JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

TEST-1 EXAMINATION-2015 B.Tech (ECE, CE) III Semester

	JRSE CODE: 10B11EC311	MAX. MA	RKS: 15
	JRSE NAME: ELECTRICAL MACHINES AND INSTRUMENTS JRSE CREDITS: 4	MAX. TIM	E: 1 HR
***************************************	e: All questions are compulsory. Carrying of mobile phone during		
trea	ted as case of unfair means.		·
Q1.	(a) Explain the magnetic leakage and fringing effect in a magnetic cir	cuit.	[1.5]
	(b) An air-cored toroidal coil has 3000 turns and carries a current sectional area of the coil is 4 cm ² and the mean length of the mag Find the magnetic field strength, the flux density and the total flux with the section of the magnetic field strength.	netic circuit is	
Q2.	(a) How the size of the transformer depends upon the supply frequency	, explain.	[1]
	(b) A single phase, 230 V/ 110 V, transformer has iron loss of 100 V the hysteresis and eddy-current losses at $50\mathrm{Hz}$.	V at 60 Hz. D	etermine [2]
Q3.	(a) Draw the equivalent circuit and phasor diagram of a practic inductive load, and (ii) capacitive load. Assume zero copper loss and		
	(b) Derive the condition for maximum voltage regulation for a transfe	rmer.	[2] [1]
Q4.	(a) What do you mean by the armature reaction in a DC machine?		[1]
	(b) Derive the condition for maximum efficiency of a DC generator.		[1]
	(c) A 6-pole, dc motor takes an armature current of 110 A at 480 V. The resistance of the armature circuit is 0.2Ω , and flux per pole is 50 mWb. The armature has 864 lap connected conductors. Calculate (i) the speed, and (ii) the gross torque developed by the armature.		
Q5.	(a) Define critical speed and critical field resistance for a DC generate	or.	[1]
	(b) A 4-pole shunt generator with lap-wound armature has armature a 0.5 Ω and 60 Ω , respectively. It supplies power to 110 lamps, e Calculate the armature current and the generated emf.		
	(c) In core type transformer, why the low voltage winding is kept core.	closer to the r	nagnetic