JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT SUMMER SEMESTER – END TERM TEST (JULY 2016)

COURSE CODE: 10B11MA312

MAX. MARKS: 50

COURSE NAME: NUMERICAL METHODS

COURSE CREDITS: 4

MAX. TIME: 2 HRS

Note: All questions are compulsory. Carrying of mobile phone during examinations will be treated as case of unfair means. Use of Scientific Calculator is allowed. Attempt the questions section wise in a sequence. Marks are indicated against the questions.

1. Explain and derive the Romberg's Method with trapezoidal formula. Using the method compute

$$\int_{0}^{1} \frac{dx}{1+x^2}$$
 correct to 3 decimal places. (10)

- 2. Apply Simpson's rule to evaluate the integral $I = \int_{y=2}^{2.6} \int_{x=4}^{4.4} \frac{dx}{xy}.$ (5)
- 3. Use Picard's method of successive approximation to find the value of y when x = 0.1, given that

$$y = 1$$
 when $x = 0$ and $\frac{dy}{dx} = 3x + y^2$. [Find in upto 2 steps only]

- 4. Explain the methodology of Cubic Spline with derivation and fit a natural cubic spine passing through (1, -6), (2, -1), (3, 16). Hence evaluate y(1.5). (10)
- 5. Using derivatives based on Stirling formula, find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ for x = 0.2 for the data given in the following table: (7)

X	0	0.1	0.2	0.3	0.4	0.5
y	0	0.15	0.23	0.34	0.41	0.52

6. Determine the equation to the best fitting exponential curve of the form $y = ae^{bx}$ for the data given in the table: (7)

,			-		
X	1	3	5	7	9
y	115	105	95	85	80

7. Use Runge Kutta Method of order four and with h = 0.1 to find an approximate solution of $\frac{dy}{dx} = x^2 + y \text{ at } x = 0.1, 0.2.$