Shailendh Shulde

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- 2016

M.Tech II Semester

COURSE CODE: 10M11CI211

MAX. MARKS: 25

COURSE NAME: Advanced Algorithms

COURSE CREDITS: 3

MAX. TIME: 1Hr 30 Min

Note: All questions are compulsory. Carrying of mobile phone during examinations will be treated as case of unfair means.

- 1. Maximize: P = 3x + 4y which is subject to the following equations $x+y \le 4$, $2x+y \le 5$, $x \ge 0$, $y \ge 0$. (use Simplex Method) [4 Marks]
- 2. Proof: Given Graph G = (V, E) that is connected but not completely connected, the vertex subset V' derived from the marking process (as discussed in class), forms the dominating set of G. [4 Marks]
- 3. Explain briefly:

[6 Marks]

- a. The two Algorithm A_1 and A_2 run on the same machine. The run time of A_1 machine is $100n^{30}$ and the run time of A_2 is 2n. Can A_1 run faster than the A_2 ?
- b. Connected Dominating Sets
- c. Steiner Tree
- 4. Explain the Greedy Algorithm for Graph Coloring and Brook's Theorem? [5 Marks]
- 5. A bipartite graph is a graph whose vertices can be separated into two sets A and B such that every edge of the graph joins a vertex in A to a vertex in B. [6 Marks]
 - a) Explain why if chromatic number = 2 then G must be a bipartite graph.
 - b) If G is a bipartite graph, then every circuit in G must have an even number of vertices. True or False? Explain
 - c) Explain why if (chromatic number) $\chi(G) = 1$ then G consists of just isolated vertices.