Dri Salman Raju

JAYPEE UNIVERSITY OF INFORMATAION TECHNOLOGY, WAKNAGHAT

End Semester Examination, May 2015

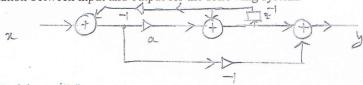
M.Tech. (Second Semester)

Department of Electronics and Communications Engineering

Course Name: Advanced Digital Signal Processing

Maximum Marks: 45

Course Code:10M11EC211

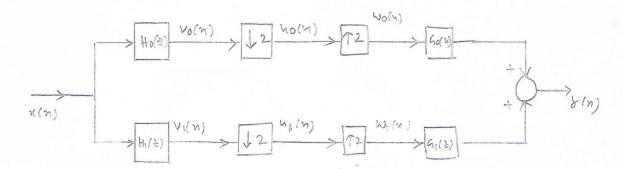

Duration: Three Hours

Note: Answer all questions.

Section A (Each question is for one mark 10)

1. How do you alter the sampling rate of a given signal?

- 2. Give the average power of the signal $x(n) = 3(-1)^n u(n)$.
- 3. Give the input-output relation for a 3-point moving average filter.
- 4. Determine the relation between input and output for the following system.


- 5. Give the DTFT of $x(n) = e^{j\omega_0 n}$.
- 6. Give the Parseval's relation for DTFT.
- 7. What is ROC for the convolution of two signals?
- 8. Draw the pole-zero pattern for an all pass system.
- 9. What do you mean by minimum phase function?
- 10. Give the expressions for group delay and phase delay for a digital system.

Section B (Each question carries five marks)

- 1. Check the properties of the system $y(n) = \beta + \sum_{l=0}^{3} x(n-l)$, β is non-zero coefficient for linearity, causality stability and time variance.
- 2. Determine the total response of the system for $n \ge 0$ of the difference equation $y(n) + 0.1 y(n-1) 0.06y(n-2) = 2^n u(n)$ with initial conditions y(-1) = 1 and y(-2) = 0 using z-transforms.
- 3. Let x(n), $0 \le n \le N-1$ be a length N real sequence with N-point DFT X(k), $0 \le k \le N-1$. Show that $X[(N-k)_N] = X^*(k)$. Show that X(0) is real. If N is even, show that $X(\frac{N}{2})$ is real.
- 4. The frequency response of a length-4 FIR filter with real impulse response has the following specifications. $H(e^{j0}) = 2$, $H(e^{j\pi/2}) = 7 j3$, $H(e^{j\pi}) = 0$. Determine H(z).

Section C (each question carries five marks)

- 1. Give a short note on power spectral estimation methods.
- 2. Give the procedure along with necessary equations to design a Chebyshev IIR high pass filter.
- 3. Design an aliasing free filter bank for the following QMF filter bank with $H_0(z) = 1$ and $H_1(z) = z^{-1}$.

