
AI IMAGE CAPTIONING
Major project report submitted in partial fulfillment of the requirement for

the degree of Bachelor of Technology

in
Computer Science and Engineering

By

PARTH BALI (181354)

UNDER THE SUPERVISION OF

Mr. Amit Kumar

Department of Computer Science & Engineering and
Information Technology

Jaypee University of Information Technology, Waknaghat,
173234, Himachal Pradesh, INDIA

(I) CERTIFICATE

This is to certify that the work which is being presented in the project report titled
“AI Image Captioning” in partial fulfillment of the requirements for the award
of the degree of B.Tech in Computer Science and Engineering and submitted to
the Department of Computer Science and Engineering, Jaypee University of
Information Technology, Waknaghat is an authentic record of work carried out by
“Parth Bali (181354)” during the period from January 2021 to May 2021 under
the supervision of Dr. Amit Kumar, Department of Computer Science and
Engineering, Jaypee University of Information Technology, Waknaghat.

Parth Bali (181354)

The above statement made is correct to the best of my knowledge.

Dr. Amit Kumar Assistant

Professor (SG)

Computer Science & Engineering and Information

Technology Jaypee University of Information Technology,

Waknaghat

Mr. Mantry Aayush

DC Senior Product Specialist

Hashedin by Deloitte,

Bangalore

(II) ACKNOWLEDGEMENT

Firstly, I express my heartiest thanks and gratefulness to almighty God for his
divine blessing makes it possible to complete the project work successfully.

I am really grateful and wish my profound indebtedness to Supervisor Dr. Amit
Kumar, Assistant Professor (SG), Department of CSE Jaypee University of
Information Technology, Wakhnaghat. Deep Knowledge & keen interest of my
supervisor in the field of “Data Science” to carry out this project. Her endless
patience, scholarly guidance, continual encouragement, constant and energetic
supervision, constructive criticism, valuable advice, reading many inferior drafts
and correcting them at all stages have made it possible to complete this project.

I would like to express my heartiest gratitude to Dr. Amit Kumar, Department of
CSE, for her kind help to finish my project.

I would also generously welcome each one of those individuals who have helped
me straightforwardly or in a roundabout way in making this project a win. In this
unique situation, I might want to thank the various staff individuals, both
educated and non- instructed, who have developed their convenient help and
facilitated my undertaking.

Finally, I must acknowledge with due respect the constant support and patience of
my parents.

Parth Bali (181354)

(III) TABLE OF CONTENT

Certificate (I)
Abstract (II)
List of figures (IV)

Introduction 7
Literature Survey 12
System Development 17
Performance Analysis 33
Conclusions
References

(III) ABSTRACT

Past years have definitely been very crucial to the development of artificial

intelligence and scene recognition has become the most contributed field of

Computer Vision, and it has attracted the attention of many young researchers.

Generating natural language descriptions automatically according to the content

observed in a picture, is an important part of scene understanding, which

combines the knowledge of computer vision along with natural language

processing. The application of image captioning is vast and profound.

Tremendous progress in scene recognition problems is credited to the

availability of large databases like MS COCO, Places,ImageNet, etc, and the

development of CNNs (Convolutional Neural Networks) for gathering

high-level features. This paper aims to describe the methodology used and

possible improvements.

Chapter 01: INTRODUCTION

● Intro

Think of a caption to this

● One would say “A dog in a grassy area”, Others might think as “A dog with brown
spots” and a few would be saying different things

● But, are you capable of writing a worm that asks for an input of image, gives an
accurate caption as output?

● Objective

This problem was unthinkable by the best in the field of computer science before

current DNN research. This problem appears to be readily solved using Deep

Learning.

● Need

● Blind Help — This project makes us prepared to develop a product for

the blind that will allow them to navigate the highways without the

assistance of others. We're prepared to accomplish so by turning the view

to words and then the words to sound. These Deep Learning applications

are now well-known.

● Self-driving vehicles — One of the most important challenges is

self-driving cars, and if the area around the car is properly captioned, it

can help the self-driving system.

Project Description:

The purpose of this project is to understand (in simpler words) how Deep Learning often

wants to solve the matter in the generation of a caption in a given image, thus it is called

Image Captioning.

● Languages Used

RNN:

A recurrent neural network (RNN) is a type of artificial neural network in which

the connections between nodes generate a directed or undirected graph over time.

As a result, it can show temporal dynamic behaviour. RNNs, which are derived

from feedforward neural networks, can process variable length sequences of

inputs by utilising their internal state (memory).

CNN:

A convolutional neural network (CNN, or ConvNet) is a type of artificial

neural network used to research visual imagery in deep learning. Shift

invariant or space invariant artificial neural networks (SIANN) are supported

by a shared-weight architecture of convolution kernels or filters that slide

along input features and offer translation equivariant responses in the form of

feature maps. Surprisingly, most convolutional neural networks are only

equivariant to translation as opposition invariant.

Keras:

Keras is a human-centric API, not a machine-centric one. Keras uses best

practises to reduce cognitive burden, such as providing simple and consistent

APIs, decreasing the number of user steps required for typical use cases, and

providing clear and actionable error signals. There's also a lot of documentation

and developer instructions.

● Technical Requirements (Hardware)

Screen: 14 inches Mouse: 3

Button scroll Keyboard: 108

keys

Chapter 02: LITERATURE SURVEY

● Feasibility Study:

For the past five years, NLps have been studied. The advent of computing has

greatly improved the model's performance. The results are still far from adequate.

It will always be a difficulty since machines cannot mimic human minds or

analyse in the same way that humans do. It is getting increasingly challenging to

keep up with the most recent research and outcomes in the field of picture

captioning due to the enormous number of information on the subject. During this

research, a thorough Systematic Literature Review(SLR) gives some short review

related to photo captioning advancements in the 4 years.

● SLR Methodology:

● SLR has made many things easier in the data progressed

world these days, having a lot of data growth.

● This can be hard to ingest every currently available info later

diving for a certain block. For the situation, after discussing

image captioning and, as previously stated, having the most

meaning during this assignment, it was discovered that there is a

great deal of material that is difficult to describe and thus stay

up to speed with the most recent achievements.

● Researchers spent time studying most image captioning

articles in depth—digital libraries, which house the

majority of the articles, were identified, search questions

were formulated, all articles found were analysed, and the

results were presented along with key challenges identified

during the review process.

2.1. Sources

● The investigation was primarily carried out using three separate

digital libraries:

1. Science Web

2. IEEE Xplore

3. ArXiv

Because there has been a lot of study for the field in picture captioning, I

limited our literary conclusions to studies published in the last four years (2019

to 2021).

2.2. Questions

● It's critical to have specific questions that need to be answered after you've gone

over all of the literature.

● The queries were carefully crafted after multiple attempts to ensure that the results

received after each query were accurate, free of excessive noise, and did not

contain any non-required articles.

● We respond to four questions in this paper:

🌕What methods were employed in the creation of image captions?

🌕What are the difficulties in captioning images?

🌕How does the incorporation of semantics and innovative picture

descriptions enhance the model’s progress for AI image credits?

🌕Most recent picture captioning studies?

The questions were carefully chosen to cover the most important motives of the report:

for highlighting most commonly utilised strategies of picture captioning during last four

years, and to find the most significant obstacles that the researchers have faced. We also

wanted to summarise results from recent publications in a good comparison for lateron

papers, thus it added some broad view the image captioning but segragating out articles

published in 2018. We would like to read only the most current articles because image

captioning questions should be too expanding, and we would have a large focus on

introducing readers for most recent successes.

2.3. Query

● To have a better understanding of the issue of "picture caption creation," we first

ran through a quick survey of related papers.

● We gained an understanding of the concepts and technologies that are widely used

in this field, allowing us to conduct research that is both relevant and accurate.

● Furthermore, we would not reduce the query into minute features to provide

adequate outcomes and a suitable no. of keywords shown just as they were

supplied for the search query.

● In Tables 1–4, the query questions are listed joined along with a no. of information

found in each library. The query was first searched in ArXiv, then in IEEE Xplore,

and finally in WOS, in the order stated in the table. If an article was located that

had already been previewed in a prior query, it was not added to the total number

of relevant articles, but was instead identified in brackets.

●

● One is self-evident that Service Web produces most results, albeit with the

minimal %age of relevant articles for the required topic. ArXiv had been most

accurate and possessed the most effective ratio comparatively accuracy and other

features, according to this study's findings.

Result:

We were able to get the essential understanding of the key features of picture

captioning after reading all of the articles and being motivated by another SLR.

To provide the summary in a convenient manner, a full comparison table of all

publications found with the methodology utilised, as well as the findings on the

most widely used datasets for testing, was developed.

● The following is the structure:

🌕Year

■ 2016

■ 2017

■ 2018

■ 2019;

● GoogleNet (which includes all nine Inception models), VGG-16 Net,

DenseNet, AlexNet, and ResNet are feature extractors.

● CNN, RNN, LSTM, TPGN, and cGRU are examples of language models.

● Encoder-decoder; Attention mechanism; Novel objects; Semantics are some

of the methods used.

🌕MS COCO; Flickr 8k; MS COCO; MS COCO; MS COCO; MS

COCO; MS COCO; MS COCO; MS

🌕METEOR; CIDEr; BLEU-4; BLEU-1; BLEU-2; BLEU-2; BLEU-3

If an aspect was mentioned in the article, an x was written next to it in each column. The

following columns show the findings of calculation metrics for 2 sets of data: Flickr30k

and MS COCO. The cells were left empty in case no testing had been applied on any of

the given data sets chosen. A brief note was supplied if a different data set or calculation

metric was applied in its publication (Appl. Sci. 2018, 6, 2021 5 of 19).

Tables:

Conclusions

● Image captioning is a fun activity that generates a lot of competitiveness

among scholars.

● Many scientists are opting to research this field of study, resulting in a

steady increase in knowledge.

● Despite the fact that there are dozens of fresh articles with even better

results and new ideas for development, it was observed that the results are

commonly compared to previous articles.

● Comparison of prior papers leads to a misunderstanding of the crucial

concept of result improvement—in most cases, significantly larger results

have already been attained but are not mentioned in the report.

● If new ideas are not diligently sought for, they can easily be lost.

● This comprehensive literature review integrates all of the most recent

papers and their findings in one location, preventing the loss of useful ideas

and promoting fair competition among the new models developed.

● Furthermore, it is yet unknown if the MS_COCO & Flickr 8k Datasets are

acceptable for model evaluation & whether they produce enough results in

a range of settings.

Chapter 03: SYSTEM DEVELOPMENT

● Model Development

1. Collection of Data:
a. Many open source datasets are available for such problems , such as Flickr

8k , Flickr 30k , MS COCO

b. In our project, we’ve utilised the already known Flickr8KDataset, having

8K images.

c. Each image contains 5 captions linked to it.

d. These pictures are divided into 3 categories:

i. Training containing 6001 pictures

ii. Dev containing 1001 pictures

iii. Testing containing 1001 pictures

2. Knowing Our Dataset:
a. The file name “Flickr 8k.token.text” has the name of the picture and the

captions linked to it. It will be read in a following manner:

- F_name = ‘/Datasets/TxtFiles/Flickr_8k.token.txt’

- F = open(fname, ‘r’)

- Docum = f.read()

b. The txt file is:

i.

ii. Each line has #j, in which 1<=j<=5 that is, name of the picture, no. of

images (1 to 5) and moreover it contains the real caption.

iii. Now, we will make a dictionary containing picture names (not

having its extension) as keys which will be linked to 5 captions

related to it.

3. Data Cleaning:

a. We will do the basic text cleaning, such as all words will be converted to

lower-case letters, special characters will be removed , all the words

containing numbers will be eliminated.

b.

c. A new vocabulary is created, containing the unique words; 8200*4 image

captions (corpus) within the data set :

- Vocab=Set_()

- FOR k in desc.keys():

- [vocab..update(l.split()) for l in desc[keys]]

- cout(“Actual Vocab Size: %d”: % len(vocab))

- Actual Vocab Size = 8814

d. In a nutshell, we got 8814 unique__words over the total image captions that

are present. A new file named ‘descriptions.txt’ contains all the captions

e. However, many words would occur only a small amount of times, say I, II

or III times. Since we are making a predictive model, we'd not wish present

in our vocabulary but the words which are more likely to occur or which

are common.

f. Hence only those words occur a minimum of ten times within the total

outcome. Having code below:

i.

ii. In total , we have 1651 unique words .

4. TrainingSet Loading

The txt file “Flickr_8k.trainImages.txt” has images of training set. The

names are loaded to the list “train”.

There are 6000 images in the training set.

Now, we load the descriptions of those images from “descriptions.txt”

within the Python dictionary “train_descriptions”.

However, after we load them, we are going to add two tokens in every

caption as follows (significance explained later):

‘end seq’ -> this can be an end sequence token which can be added at

the top of each caption.

5. Data Preprocessing — Images

Images are input (X) to the model. As you'll already know that any

input to a model must run within the type of a vector.

Every picture will be converted to vector type. We are using transfer

learning by using the InceptionV3 model (Convolutional Neural

Network) developed by Google.

This model performs image classification on 1,000 various classes of

pictures and was trained on Imagenet dataset. However,the purpose of

the model isn't to classify the image but just get a fixed-length

informative vector for each picture. The procedure is called automatic

feature engineering.

Therefore, we will delete the last softmax layer of the model and

extract 2048 length vector (bottleneck features) for every image:

Feature Vector Extraction (Feature Engineering) from

InceptionV3

The code is as given below:

After this , each image is passed to the present model and induced to

the corresponding 2048 length feature vector as follows:

Picture classification is the process of finding and labelling groups of

pixels or vectors inside an image based on a set of rules. The

classification law can be based on one or more spectral or textural

qualities. Unsupervised and supervised classification methods are the

two types of classification procedures.

NOTE: This process takes around 1-2 hours.

Similarly we do this procedure with all the test images

Data Preprocessing — Captions

The model will predict the captions to the iamges. So during the

training period, captions will be (Y) i.e. target variables , that the

model is learning to predict.

However, predicting the whole caption based on the image is not

instantaneous. We'll try to guess the caption word for word. As a result,

each word will be encoded into a vector of a specific size. Except for

now, we'll be making two Python Dictionaries called "wordtoix" and

"ixtoword." This section would have to be seen once we look at the

model design, but for now, we'll be constructing two Python

Dictionaries called "wordtoix" and "ixtoword."

In general, we'll use an integer to represent each individual word in the

lexicon (index). As previously said, we have a total of 1652 unique

words, and each word will be represented by a number ranging from 1

to 1652.

We will be using 2 python dictionaries:

1. word_to_ix[‘abc’] -> Gives idx of a word ‘xyz’

2. ix_to_word[k] -> Gives word that has idx as ‘i’

The following is a list of the code:

Another thing we will be calculating is the Maximum length of a

caption and the code for it is mentioned below:

Maximum Description Length = 34

Therefore, the maximum length of a caption = 34.

6. Generator Func

This is a very important step of our model. Here we'll understand the

way to prepare the info in a manner which is able to be convenient to

incline as input to the deep learning model.

Hereafter, we will explain this step with the help of an example:

Consider we’ve 3 pictures and the 3 corresponding captions to the

images as mentioned below:

(Training Picture - 1) Caption = The black cat sat on grass

(Training Picture 2) Caption = The white cat is walking on road

(Testing Picture) Caption = The black cat is walking on grass

Here, First 2 images used to train the model, and third one is the testing

image.

Now some questions that arises:

● What makes this a difficulty for supervised learning?

● What information do we have at our disposal?

● How does the data matrix appear?

Firstly, Both photos will be converted to their corresponding feature

vectors. of 2048 length. Let's call the feature vectors of the primary

two photos "Training Picture 1" and "Training Picture 2," respectively.

Second, we'll combine the two tokens "start seq" and "end seq" in

Image 1 and Image 2 to develop a vocab for the two main (train)

captions:

Cptn 1 = “startseq the black cat sat on grass endseq”

Cptn 2 = “startseq the white cat is walking on road endseq”

vocabulary = { endseq, grass,cat, is,walking, on, the, black, white,

road, sat, startseq}

Each word is given an index within vocab as follows:

- black = 1

- cat = 2

- endseq = 3

- grass = 4

- is = 5

- on = 6

- road = 7

- sat = 8

- start seq = 9

- the = 10

- walking = 11

- white = 12

Consider it as a supervised learning problem with a set of knowledge

points D =, where Xi (feature vector of knowledge point I) and Yi (

the target variable).

Consider the primary picture vector Image 1 as well as the caption that

goes with it: "start seq the fisher cat sat on grass end seq." Remember,

the input is the image vector, and We want to predict what the caption

for the image is. However, here's how we think the caption will turn

out:

For the first time, we provide the picture vector (and hence the first

word) as input and try to predict the second word, i.e.

Input -> Image1 + ‘ startseq ’

Output -> ‘ the ’

Then we offer an image vector as well as the first two words as input,

and check out to predict the third word, i.e.

Output = ' cat '

Input = Image_1 + ' startseq the '

Thereafter,

At the end , the information matrix for one image and its title will be

described as follows:

image_1 and its caption are represented by data points.

It is worth noting that image_1 + caption isn't only one datum, but

rather a collection of points of data based on the caption's length.

In a similar manner, Our data matrix will look like this if both the

photos and their descriptions are taken into account:

Data Matrix for Image_1 and Image_2 with their captions

We must now recognise that with every piece of data, not only the

image, but also a partial caption, assists in the prediction of the next

word in the sequence, acts as an input to the system.

We'll use a Recurrent Neural Network to interpret these incomplete

captions because we're dealing with sequences (more on this later).

We've already established that we won't be passing the caption's unique

English text; instead, we'll transmit a sequence of indices, each of

which indicates a single word.

Let's examine what the information matrix would look like if we

replaced the words with their indices now that we've created an index

for each word:

After replacing the words with their indices, create a data matrix.

We want to ensure that all of the sequences are of equal length

because we might be executing instruction execution (described later).

As a result, at the conclusion of each sequence, we'd like to append 0's

(zero padding). But, in each sequence, what percentage of zeros should

we append?

This might explain why we set the maximum length of a caption at 34

characters (if you remember). As a result, we'll append those many

zeros that can make every sequence to be 34 characters long.

The data matrix that we obtain looks like this:

Appending zeros to each sequence to make them all of same length 34

What is the need of data generator:

This, I believe, offers you a good idea of how we'll prepare the dataset

for this topic. There is, however, a huge catch.

I've just considered two images and captions in the given example,

yielding fifteen data points.

However, we have 6000 photos in our actual training dataset, each with

five captions. This brings the total number of photos and captions to

30000.

Even if each caption on the median is only seven words long, the total

number of data points will be 30000*7, or 210000.

Computing the size of the data matrix is as follows:

data matrix size = n*m

Where n stands for the no. of data points (assumed to be 210000), and

m stands for the length of every data point.

Clearly, m= picture vector length (2048) + partial caption length (x).

2048 Plus x = m

What's the value of x, though?

You might believe it’s 34, But wait a minute, that's incorrect.

Through one of the word embedding approaches, each word (or index)

will be mapped (embedded) to a higher dimensional space.

Every word/index is mapped to a 200-long vector using a pre-trained

GLOVE word embedding model later on during the model building

stage.

Each sequence now has 34 indices, each of which can be a

200-dimensional vector. As a result, x = 34 * 200 = 6,800.

As a result, m = 2,048 + 6,800 = 8,848

As a result, the size of the data matrix is equal to 210000 * 8848,

which equals 1858080000 blocks.

Whether we assume that one block occupies two bytes or not, we'll

need at least 3 GB of main RAM to hold this data matrix.

This is a really large need, and whether or not If we can fit this much

data into RAM, the system will be extremely sluggish.

This is why data generators are frequently used in deep learning. The

data generators are a Python feature that’s available out of the box. The

Keras API's ImageDataGenerator class is nothing more than a Python

application of the Generator Function.

So, how can employing a generator function help with this

issue?

\

CHAPTER 04: PERFORMANCE ANALYSIS

1. Word Embeddings

As written above, we'll map every word (index) to a 200-long vector

and for this purpose, we are using a pre-trained GLOVE Model:

We now generate an embedding matrix for each of the 1652 unique

words in our lexicon, which can be fed into the model prior to training.

2. Architecture of Model

We can't utilise the Sequential API supplied by the Keras library since

the input consists of two parts: a picture vector and a partial caption.

As a result, we employ the Functional API, which enables us to create

Merge Models.

Let's start with a quick overview of the architecture, which includes the

high-level sub-modules:

The model is given below:

Code for defining the Model

Model Summary is mentioned below:

Model Summary

The below plot illustrates the network's topology and provides a clearer

visual representation of two input streams:

Architecture Flowchart

The red coloured text are the comments for better understanding.

The long-short term memory layer (LSTM) is a proprietary recurrent

neural network that analyses sequence input in the model, including

incomplete captions.

Comments are written to understand the architecture in a better way.

Before beginning the training, we created a embedding matrix from an

already trained Glove model, that one wish for incorporate into the

model.:

mode__layers.st__wght([ebdg__mtrx])

mode_.layers.trainable = False

Because we're implementing some already trained embedding layer,

we have to freeze that before its training (trainable = False) to prevent

it from being changed during backpropagation.

Finally, we use the Adam optimizer to assemble the model.

model_compile(loss=’ctgrical_crossentropy’, optmyzr=’’)

Finally, using a backpropagation technique, the model's weights will be

adjusted, moreover it would learn to otpt any word that is given a

picture advantage vector and a half caption. At conclusion, results are:

Input_1 -> Half Caption

Input_2 -> Img Advantage vector

Following partial caption sequence in input 1, output -> A acceptable

sentence (or in probability terms papers are saying conditioned on

image vector and also half caption)

Hyper parameters during training:

After that, the model was trained for 30 epochs at a learning rate of

0.001 and three images each batch (batch size). The training rate was

dropped to 0.0001 after 20 epochs, and the model was trained on 6

photos per batch.

This is generally wise because, as the model approaches convergence,

we must lower the educational rate to take smaller steps towards the

minima during the final stages of coaching. Gradually increasing the

batch size improves the power of your gradient updates.

3. Inference

So far, we've seen how to prepare the data and construct the model.

We'll learn how to test (infer) our model by passing in fresh images in

the final phase of this series, i.e. how to write a caption for a

replacement test image.

Remember that we only utilised the primary two images and their

captions in the example where we demonstrated how to prepare the

information. Let's take a look at the third image and see how we'd like

the caption to be generated.

The third image vector and caption were as follows:

Testing Picture

A BLACK CAT is wandering through the green grass

Following is the vocab from ex we used:

Vocabulary: CAT, BLACK, end seq,is, grass, on, sat, start

seq,road, white, the

The caption will be created in phases, with each word in each step

being generated iteratively.

Step 1:

Ipt= Img vector + “stareq”

Predicted word = “THE”

(The token'start seq' is extremely important during inference because it

is utilised as any image with a first partial caption.)

But, it creates a 12-long vector (a 1641-long vector of original ex) that

may be a distribution for most of vocab items. As a result, we greedily

select a word with the highest likelihood given the advantage vector

and half-baked caption.

We should anticipate that prob of word "the" will have to have the

highest if the Model is well-trained:

Step I

Maximum Likelihood Estimation is the name of the method (MLE).

Greedy Search is another term for it.

Step 2:

Ipt= Img vector + “star the”

Predicted word = “BLACK”

Step II

Step 3:

Ipt= Img vector + “start black”

Predicted word = “CAT”

Iteration Step III

Step 4:

Ipt= Img vector + “startcat”

Predicted word: “IS”

Step IV

Step 5:

Ipt= Img vector + “startseq black cat is”

Predicted word: “WALKING”

Step V

Step 6:

Ipt=Img vector + “startseq is walking”

Predicted word= “ON”

Step VI

Step 7:

Ipt = Img vector + “ cat is walking on”

Predicted word = “GRASS”

Iteration Step 7
Predicted Caption = “ walking on grass”

4. Evaluation

Some of the OUTPUT’S of our model is:

Ex-1

Ex-2

Ex-3

Ex - 4

Ex-5

Ex-6

Ex-7

Ex— 8

Ex-9

Ex-10

These were some of our project's outcomes.

Important Point:

It should be noted that the images used for testing should be associated

with the training images. As a hypothesis, should we make our model

on the photographs in plants and animals, one shouldn’t test on

photographs related to cars and humans which will lead to inaccuracy.

CHAPTER 05: CONCLUSIONS

● PROJECT LIMITATIONS:

Modifications we could use are:

● Having a larger set for data.

● Using code during object oriented manner in order so it is easier to duplicate

● Using cross validation and understanding overfitting

● Architecture model changed

● Doing a more extensive tuning of parameter

References:

● Andrej Karpathy. Deep Visual-Semantic Alignments,
https://cs.stnford.edu/people/karpathy/cvpr2015.pdf

● Oriol Vinyals, Alexander Toshev, Samy Bengio, Dumitru Erhan. Show and Tell: A
Neural Image Caption Generator, https://arxiv.org/abs/1411.4555

● Marc Tanti. Where to put the Image in an Image Caption Generator,

https://arxiv.org/abs/1703.09137

● Albert Gatt. What is the Role of Recurrent Neural Networks (RNNs) in an Image
Caption Generator?, https://arxiv.org/abs/1708.02043

● Jason Brownlee. How to Develop a Deep Learning Photo Caption Generator from
Scratch,
https://machinelearningmastery.com/develop-a-deep-learning-caption-generation-model-
in-python/

https://cs.stanford.edu/people/karpathy/cvpr2015.pdf

