService (Preferred)

12

13

Flow chart with API details:

14

1.4.1.2 Approach 2: Using IhmSpyglassService

In this approach, we are retaining the current architecture of GetPODetails PO operation.

Flow chart with API details

15

1.4.2 Receive Against PO

In the new flow for Receive quantity against PO, we will retain the current architecture

for POReceive flow. If the ASIN is unit-based we will simply pass the number of units in

the ReceiveFlow as it happens in the current flow. If the ASIN is weight-based we will

calculate the number of units we will make using the conversion factor, and use the below

logic to calculate the number of units per container.

To identify if an ASIN to be received is weight-based or Unit based, we will make use of

DisassembledTransformationRelationship defined for that ASIN in the catalog. This

relationship is defined only for weight based ASINs.

Current Architecture Diagram:

16

Current Sequence Diagram:

17

1.5 Organization

Amazon is the top IT company in India, and a major IT company in the US. Amazon

employees around 3 lakh employees and recruits around 20 thousand fresh people every

year from India. Amazon also hires from different countries across the globe. Amazon

offers various role in the company like develop, Designer, Tester and Manager in the

company, but, before becoming the associate every person should complete the intern

period and after the intern period there is one year of probation

period in the company for the associate to join the company. The internship period varies

and depends on the roles, which the intern gets, like someone who got developer profile,

for them internship period will be of around 4-5 months and for the quality insurance, it

might vary from 5-6 month. The domain allocation is random in the Amazon for the

interns, but sometimes it depends on the assimilation test also. The person who got higher

marks in the assimilation test will have higher chances to get a better profile or domain

and it also depends on the first come first serve basis.

Mission, vision, values, and objectives

Mission – Amazon mission is to train every fresh person who got selected in to the

Amazon. Amazon provides internships to every person who gets selected in Amazon.

Every year Amazon train college fresh out student in bulk number before giving them

the associate role. This recruit happens from all colleges over the india.

Amazon spends much time,effort and money in training the intern before giving them the

actual work and before them to work in the real environment.

18

Chapter 2: Literature Review

2.1 Literature Survey

● Ramos, Miguel, Marco Tulio Valente, and Ricardo Terra. "AngularJS performance: A

survey study." IEEE Software 35, no. 2 (2017): 72-79.

● Chansuwath, Wutthichai, and Twittie Senivongse. "A model-driven development of

web applications using AngularJS framework." In 2016 IEEE/ACIS 15th

International Conference on Computer and Information Science (ICIS), pp. 1-6.

IEEE, 2016.

● Gupta, Suhit, Gail Kaiser, David Neistadt, and Peter Grimm. "DOM-based content

extraction of HTML documents." In Proceedings of the 12th international conference

on World Wide Web, pp. 207-214. 2003.

● Kopecký, Jacek, Karthik Gomadam, and Tomas Vitvar. "hrests: An html microformat

for describing restful web services." In 2008 IEEE/WIC/ACM International

Conference on Web Intelligence and Intelligent Agent Technology, vol. 1, pp.

619-625. IEEE, 2008.

● Cohen, William W., Matthew Hurst, and Lee S. Jensen. "A flexible learning system

for wrapping tables and lists in HTML documents." In Proceedings of the 11th

international conference on World Wide Web, pp. 232-241. 2002.

● Lie, Håkon Wium, and Janne Saarela. "Multipurpose Web publishing using HTML,

XML, and CSS." Communications of the ACM 42, no. 10 (1999): 95-101.

● Park, Thomas H., Brian Dorn, and Andrea Forte. "An analysis of HTML and CSS

syntax errors in a web development course." ACM Transactions on Computing

Education (TOCE) 15, no. 1 (2015): 1-21.

● Tilkov, Stefan, and Steve Vinoski. "Node. js: Using JavaScript to build

high-performance network programs." IEEE Internet Computing 14, no. 6 (2010):

80-83.

19

● Lingyu, Meng, Christenson Lauren, and Dong Zhijie. "Strategic development of fresh

e-commerce with respect to new retail." In 2019 IEEE 16th International Conference

on Networking, Sensing and Control (ICNSC), pp. 373-378. IEEE, 2019.

● Kang, Chunghan, Junghoon Moon, Taekyung Kim, and Youngchan Choe. "Why

consumers go to online grocery: Comparing vegetables with grains." In 2016 49th

Hawaii International Conference on System Sciences (HICSS), pp. 3604-3613. IEEE,

2016.

● Mantha, Aditya, Yokila Arora, Shubham Gupta, Praveenkumar Kanumala, Zhiwei

Liu, Stephen Guo, and Kannan Achan. "A large-scale deep architecture for

personalized grocery basket recommendations." In ICASSP 2020-2020 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.

3807-3811. IEEE, 2020.

● White, Susan. "Amazon and Whole Foods: adventures in grocery shopping." The

CASE Journal (2020).

● Meslin, Halley Rose. "Food Access in the Age of Online Grocery: An Evaluation of

Current Retail Trends and Their Potential to Alleviate Food Deserts in the US." IU

Journal of Undergraduate Research 4, no. 1 (2018): 58-62.

● Lingyu, Meng, Christenson Lauren, and Dong Zhijie. "Strategic development of fresh

e-commerce with respect to new retail." In 2019 IEEE 16th International Conference

on Networking, Sensing and Control (ICNSC), pp. 373-378. IEEE, 2019.

● Javeed, Arshad. "Performance optimization techniques for ReactJS." In 2019 IEEE

International Conference on Electrical, Computer and Communication Technologies

(ICECCT), pp. 1-5. IEEE, 2019.

● Soundarya, K., M. Abirami, Kumaran R. Senthil, D. Prabakaran, B. Srimathi, and G.

Nagarajan. "Webapp service for booking handyman using mongodb, express JS, react

JS, node JS." In 2021 3rd International Conference on Signal Processing and

Communication (ICPSC), pp. 180-183. IEEE, 2021.

● Ivanov, Artem, Aufar Zakiev, Tatyana Tsoy, and Kuo-Hsien Hsia. "Online monitoring

and visualization with ros and reactjs." In 2021 International Siberian Conference on

Control and Communications (SIBCON), pp. 1-4. IEEE, 2021.

20

● Desai, Vaishnavi, Isha Ghiria, Twinkle Bagdi, and Sanjay Pawar. "KRISHI

BAZAAR: An E-Commerce Application For Direct Farmer-to-Consumer Trading."

In 2021 IEEE Bombay Section Signature Conference (IBSSC), pp. 1-5. IEEE, 2021.

● Hahn, Jungpil, Robert J. Kauffman, and Jinsoo Park. "Designing for ROI: toward a

value-driven discipline for e-commerce systems design." In Proceedings of the 35th

Annual Hawaii International Conference on System Sciences, pp. 2663-2672. IEEE,

2002.

● Grover, Varun, and James TC Teng. "E-commerce and the information market."

Communications of the ACM 44, no. 4 (2001): 79-86.

● Khan, Abdul Wahid, and Siffat Ullah Khan. "Critical success factors for offshore

software outsourcing contract management from vendors' perspective: an exploratory

study using a systematic literature review." IET software 7, no. 6 (2013): 327-338.

● Kaushalya, Thilanka, and Indika Perera. "Framework to Migrate AngularJS Based

Legacy Web Application to React Component Architecture." In 2021 Moratuwa

Engineering Research Conference (MERCon), pp. 693-698. IEEE, 2021.

21

Chapter 3: System Development

3.1 Overview

In October 2019 Amazon India launched its first Processing center to have sourcing

capabilities from farms and have back end processing solutions to be able to buy in

un-packaged, ungraded form and create in-house ready to sell ASIN trans-shipped to now

spoke. At the time of launch Inbound capabilities were leveraged from an existing tool

available as a part of IHM Kitchen inbound flow which was suboptimal. In this document

we will outline the approaches that will facilitate the changes required for new vendor

inbound experience in the Processing Centers (PC) and Collection Centers (CC).

3.2 Assumptions

1. The conversion factor defined for phase 1 is 1 unit : 1000 g.

2. As a process inbound for 1 ASIN will have to be done together and will not be

done in parts.

3.3 Requirements

1. PO Search API should require both POId and Vendor Code. Associate is required

to Scan/manually enter Vendor Code & POId to view all the ASINs to be

inbounded for the PO.

2. Need to show Zones(Ambient/Tropical) for each ASIN during Inbound and

categorize the ASINs based on zones.

3. Need to show the total weight received for weight based ASINs and total units

received for unit-based ASINs when PO details are retrieved during Inbound.

4. We need to show the entered Weight/Unit to the container map when an Associate

enters the weight for a scanned container during Inbound.

22

5. When a user enters the lotContainerCode during POReceive, there should be

multiple validations done on it before adding items in it.

6. We need to fetch disassembled relationships for a weight based ASIN during PO

Inbound. We need this data to be sent in associate audit and for showing details of

weight based ASIN during Inbound.

7. Inbounding of weight based ASINs should be done in weights only and not in

units. Users should not be allowed to enter the number of units for a weight based

ASIN as it is being done currently.

8. Weight based ASIN received in weight conversion to units for vendor payments

for phase 1 based on conversion factor : 1 unit = 1000 grams:

If weight is greater than 500 grams the units are rounded up and if weight is less

than 500 grams the units are rounded down.

(e.g. if total quantity being received is 100.6 KG vendor payments will be done on

101 units and qty received is 100.1 Kg vendor payments will be done on 100

units)

23

Process and Data Flow

24

3.4 Architecture

3.4.1 Fetching PO Details during Inbound

Approach 1 : Using GradingFacadeService (Preferred)

We will create a new API in GFS, GetPODetails which will act as a facade for fetching

information from IhmBananaStand.

Changes in GradingFacadeService :

We will create a new API in GFS, GetPODetails which will act as a facade for fetching

information from IhmBananaStand.

Sample Input and Output:

GetPODetailsInput

25

GetPODetailsOutput

26

27

Pros:

1. This change will affect all KISAN systems, so creation of APIs in GFS end will

be a good solution if Spyglass deprecates.

2. This change also requires less changes done at the UI end, as we will populate all

attributes at GFS's end.

Cons:

1. Spyglass is already acting as a facade for calling IhmBananaStand, creating a new

API in GFS will add on the load of existing GFS APIs.

Approach 1 : Using IhmSpyglassService

In this approach we are retaining the current architecture of GetPODetails PO operation.

In this approach we will make changes in the IhmSpyglassService, IhmCrookHook

package to support our requirements.

Changes in IhmSpyglassService :

We need to add support for StorageFacet and RelationshipFacet in the GetProductInfo

API for IhmSpyglass. This change is backward compatible for all IhmSpyglass dependent

services. The StorageFacet returns the Zone information set for an ASIN inside catalog

data. The RelationshipFacet returns the disassembled factor and disassembled ASIN for

the weight based ASIN.

These facet additions require change in IhmRoverCatalogHelper, IhmRoverTypes,

IhmSpyglassServiceModel packages to support the facet response in IhmSpyglassService.

28

Changes in IhmCrookHook :

In the UI end, the KisanPOReceiveTool uses productInfo.js defined inside

IhmCrookHook package to get the response from IhmSpyglass GetProductInfo API.

We need to make changes in this package to support the retrieval of StorageFacet and

RelationshipFacet from IhmSpyglassService

Pros:

We will achieve all our requirements by making changes in existing POReceive Flow. We

do not need to create additional APIs.

Cons:

1. Performing vendor code validation in UI end is a security risk, we should keep the

validations at backend only.

2. This change will affect all KISAN systems, so creation of APIs in GFS end will

be a good solution if Spyglass deprecates. However since this change will also

affect our current tools like Grading, this change can be mitigated if and when

Spyglass is deprecated.

Fetch total weight Received for an ASIN

As per the requirements for the new Inbound experience flow we need to show the value

of total weight received, for an ASIN when Inbounding against that ASIN in the new

POReceiveFlow. These details are fetched from IhmBananaStandService GetPODetails

29

API. Currently we show the quantity received, and quantity confirmed in each for an

ASIN. We will convert quantity received, and quantity confirmed to weight received and

weight confirmed using the conversion factor in UI for the weight based ASINs. We do

not need any change in IhmBananaStandService as per current assumptions.

3.4.2 Receive Against PO

In the new flow for Receive quantity against PO we will retain the current architecture for

POReceive flow. If the ASIN is unit based we will simply pass the number of units in the

ReceiveFlow as it happens in current flow. If the ASIN is weight based we will calculate

the number of units we will make using the conversion factor, and use the below logic to

calculate the number of units per container.

To identify if an ASIN to be received is weight based or Unit based, we will make use of

DisassembledTransformationRelationship defined for that ASIN in the catalog.

This relationship is defined only for weight based ASINs.

30

Logic for storing number of units per container

We will calculate the number of units based on the aggregation of weights over all

containers received in one cycle, while maintaining that the variance of units per

container is not more than 1.

Example

Let's say we have 3 containers : C1 - 9.6kg , C2-11.6kg , C3-5.2 kg

Total weight : 26.4 kg which will amount to 26 units, so the number of units assigned to

each container will be:

C1-10, C2-11, C3-5 total : 26 units

Let's say we have 4 containers : C1 - 9.6kg , C2-11.6kg , C3-5.2 kg, C4- 6.8kg

Total weight : 33.2 kg which will amount to 33 units, so the number of units assigned to

each container will be:

C1-10, C2-12, C3-5, C4-6 total : 33 units

31

Using IhmSpyglassService

We will use GFS GetPODetails response to fetch the disassembled relationship from

IhmCharlotte.

To calculate the number of units for a weight based ASIN, we will define the conversion

factor in KisanPOReceiveTool and calculate the number of units at UI end, then receive

the quantity against that PO using Spyglass ReceiveAgainstPO API.

Pros

We will achieve our requirements using the existing flow of ReceiveAgainstPO.

The unit per container calculation already happens in the current flow in UI.

Note

We would want this conversion factor to come from catalog, and not get stored in UI; this

is still a work in progress from Product.

32

3.5 Validations

3.5.1 Container validations

For container validation there are 3 requirements -:

Input container should be in Valid format

ContainerId should be valid containerId generated by Feluda

ContainerId shouldn't have been used before

All the 3 requirements are fulfilled by GFS "GetLotContainerDetails" API. When the

above three requirements are not met for a container it throws Exception

If the containerCode has been generated by Feluda, then the "assigned" flag identifies

whether it has been used or not.

33

If no fcSku is assigned to a given containerId then "assigned" value is false which the UI

will use to identify whether containerId is valid and not associated with any FcSku.

Whenever a given containerId is entered on the UI, it will invoke this backend API to

check whether containerId is valid or not before associating any weight with it.

34

3.5.2 Validations on UI front

1. ASIN Title information using the ASIN.

2. Rejects events handling will be published as part of UI events. This data will be

retrieved from the DW.

3. Deletion of containers, from the UI will be equivalent to reverse of Receive API

flow from the backend.This will require deletion of entries from

"PurchaseOrderItemReceipts" DDB table.Beside removal of entries from

"PurchaseOrderItemReceipts" DDB, it will also require changes in BananaStand

to invoke Jazeem for removal of entries.Currently this functionality is not

supported by BananaStand and this will require lot of changes in the BananaStand

Service for this.Given little value add it offers, we can take care of this feature

later on given that it is a large change and require lot of changes in BananaStand

service.

4. Warning to be thrown if the quantity being added in the container is beyond XX

units or XX gms in a container id. Threshold validation to be there in case

receiving quantity is XX% > PO quantity.Currently this XX is defined to 20% as

confirmed with the Product team.

5. Guardrail Check on value being entered for Reject Quantity.

6. Allow associates to capture reason codes for rejected quantities.

7. Containers validations:

8. Should not allow Decimals in quantity screen

9. Should not allow negative or 0 value on the screen

10. Receive Confirm Button to get activated only if some container has been added

for receiving or rejected quantity has been added.

35

11. Duplicate entry of container not allowed.

12. Weight based ASIN received in weight conversion to units for vendor payments

for phase 1 the conversion factor is 1 unit = 1000 grams:

13. If weight is greater than 500 grams the units are rounded up and if weight is less

than 500 grams the units are rounded down. (e.g. if total quantity being received is

100.6 KG vendor payments will be done on 101 units and qty received is 100.1

Kg vendor payments will be done on 100 units)

36

3.6 Design

Old Angular UI vs New Meridian UI:

SelectPOController Page: Old Angular UI

New UI

37

ScanItemController Page:

Old Angular UI

38

New Meridian UI

39

ReceivePO Page
Old Angular UI

40

New Meridian UI

41

3.7 TOOLS

● AngularJS: AngularJS is a structural framework for dynamic web apps. It lets you

use HTML as your template language and lets you extend HTML's syntax to

express your application's components clearly and succinctly. AngularJS's data

binding and dependency injection eliminate much of the code you would

otherwise have to write. And it all happens within the browser, making it an ideal

partner with any server technology.

● CSS:CSS stands for cascading Style Sheets which describes how HTML

elements are to be displayed on the screen, pages or other media. It is very

important as it helps with the layout control.

● Visual Studio Code: Visual studio code is a source code editor developed by

Microsoft for windows, linus, and macOS

42

Chapter 4: Performance Analysis

When you think about the JavaScript Ecosystem, you’ll almost certainly think of Angular

and React, as they’re two of the most popular front-end development frameworks. But

how can you pick between angular vs react? Should you base your selection on the

project’s specifications first? Or, in the early stages, consider its popularity and ramp-up

time?

What’s the difference between Angular and React? For years, there has been a violent

rivalry between these two prominent front-end frameworks. So, which option is the best?

Every time front-end programming is required, the Angular vs React debate occurs. The

answer relies on a variety of circumstances, and even front-end developers have debated

the topic for years.

Angular is a Google-developed and maintained web framework that was first released in

2010 under the name AngularJS. It quickly became one of the most popular web

frameworks at the time. This was owing to capabilities like two-way data binding and

dependency injection, as well as the fact that it was supported by a tech giant.

React, a JavaScript library used by Facebook, was open-sourced in 2013. This framework

popularized a web development concept known as component-based architecture, which

has a number of benefits, including:

Components that are modular and coherent, making them highly reusable and

contributing to a faster development time.

43

It’s used in mobile development since it allows developers to reuse the logical section of

an app while simply changing the view.

Easy maintenance and improvement due to self-contained components.

Key Features of Angular

● Built-in support for AJAX, HTTP, and Observables are just a few of Angular’s

highlights. There is widespread support in the community.

● In line with current technologies

● Typescript is time-saving.

● Coding that is more clear and concise

● Error-handling support has been improved.

● Angular CLI allows for seamless updates.

● Validation and forms

● Local CSS / shadow DOM

● Separation of User Interface and Business Logic

Key Features of React

● React’s key features include the ability to use third-party libraries.

● Time-Saving

● Composability and Simplicity

● Facebook is fully behind you.

● Improved user experience and lightning-fast speed.

● More rapid development

● One-directional data binding provides code stability.

● Components in React

Meridian is built to accelerate your design and development processes. We surveyed our

customers and found that teams save Amazon substantial time and money when they use

Meridian for their projects and products.

44

Average time savings of 32%. Source: Meridian Q2 2021 survey.

Median annualized headcount savings of 3 FTEs — 1 design and 2 dev. Source: July

2021 survey of 17 two-pizza teams.

In addition to UI components, Meridian also offers additional tools to help the product

development process, increase your teams’ velocity, accessibility, and so much more. Use

the Compass Sketch plugin for designers aids in the design-development process.

Meridian provides illustration and data visualization patterns and components to help

your team create a rich experience for your customers. Finally, use the Accessibility

Annotation Guide and tools to raise the bar of accessibility for all of your customers.

Existing Flow vs New Flow

The key callouts in the new flow are :

Identification of Unit based/Weight based ASIN in the flow itself.

Calculation of number of units based on the amount of weight entered for a weight based

ASIN.

Ability to measure inbound rejects during inbound.

There are two main PO operations in Vendor POReceive flow: Get PODetails and

Receive Quantity against a PO.

The existing flow of the KisanPOReceiveTool makes use of IhmSpyglassService to call

IhmBananaStand APIs GetPODetails and ReceiveAgainstPO to perform these PO

operations.

45

The GetPOdetails operation needs changes in IhmBananaStandService to show the total

weight received for an ASIN, so far during POInbound.

The receive flow for a PO Inbound will not require any backend changes in the new

experience.

The old experience allowed us to enter the number of units received for a weight based

ASIN, in the new experience we will not allow this entry of units for the weight based

ASIN.

46

47

Chapter 5: Conclusions

5.1 Conclusions

I am still on the way doing my internship with the Amazon and I have learned so much

from this internship offered by the internship, rally helped me in shaping my personality

and equipping me with the knowledge of this technologies.

My Final internship project still remains with Amazon and I will give my best in doing

the internship project.I like to thank in advance to the coaches, SDM, mentor and trainer

of Amazon who guided me through the whole journey of my internship in Amazon and

solved all my doubts during the internship. The Coaches, SDM, Mentor and trainer were

all of good nature and at every moment helped me when I was doing wrong and shaped

me during my whole internship.

Specially my mentor gave his more effort during the internship and passed our all query

to the higher authority in the company whether it was related to the reattempt of the

assessment, technical issue faced in the assessment or providing extra time to complete

the work. I would highly recommend my juniors to prepare well for the offer in Amazon

and get the internship opportunity from Amazon because Amazon is a top fortune

company in the information technology field.

I would like to thank my TNP officer Mr. Pankaj Kumar and Faculty member Dr. Nafis U

khan sir for their support and hard work during the whole placement process because I

know how complex the management of the placement drive is.

48

5.2 Future Scope

The Associate Tools are a collection of web-based applications used by associates(1P, 2P

and 3P users) in physical stores. There are currently over 100 unique tools that are owned

by dozens of teams distributed across multiple orgs in Amazon.

These tools are currently almost exclusively built using AngularJS, which is reaching its

end-of-life support timeline on EOY 2021. We found that using AngularJS also reduces

team productivity as there is less experience with the framework across the teams that

need to build tools and it lacks many features of modern frameworks like React, Angular

2 or Vue. Meridian Framework is a recommended framework to be used in IHM Org[ref].

Since Meridian framework full support is only available in ReactJS, we decided to use

ReactJS framework for Associate Tools Platform to support Meridian migration.

Currently these tools are tightly coupled with the framework used in IhmCrookhook

which is why the tools migration to latest technologies is difficult. This document will try

to address this problem by de-coupling dependency of Associate Tools on IhmCrookhook

framework. This document will also propose a plan for React migration for existing tools

and IhmSeaward(owned by the IHM APT team).

49

REFERENCES

● Amazon Hand book

● Internship experience

● Assessment

● Amazon internship curriculum

● Amazon wiki

● https://broadcast.amazon.com/videos/372652

● https://meridian.a2z.com/components/?platform=react-web

● https://docs.angularjs.org/guide

● https://ihmassociateplatform.corp.amazon.com/docs/associate-tools/#making-tool-

changes

● https://w.amazon.com/bin/view/NinjaDevSync/

● https://builderhub.corp.amazon.com/docs/black-caiman/user-guide/

● https://builderhub.corp.amazon.com/docs/dev-setup/laptop-macos.html

● https://meridian.a2z.com/

● https://reactjs.org/

● https://w.amazon.com/bin/view/Lily/Development/Metrics/React_Migration_Proj

ect/React_Best_Practices

50

https://broadcast.amazon.com/videos/372652
https://broadcast.amazon.com/videos/372652
https://broadcast.amazon.com/videos/372652
https://broadcast.amazon.com/videos/372652
https://broadcast.amazon.com/videos/372652
https://broadcast.amazon.com/videos/372652
https://broadcast.amazon.com/videos/372652
https://broadcast.amazon.com/videos/372652
https://broadcast.amazon.com/videos/372652
https://broadcast.amazon.com/videos/372652
https://w.amazon.com/bin/view/Lily/Development/Metrics/React_Migration_Project/React_Best_Practices
https://w.amazon.com/bin/view/Lily/Development/Metrics/React_Migration_Project/React_Best_Practices

