JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

TEST-1, 2015

B.Tech (5th Semester, ECE)

COURSE CODE: 10B11EC512

MAXIMUM MARKS: 15

MAX. TIME: 1 Hrs

COURSE NAME: Digital Signal Processing

COURSE CREDIT: 4

NOTE: All questions are compulsory.

- 1. Compute the circular convolution between x(n) and h(n), where $h(n) = \{2, 1, 2, 1\}$ and [3 Marks] $x(n) = \{1, 2, 3, 4\}.$
- 2. The first five points of the eight-point DFT of a real-valued sequence are

 $\{0.25, 0.125 - j0.3018, 0, 0.125 - j0.0518,$

0}.

Determine the remaining three points.

[3 Marks]

3. If x(n) is real and even with a rational z-transform, show that

$$X(z) = X(z^{-1})$$

And describe what constraints this places on the poles and zeros of X(z). [3 Marks]

- 4. For the two sinusoidal signals having frequencies 25 Hz and 125 Hz, find the corresponding discrete time signals for these two tonal signals using sampling frequency 100 samples/ sec. [2 Marks]
- 5. A digital system having phase

$$\theta(\omega) = -k\omega$$

k is a constant, If the group delay of this system is 10 ms, what would be the phase [2 Marks] delay.

6. A causal pole-zero system is BIBO stable if its poles are inside the unit circle. Consider now a pole-zero system that is BIBO stable and has its poles inside the unit circle. Is the system always causal? (Hint: consider the system $h_1(n) = a^n u(n)$ and $h_2(n) = a^n u(n+3)$, [2 Marks] |a| < 1).