Dr Veeresh Gali

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT MID-SEMESTER EXAMINATION (March- 2015) M. Tech. (II- SEM.)

COURSE CODE: 14M31CE212

MAX. MARKS: 30

COURSE NAME: Contaminant Transport

COURSE CREDIT: 3

MAX. TIME: 2 HRS

Note: Attempt all Questions. Assume suitable data if required.

Section $A - (6 \times 1 = 6 \text{ Marks})$

- 1. Answer the following
- a) What is the ratio of acetate ion concentration (CH_3COO^-) to the acetate molecule concentration (CH_3COOH) in water if pH is 10? (log K = 4.8)
- b) Mention the application of metal -containing catalysts in control of pollution from automobile exhaust
- c) Express vapor pressure of 0.12 atm of carbon tetrachloride (Mol. Wt. 153.82) in terms of mm Hg of CCl₄ at 20°C.
- d) How *Gibbs free energy* helps in providing information about a chemical reaction or the distribution of a chemical among phases. What are the factors on which Gibbs free energy depends upon?
- e) What does octanol-water partition coefficient signify and how this index is helpful in pharmaceutical industry.
- f) What do you mean by "Polar" and "Non-Polar" chemicals? What are the characteristics which distinguish between a polar and non-polar chemical.

Section $B - (3 \times 3 = 9 \text{ Marks})$

- 2. Distinguish between "Kinetics" and "Equilibrium". How do you relate chemical kinetics with order of a reaction? Explain each order of reaction with neat figures. [03 Marks]
- 3. What are the necessary and sufficient equations (based on key principles) required to determine the equilibrium chemical composition of a system. Discuss any one principle. [03 marks]
- 4. Distinguish between "Adsorption" and "Absorption". What are the mechanisms by which sorption can occur in the environment. Mention the relationship between the concentration of a sorbed and dissolved chemical and the significance of the exponent used.
 [03 Marks]

Section $C - (3 \times 5 = 15 \text{ Marks})$

- 5. a) What are the factors which influence the partitioning of a chemical between aqueous and gas phases and how do these factors influence Henry's law constant. [03 Marks]
 - b) How do you convert a dimensionless Henry's law constant to Henry's law constant with units?

 [02 Marks]
- 6. a) Define "fugacity". How the concept of fugacity does help in determination of the relative concentrations of a chemical in different phases of environment at equilibrium. [02 Marks]
 - b) 10 kg of toluene (C₇H₈) are added to an artificial ecosystem consisting of 5 x 10⁶ m³ of water, 10⁷ m³ of air and 5.0m³ of fish. Using the fugacity concept, predict the equilibrium portioning of toluene into each phase. Assume a BCF of of 3.1 liter/kg, a fish density of 1g/cm³, and a temperature of 25°C. Properties of toluene are given below: [03 Marks]

Chemical	Mol. Wt.(g/mol)	Density (g/cm³)	Solubility (mg/L)	Vapour Pressure (atm.)	Henry's law constant (atm. m³/mol)
Toluene	92.14	0.87	515	3.7x10 ⁻²	6.6 x 10 ⁻³

- 7. a) Relate "Volatility" with "Vapour Pressure". How the chemicals are classified based on their volatility and discuss their characteristics. [02 Marks]
 - b) A fuel tank in a pick-up truck has a filler pipe 2 ft in length with a diameter of 1.5 in. Estimate the amount of fuel lost a) by molecular diffusion (if the gas cap is left off for a day) and b) by advective "pumping" through a tank vent, when atmospheric pressure decreases from 30.0 to 29.0 inches of mercury (in Hg). Use an appropriate diffusion coefficient of $0.115 \text{cm}^2/\text{sec}$. Assume the fuel is ethanol (C₂H₆O) with a vapour pressure of 0.08 atm at the ambient temperature of 21°C. The fuel tank capacity is 90 L and the tank is 1/3 full. What would be the percentage loss of fuel if the tank would have been 1/4th full? [03 Marks]