Dr-Shruli Jain

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

TEST -1 EXAMINATION- September 2016

M.Tech I Semester (ECE)

COURSE CODE: 10M11EC114

MAX. MARKS: 15

COURSE NAME: VLSI CIRCUIT AND SYSTEM DESIGN

COURSE CREDITS: 04

MAX. TIME: 1Hr

Note: All questions are compulsory. Carrying of mobile phone during examinations will be treated as case of unfair means.

- 1. Consider an enhancement MOS system with the following parameters: $t_{ox} = 200$ Å, $\phi_{GC} = -0.85$ V, $N_A = 2.10^{15}$ /cm³, $Q_{ox} = 2q.10^{11}$ C/cm². [3 + 2 = 5]
 - a) Determine the threshold voltage V_{T0} under zero bias at room temperature.
 - b) Determine the type (p type or n type) and amount of channel implant (/cm²) required to change the threshold voltage to 0.8V
- 2. a) A n MOS transistor with $V_A = 100 \text{ V/} \mu\text{m}$ is operated at a dc current $I_D = 1 \text{ mA}$. If the channel length is doubled and V_{GS} is fixed, find the new values of λ , V_A , I_D , and r_o .

 $[0.5 \times 4 = 2]$

- b) A p MOS transistor has k_p (W/L) = 80μ A/V², V_{th} = -1.5V, and λ = -0.02V⁻¹. The gate is connected to ground and the source to + 5V. Find the drain current for V_D = +1.5V. Also find the effect of both scalings on the drain current if scaling factor is 2. [1 + 1 + 1 = 3]
- 3. The process parameters are: $N_{\rm D} = 2 \times 10^{30}$ cm⁻³, $N_{\rm A} = 1 \times 10^{15}$ cm⁻³, $x_{\rm j} = 0.5$ µm, W = 10 µm, Y = 6 µm, $t_{\rm ox} = 0.05$ µm, $V_{\rm TO} = 0.8$ V, channel stop doping = 16 × (p- type substrate doping). Find the effective drain parasitic capacitance when the drain node voltage changes from 5V to 2.5V.