Prof. Lar Singh

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION JUNE- 2016

M.Tech 4th Semester

COURSE CODE: 11M1WCE133

MAX. MARKS: 35

COURSE NAME: Bridge Engineering

COURSE CREDITS: 03

MAX. TIME 2.Hr

Note: All questions are compulsory. Carrying of mobile phone during examinations will be treated as case of unfair means. This paper has 3 printed sides.

Suitably assume any missing data. Piguard's Curves is allowed.

- 1. A T-beam bridge (Figure I) has to be provided across a channel having the following data. [2+4+4=10 Marks]
 - Flood discharge: 30 m³/s
 - Bed width: 12 m
 - Slide slope: 1:1
 - Bed level: 50 m
 - HFL: 51.25 m
 - Maximum allowable afflux 1.3 cm
- Road: National Highway (2 lanes)
 - Footpath: 1 m wide on either side
 - Boading: IRC Class AA
- Materials: M40 concrete, Fe 415 steel
- No. of longitudinal girders: 3
- a) Design the Linear Waterway
- b) For the Cantilever Slab Portion (Figure II) Calculate design moment and design shear force only.
- c) For the Longitudinal Girder for IRC Class AA Calculate design moment only.

Figure I

- 2. Obtain the values of short span and long span bending moments in case of an interior panel of a T-beam bridge (Figure III) having the following details: [5 Marks]
 - Dimensions of the panel: 3 mx 3 3 m
 - Loading: IRC Class A
 - Loading pattern: One wheel (37 kN) at centre of the panel.
- 3. Design an elastomeric unreinforced neoprene pad bearing to suit the following data:

[5 Marks]

- Vertical foad (sustained): 200 kN
- Vertical Load (dynamic): 40 kN
- Horizontal force: 60 kN
- Modulus of rigidity of elastomer: 1 N/mm²
- Friction coefficient: 0.3

A plate girder railway bridge of clear span 7m. The bridge is meant for a single track on broad gauge main line. The following data is provided for bridge design: [5 Marks]

Dead Load of sleeper = 10kN/m

Dead Load of rails and fitting = 15kN/m

Design the steel bridge for Dead load and live load. Calculate the economical depth. (Assume CDA value suitably if required)

- 5. Verify the adequacy of the dimensions for the pier shown in the (Figure IV). The following details are available: [10 Marks]
 - Top width of the pier: 1.6 m
 - Height of the pier up to the springing level: 10 m
 - c/c of the bearings on either side: 1.0 m
 - Side batter: 1 in 12
 - High flood level: 1 m below the bearing level
 - Span of the bridge: 16 m
 - Loading on span: IRC Class AA
 - Road: Two-lane road with 1 m wide footpath on either side.

- Superstructure: Consists of three longitudinal girders of 1.4 m depth with a deck slab of 200 mm depth.
- Rib width of girders = 300 mm
- Material of the pier: Concrete M
- Maximum mean velocity of Water current: 3m/s
- Pier length: 9.5m
- Dead load from superstructure: 1480 kN
- Take unit weight of concrete in pier: 24kN/m³

