JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -1 EXAMINATION- 2015

B.Tech V Semester

COURSE CODE: 10B11CE512	MAX. MARKS: 15
COURSE NAME: DESIGN OF CONCRETE STRUCTUE	ES
COURSE CREDITS: 4	MAX. TIME: 1 HR
Note: All questions are compulsory. Carrying of mobile ph	one during examinations will be
treated as case of unfair means.	
1. a) The unit weight of Reinforced cement concrete is	s
b) HYSD bars are also known as steel. c) The limit state corresponding to maximum load.	earrying canacity is known as
d)Code gives the values of different type e) Maximum strains in an extreme fibre in concrete	s of loads. and in the tension reinforcement (Fe-
500 grade and $E_s = 200 \text{ kN/mm}^2$) in a balanced sect	ion at limit state of flexure are
f) Reinforced cement concrete structures are heavie	er than steel structures (True/False)
g) TMT bars have excellent ductility. (True/ False)	•
h) High strength is more ductile than mild steel. (Tr	
i) Limit state assumes linear stress distribution. (Tru	
i) The moment of resistance of balanced section is l	
section.	
2. A rectangular reinforced concrete beam is simply	supported on two masonry walls 230
mm thick and 6 m apart (centre to centre). The be	am is carrying an imposed load of 15
kN/m. Design the beam with all the necessary check	
3. A doubly reinforced rectangular concrete beam ha	_
depth of 500 mm. The beam is reinforced with 2200	
of steel in compression. The effective cover for cor	•
both tension and compression steel yield. The grad	
and Fe 250, respectively. The stress block parameter	
2000. Determine the depth of neutral axis and mom	ent of resistance of the section. (3)

A T-beam floor system has 120 mm thick slab supported on beams. The width of beam is 300 mm and effective depth is 580 mm. The beam is reinforced with 8 bars of 20mm diameter. Use M20 grade of concrete and Fe 415 steel. The beams are spaced 3m centre to centre. The effective span of beam is 3.6m.