Prof TS Lamba

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT END SEMESTER EXAMINATION-2015

M.Tech II Semester, ECE

COURSE CODE: 10M11EC213

MAX. MARKS: 45

COURSE NAME: INFORMATION AND CODING THEORY

COURSE CREDITS: 03

MAX. TIME. 3 HRS

Note: All questions are compulsory. Answer all questions in any section in one place. A partial table of $GF(2^4)$ based on $D^4 + D + 1$ is given at the end of the paper for your use if required

Section A

 $(1 \times 9 = 9 \text{ marks})$

- 1. An experiment has 10 elements in its sample space, $x_1, x_2, ..., x_{10}$ with probabilities $p_1, p_2, ..., p_{10}$ (which are in increasing order). The probability of x_4 is changed to $p_4 + \Delta$ and the probability of x_9 is changed to $p_9 \Delta$. What happens to the entropy
- 2. A set of symbols are coded in ternary format, using Huffman coding. If the number of symbols is 15 how many should be combined in the first step?
- 3. The weighted sum of four convex \cap functions will also be a convex \cap . True or false? Justify your answer.
- 4. The set of polynomials with coefficients 0,1 has addition and multiplication defined in the usual way Is the system a Field? Byplain.
- 5. Are Hamming codes sphere pact codes? Explain
- 6. Explain why any irreductble polynomial of degree more than 1, over GF(2) must have an odd number of terms?
- 7. Minimum weight of a Block code is 5. How many errors can it detect? How many errors can it correct?
- 8. A codeword, given by $\sum_{i=0}^{7} x_i D^i$ is cyclically shifted by two steps. What will be the new code?
- 9. A binary convolutional code is based on the polynomials 1+D and 1+D³. Is this code catastrophic?

- 10. Describe the LZW scheme for source coding. In particular explain how the receiver can decode a received character which is not in its dictionary. Compare its advantages and disadvantages viz-a-viz Huffman coding.
- 11. Explain threshold decoding. Describe the threshold decoder for the (2, 1, 6) convolutional coder with $x_j = m_j$ and $x'_j = m_j + m_{j-2} + m_{j-5} + m_{j-6}$.
- 12. If α is a primitive element of $GF(2^4)$, determine the order of α^3 . Discuss the procedure to be used.

Section C

 $(5 \times 1.5 = 22.5 \text{ marks})$

- 13. For a DMC with fixed transition probability, show that the mutual information I(X; Y) is a convex \cap function of the input probability assignment?
- 14. A (2, 1, 2) convolutional code is based on the function $x_j = m_j$ and $x'_j = m_j + m_{j-1} + m_{j-2}$. For this code determine the output when the input message stream is 11001010.... Also draw the state diagram for this coder. Calculate the minimum free distance for this code?
- 15. Draw the block diagram for the multiplication of the field elements a(t) and b(t) in the field of polynomials based on $D^4 + D + 1$. Explain how it works.
- 16. Describe how the parity check code may be decoded. Given the parity check code matrix, how can you create the syndrome decoding table?
- 17. What are the BCH codes? Design a BCH code based on GF(2⁴). This code should be able to detect all 1 bit errors.

Element	α(t)	Minimal Function
- 0	0000	
1	0001	D+1
α	0010	D + D + 1
α^2		
α^3		$D_*^4 + D^3 + D^2 + D + 1$
α^4	0011	
α^5	111	$D^2 + D + 1$
α^6		
α^7	1041	
α^8	0101	
α^9		
α^{10}	0111	
α ¹¹		
α ¹²	1111	
α^{13}	1101	
α ¹⁴	1001	
/ /		