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ABSTRACT 
 

 

The completion of human genome sequencing project in April 2003 and subsequently next 

generation sequencing technology provided the direction for annotation of genome to come into 

existence. The huge amount of genomic raw DNA data is annotated in genome annotation by 

extracting useful information and the annotated data is added to the data base of genome. 

Genomic data available in the form of DNA sequences consists of various hidden patterns which 

are associated with the functioning of the organism. Protein-coding regions, introns, CpG 

Islands, tandem repeats, genic regions, inter genic regions, promoter regions, transcription start 

sites, and untranslated regions are few examples of sections of DNA which are important. Many 

computational approaches have been developed for the identification of these regions. However, 

development of accurate and efficient approaches for the detection and localization of the hidden 

patterns in DNA sequences has always been a challenging task. In this research work, efficient 

approaches have been proposed for the detection of hidden patterns such as protein-coding 

regions, CpG Islands, and tandem repeats in the DNA sequences. The signal processing based 

tools have been employed in all the proposed approaches of this research work. The platform 

used for the simulation of proposed algorithms in this work is MATLAB (R2013). The 

performance assessment has been carried out using standard evaluation metrics and the 

comparison has been done with recent state-of-art methods on the benchmark datasets. The 

proposed approaches have achieved significant improvement in detection over recent state-of-art 

methods. 
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CHAPTER 1 

INTRODUCTION 

One of the areas of signal processing known as genomics signal processing is gaining popularity 

and advancing very rapidly nowadays and it has been made possible due to the deoxyribonucleic 

acid (DNA) sequencing efforts made by various government and private sector organizations 

worldwide. A lot of research is being done in this field because of the availability of vast amount 

of genomics data in the form of DNA sequences made publically available by websites like 

National Centre for Biotechnology Information (NCBI) [1]. Although it seems to be complex to 

portray this field, yet it can be defined as the area of exploration which is the intersection of 

structural biology, molecular biology, and molecular evolution whose main aim to investigate the 

relationships amongst sequence, biological function, structure, and evolution using 

computational analysis of DNA sequences. The nucleotide bases known as Guanine „G‟, 

Thymine „T‟, Cytosine „C‟, Adenine „A‟ are the constituent elements of  DNA sequences. It has 

been reported in literature that most of the part of DNA sequences comprise of repeated patterns 

of varying periodicity. Such hidden information regarding periodicities inside the DNA 

sequences needs to be explored to understand the biological relevance related to these which can 

be of great importance for the society. Coding and non-coding regions are the important 

constituents of deoxyribonucleic acid (DNA) sequences. Coding regions are commonly known 

as „protein-coding regions (PCRs)‟ or „exons‟ and the non-coding regions are called as „introns‟. 

It is believed that the nucleotides belonging to exonic regions contribute in protein formation. It 

is well known that the PCRs reveal three-base periodicity which is popularly called as TBP or 

period-3 property while non coding regions generally do not possess such property [2].  

Another significant constituent of DNA sequences which is having great importance is CpG 

Islands. CpG Islands are those segments inside the DNA sequences where nucleotide „C‟ is 

followed by nucleotide „G‟ and the concentration of dinucleotides „CG‟ is higher in these 

segments compared to region which is non CpG Island. The „p‟ in CpG Islands represents the 

phosphodiester bond between G and C nucleotides [3]. Some of the important activities which 

highlight the relevance of CpG Islands are like: the detection of CpG Islands can facilitate in the 

identification of promoter regions and subsequently genic regions [4], inactivation of X 
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chromosome, some human malignancies, silencing of gene, and also may be helpful for the early 

stage forecasting of cancers [5].  

Tandem repeats are those patterns inside the DNA sequences where more than two adjacent 

copies of recurring pattern of a particular periodicity are present. The analysis of tandem repeats 

is carried out utilizing the important features like repeat pattern structure, pattern length, number 

of copies, location of these patterns inside the DNA sequences. On the basis of length of 

recurring pattern, the tandem repeats (TR) are categorized as: microsatellites, minisatellites, and 

satellites. Microsatellites which are also called as short tandem repeats (STR) range between 2-8 

bps in their pattern size. Minisatellites‟ repeat pattern size ranges between 9-80 bps. The size of 

repeat pattern of satellites is greater than 100 base pairs (bps) [6]. The study of TRs is important 

because some of these TRs are accountable for a number of diseases. Moreover, TRs find 

applications in many additional areas such as DNA fingerprinting, population‟s study of a 

region, and DNA forensics analysis etc. [7]. Hence, the vast amount of genomic data already 

available needs to be analyzed properly for the benefit of society in respect of various 

applications corresponding to the outcome of exploration. The remaining of the chapter covers 

the following topics: DNA and genomics, sequencing of DNA, annotation of genome, possible 

approaches for genomic data processing, application of digital signal processing methods in 

genomics, and the organization of thesis.   

1.1  DNA and Genomics 

Cell is the basic fundamental, biological unit of all living organisms and all the genetic 

information of organisms is stored inside the nucleus of the cells. The two types of organisms, 

prokaryotes and eukaryotes differ on the basis that eukaryotic cells possess membrane bound 

nucleus whereas prokaryotic cells do not possess this property. Their composition is depicted in 

Figure 1.1. Eukaryotes are mostly multicellular whereas prokaryotes are unicellular. Eukaryotes 

accumulate their genetic information inside the nucleus in a substance called as chromatin. 

According to cell cycle chromatin may be found in either compressed state or uncompressed 

state and the compressed state of chromatin is known as chromosome. Eighty percentage 

composition of chromatin is made up of proteins and the remaining twenty percentage is made 

up of nucleic acids. Nucleic acids are essential to all living organisms and are composed of  
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Figure 1.1: Difference between eukaryote and prokaryote cells in terms of presence/absence of nucleus          

[source: fitz6.wordpress.com] 

nucleotides. The three basic components which comprise of nucleotides are: a phosphate group, 

a 5-carbon sugar, and a nitrogenous base. Depending upon the sugar type, nucleic acids is 

classified as DNA if the sugar type is deoxyribose and RNA (ribonucleic acid) corresponding to 

ribose as sugar type. All the necessary genetic information related to the functionality and 

development of all living organisms is contained in the DNA. The encoding of hereditary 

information is performed by DNA and correspondingly the one species can be distinguished 

from the other species. The arrangement of nucleotides inside the DNA is linear and they form a 

DNA strand. In general, two single strands of DNA molecule are twisted around each other and 

they remain in helical shape and form a double helix structure [8-11] as represented in Figure 

1.2. 

 

Figure 1.2: Double helix structure of DNA molecule [source: https://ib.bioninja.com.au/standard-level/topic-2-

molecular-biology/26-structure-of-dna-and-rna/dna-structure.html ]  
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The two strands of DNA molecule are arranged in anti-parallel fashion because the two strands 

point in opposite directions. The backbone of each strand of DNA is composed of phosphate 

groups and sugars. The nucleotide nitrogenous base „A‟ of one DNA strand is always found in 

pair with base „T‟ of opposite DNA strand and „C‟ pairs with „G‟ always. Purine and pyrimidine 

are the two types of nitrogen based found in DNA molecule. „C‟ and „G‟ comes under 

pyrimidine bases category while „A‟ and „T‟ falls under Purine bases category.  The chemical 

bonding between the nucleotides of one DNA strand with the nucleotides of other strand of DNA 

is a hydrogen bond. Because a single hydrogen bond is weak, hence these bonds altogether form 

a stable and double helix structure which looks like a rope. The discovery of double helix 

structure of DNA molecule proved to be the biggest attainment in the field of molecular biology 

because after its discovery it became transparent that genes are functionally definite parts of   

DNA molecules. And through this process cells translate the information contained in DNA to 

particular amino acids and which are further utilized to produce proteins.    

The complete set of DNA sequence of a species is known as genome and the study of genes in a 

species is known as genomics. In genomics, the buried features inside the genome of a species 

are extracted; analyzed and useful information is obtained. In a single cell of every human body, 

there remain around 3 billion of DNA base pairs (bps). The cells are responsible for the 

formation of particular proteins using enzymes and messenger molecules. The enzymes are 

responsible for copying the information regarding genes from DNA to messenger RNA (mRNA) 

molecule. The movement of mRNA from nucleus to cytoplasm of cell is read by the ribosomes. 

The formation of particular protein is then governed with the help of ribosomes by providing link 

between mRNA and the order of amino acid. The development of various body structures like 

tissues, organs etc., the carriage of signal between cells, and the controlling of chemical reaction 

occur with the help of proteins. But if there occurs some mutation in the DNA sequence then the 

normal protein development changes to abnormal protein formation. Such abnormal proteins 

may disturb the normal functioning of the human body which may lead to development of 

disease such as cancer [12]. Hence the field of genomics for the analysis of such cases finds its 

importance. 
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1.2  Sequencing of DNA     

The process of determination of nucleic acid sequence which is the order of four nucleotides in 

DNA is considered as sequencing of DNA. The great acceleration in biological & medical 

research and the development of various computational tools, signal processing algorithms in the 

field of genomics has become possible because of rapid methods of sequencing of DNA. And 

this all has occurred because of identification of DNA and the double helix structure of DNA; in 

1869 Friedrich Miescher [13-14] provided a landmark direction in genetic research by first 

identifying which he named as „nuclein‟ inside the nuclei of human species. The term „nuclein‟ 

is nowadays known as nucleic acid and subsequently DNA. Another breakthrough was provided 

by Phoebus Levene in 1919 [15] who was the first to find out the order of three major 

constituents of a nucleotide as phosphate-sugar-base. Also, he was the first to find out the 

carbohydrate component of RNA and the carbohydrate component of DNA. Again, he was the 

first to correctly recognize the mode in which DNA and RNA molecules are put together. The 

foundation laid by Levene was strengthened by Chargaff who provided two major rules; firstly 

he noticed that there is a variation in nucleotide composition of DNA among different species. 

Secondly he concluded that irrespective of organism or type of tissue, almost all DNA maintains 

certain properties which is total amount of purines and pyrimidines are almost equal mostly[16]. 

Another big achievement in the field of generic research was provided by Watson and Crick in 

1953 who derived the three-dimensional, double helical model for DNA‟s structure [8]. The 

DNA is considered as the genetic material and is responsible for the functioning, structural 

development of organisms. Hence, the technologies used for the sequencing of DNA have been 

developed to assist the biologists and medical society in broad category of applications such as 

medicine, forensics, and various areas of biology. The sequencing of DNA can be utilized to find 

out the sequence of individual genes, clusters of genes, complete chromosomes, or full genomes 

of all species [17-18]. The technologies used for sequencing of DNA are required to be precise, 

fast in processing, inexpensive, and easy-to-use. The earliest form of nucleotide sequencing was 

RNA sequencing and the major achievement was proposed by Walter Fiers in 1972 & 1976 by 

providing the sequence of first complete gene and the full genome of Bacteriophage MS2 [19-

20]. The first method of DNA sequencing to determine DNA sequences was established in 1970 

by Ray Wu and in this method a location-specific primer extension strategy was employed [21-
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22]. Frederick Sanger in 1977 then utilized this primer-extension philosophy and developed 

more rapid DNA sequencing technologies and named as “DNA sequencing with chain-

terminating inhibitors” [23]. This technology is popularly called as Sanger sequencing 

technology also and has been used extensively in various fields such as comparative and 

functional genomics, evolutionary genetics etc. Therefore, this method remains a popular method 

in various laboratories across the world. Another sequencing technology based on chemical 

degradation was established by Walter Gilbert and Allan Maxam [24-25].  But these sequencing 

technologies were very laborious. Hence, improvement in technologies were being done to make 

the task of sequencing automatic and its output was observed in 1987 with the development of 

first automatic sequencing machine known as AB370. Applied Biosystems had introduced this 

machine and this technique of sequencing was fast and accurate which employed capillary 

electrophoresis. This machine was capable of detecting 500 bases per day with read length 

reaching 600 bases and 96 bases at one time. The latest machine model AB3730xl capability was 

2.88 M bases in a day and read length was reached around 900 bases [26]. The main tools which 

played very important role in the completion of human genome sequencing project in 2001 were 

the automatic sequencing instruments and associated software which used the capillary machines 

of sequencing and Sanger technology of sequencing [27]. Motivated from human genome 

sequencing project, the Next Generation Sequencing (NGS) technology was developed which 

provided high throughput by doing parallel analysis, was faster, accurate and the cost was also 

reduced compared to Sanger sequencing technology. The cost of sequencing has fallen so 

dramatically nowadays that a single laboratory can afford to sequence large genomes even. The 

genomics data which has been made available by various repositories has a lot of significant 

hidden information inside it and it has become a big data problem. This huge genomics data need 

to be analyzed for the benefit of medical research and society. 

1.3  Annotation of Genome 

Once the sequencing of genome is completed, the huge amount of genomic raw DNA data 

generated from that process has to be analyzed to extract important information out of it. This 

process is termed as genome annotation and the annotated data is added to the data base of 

genome. The two classifications of genome annotation are: structural and functional annotation. 

Structural annotation deals with identification of various elements such as introns, exons, etc. 
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whereas functional annotation deals with attaching biological information to the genomic 

elements [28]. Our emphasis in this work is on structural genome annotation and the various 

regions of genome annotation are represented in Figure 1.3. 

 

Figure 1.3: Annotation of genome  

[source:https://en.wikipedia.org/wiki/Split_gene_theory#/media/File:Introductory_figure_for_transcript_and_splicin

gV2.png] 

The various important sections of a genome are described as following: 

i) Promoter regions 

A promoter region usually located near the beginning of a gene is defined as a non-coding 

sequence of DNA in which transcription of a gene is initiated. The promoter region is 

responsible for controlling when and where the gene of interest is to be expressed in an 
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organism. It is needed to turn a gene on or off. The typical length of promoters is around 100-

1000 base pairs [29]. 

 

ii) Untranslated regions 

Untranslated regions (UTRs) are found on the two sides of a coding sequence. If it is located on 

the 5‟ side of on a strand of mRNA, it is termed as 5‟ UTR or leader sequence and if is placed on 

the 3‟ side, then it is known as 3‟ UTR or trailer sequence. UTRs are not associated with the 

formation of proteins however UTRs and introns find their importance for the controlling of 

complex gene expressions [30].    

iii) Exons 

The nucleotide sequences in DNA which are associated with the formation of proteins are termed 

as exons or protein coding region of gene. Proteins are known to be an essential component of 

each cell in the body. Next to water, proteins are considered to be the most abundant type of 

molecules present in the body.  Proteins are made up of hundreds of amino acids in the form of a 

long chain with the linkage of peptide bonds. 20 different amino acids are present in the body 

and in protein coding regions each of these amino acids are encoded as a sequence of three 

successive nucleotides. Approximately 3 billion base pairs are present in the human genome and 

out of this only 2% constitute exons whereas remaining 98% are most likely intergenic region or 

introns [31] as the length of exons is usually shorter than introns. The fundamental difference in 

prokaryotes and eukaryotes is in the organization of genes inside them. A prokaryotic gene 

appears as a continuous stretch of DNA which does not require any processing and gets 

transcribed into RNA to serve as messenger RNA (mRNA). Whereas, a eukaryotic gene has 

exons spread across its length in many stretches which are interrupted with introns in between. 

These introns are considered to have no significance in the protein synthesis and hence are also 

known as non coding regions. Alternative splicing process removes the introns and joins the 

exons to create an interrupted gene known as mRNA and finally another cellular mechanism 

termed as Translation converts mRNA into different proteins [32-33] as depicted in Figure 1.4. It 

has been revealed that there exists a well known short-range correlation in the arrangement of 

nucleotides in exonic regions called as period-3 property or 3-base periodicity (TBP) [34]. The 

researchers working in the field of genomic signal processing who focus on developing digital 

signal processing based methods utilize this TBP property to detect the exonic regions in DNA 
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sequences. This TBP has a close relation with the deranged allocation of the nucleotides in the 

three coding positions which tell that the nucleotides in exonic regions exhibit non-uniform 

distribution whereas in the intronic regions nucleotides possess a balanced distribution. The non-  

 

Figure 1.4: Process of different proteins synthesis through alternative splicing  

[source: https://msnoller.weebly.com/transcription-and-gene-expression-72.html] 

uniform distribution of nucleotides in exonic regions exists because in these regions the usage of 

nucleotides is extremely biased towards special amino acids composition [35-37].   

iv) Introns 

Introns were discovered in 1977 [38-40]. The sections of gene which have no association in the 

formation of proteins are called introns or non-coding regions. Unlike exons, the feature of 

periodicity because of non-uniform codon bias is not possessed by introns while various other 

periodicities due to some recurring patterns may be possessed by introns [33]. The structure of 

introns inside the genes is random in which these are placed separated by exons in between. The 

occurrence of introns across the spectrum of a species usually varies in terms of their density and 
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the length of intronic region. An example is the average number of introns per gene in human 

genome is 8.4 whereas there is no intronic gene is found in mitochondrial genome of vertebrates. 

And also, prokaryotic genes contain no introns but intronic genes are present in eukaryotic 

genomes. The introns are removed during alternative splicing process and finally functional 

mRNA is produced. As exons and introns remains in close proximity in the gene structure 

therefore, during the removal of introns a very accurate identification of boundaries connecting 

exons and introns is highly essential because outcomes can be misleading even if a single DNA 

character corresponding to exons and introns sequences is wrongly detected. The importance of 

introns is that these provide various significant short sequences for splicing process to be 

efficient like as donor sites and acceptor sites at start or end of introns respectively. The 

arrangement of introns along with other necessary details [41] is depicted in Figure 1.5. 

v) CpG Islands  

CpG Island also written as CGI is considered to be one of the important segments of DNA 

sequences. CGI are the regions inside the DNA sequences in which nucleotide „C‟ is followed by 

nucleotide „G‟ and which are rich in CG dinucleotides. p stands for phosphodiester bond in CGI 

and it is different from hydrogen bond found between C and G nucleotides within the two strands 

inside the double helix structure of DNA molecule. The length of the CGIs inside the DNA 

sequences varies from 200 bps to maximum up to 5000 bps. The motivation for the researchers 

working in the field of genomic signal processing to develop algorithms for the identification of 

CGIs in DNA sequences is the association of CGIs with many epigenetic events. CGIs are 

associated with promoter regions and hence these find application in the identification of the 

promoter regions and consequently to predict the genes in DNA sequences [4] as depicted in 

Figure 1.5. Also, gene silencing, cancers and many other epigenetic issues [42] are caused by the 

process of methylation of CGIs which happens by the addition of methyl group (CH3) to the 5‟-

position of the carbon. 
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Figure 1.5: Introns and other important regions associated with them   

 

1.4 Tandem Repeats  

Most of the DNA sequences consist of recurring patterns. These sequences have the various 

nucleotide repeat patterns of their respective periodicity. These periodicities (repetitive 

patterns) are accountable for their particular functionalities in the body of the living 

organisms [43]. Tandem and Interspersed are the two broad categories of repeats found in 

DNA sequences. Contiguous repeat patterns are present in the tandem repeats whereas the 

interspersed repeats consist of noncontiguous repeated patterns [44-47]. An example of 

tandem and interspersed repeats is presented in Table 1.1. 

Table 1.1: Tandem and Interspersed repeats 

Tandem 

repeats 

 

CGAT 

 

CGAT 

 

CGAT 

 

CGAT 

 

CGAT 

Interspersed 

repeats 

 

CGAT 

  

CGAT 

  

CGAT 

 

Based on the size of repeat pattern, the tandem repeats can be further categorized as, 

satellites, minisatellites, and microsatellites (MS). The pattern size of satellites is greater than 

100 bps and their length varies from 100 Kbps to 1 Mbps. The range of pattern size of 

minisatellites is from 9-80 bps and their length varies between 1-20 Kbps. Microsatellites 

which are more commonly called as short tandem repeats (STR) pattern size range between 

2-8 bps and have a length less than 150 bps [47]. On the basis of mutations, tandem repeats 
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are again categorized as perfect tandem repeats and imperfect tandem repeats. In perfect 

tandem repeats, the exact number of copies of repeat pattern is found. Whereas in imperfect 

also called as approximate tandem repeats, the repeat patterns are not present in the exact 

copies of patterns [48]. An example of perfect and imperfect tandem repeats is depicted in 

Table 1.2. 

Table 1.2: Perfect and Imperfect tandem repeats 

Perfect tandem 

Repeats 

 

TGCA 

 

TGCA 

 

TGCA 

 

TGCA 

 

TGCA 

Imperfect tandem 

Repeats 

 

TGAA 

 

TTCA 

 

TGCC 

 

TGCA 

 

GGCA 

 

The study of these repeats is helpful in various studies like DNA forensics analysis, DNA 

fingerprinting, and study of population of an area etc. Also, MSs amongst the three listed 

tandem repeats are more important because of their association with various diseases like 

Huntington‟s disease, Fragile-X syndrome, Spinocerebellar ataxia type 31, Frederick‟s 

ataxia, and 40 other neurodegenerative, neuromuscular, and neurological diseases [49-52]. 

1.5  Possible Approaches for Genomic Data Processing 

Once the sequencing of genome of a species gets completed, first and the most important task 

after that to understand the molecular behavior of genome is gene finding. Gene finding was 

involving extremely pains taking experiment on living cells and species in the early days. 

The functional genomics deals with performing lab experiments and statistical analysis can 

be applied thereafter to find out the order of genes on a specific chromosome with the help of 

their rate of homologous recombination. The information gained from various experiments is 

combined to generate a particular map for the identification of rough position of the known 

genes related with each other. Nowadays, the accessibility of genome sequences of various 

species and availability of extensive computational tools for genomics data, the gene finding 

has turned up as a computational procedure [53]. Various computational gene finding tools 

have been introduced over a period of years like as: FGENES [54], HMM [55], HMMGene 

[56], GENSCAN [57], MZEF [58], Morgan [59], Genemark [60], Genie [61], Geneid [62], 

and AUGUSTUS [63]. Abinitio, extrinsic, and comparative are the three types of techniques 

employed for gene finding purpose [64]. The functioning of abinitio approaches is based 
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upon searching of protein coding regions in DNA sequences utilizing certain properties of 

these regions. Some of such properties are such as statistical features, some contents, and 

biological signals related to the protein coding regions. The most popularly used methods 

based on abinitio technique are Geneid and GENSCAN. The extrinsic techniques‟ approach 

is to use the reverse translation of genetic code for the derivation of family of probable 

coding DNA sequences. These probable coding DNA sequences are then utilized to find out 

a target for matches which are partial or complete, and exact or random. The most widely 

utilized tool for this purpose is basic local alignment search tool. The principle of working of 

comparative gene finding approaches is to compare the following features in genome of 

associated species: length and number of coding regions, sequence similarity, position of 

gene, the amount of non-coding DNA in every genome, and additional vastly conserved 

regions.        

1.6  Application of Digital Signal Processing Methods in Genomics 

Although numerous gene finding algorithms exist which are data dependent but accuracy in 

terms of gene prediction is considered as their limitation. Their accuracy can be increased by 

one possible way of employing hybrid approach in which the three different types (extrinsic, 

abinitio, and comparative) of gene finding techniques can be combined in one single program 

such as AUGUSTUS+ [63]. Another possible way of enhancing accuracy is to combine 

different gene finding programs [65-66]. But the dependency on data would increase in both 

of these approaches [53]. A solution to this problem has been provided by signal processing 

methods in which the DNA characters are converted to numerical values by applying 

numerical mapping techniques and these signal processing methods have proved to be very 

useful in the analysis of genomic data [67-69]. The various signal processing operations like 

filtering of numerical data, application of time-frequency/spectral analysis tool, suitable 

thresholding are then applied to extract hidden features inside the genomic data and this area 

of signal processing is known as genomic signal processing (GSP) [70]. A general flow 

graph consisting of these basic blocks of GSP is depicted in Figure 1.6. 

The first step in genomic signal processing is to obtain the DNA sequence from the standard 

database. Now to be able to apply the DSP methods on genomics data, it is essential to 

convert the DNA characters to numerical sequence using numerical mapping method. The 
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numerical sequence data is passed through a filter as a pre-processing step for suppression of 

noise. With the help of signal processing tools such as time-frequency analysis and spectral 

analysis methods, the fundamental periodicities and their temporal location present in the 

DNA sequence are then detected [37], [71]. A suitable threshold is applied to capture the 

biological features related to characteristic periodicity for a particular hidden pattern present 

in the DNA sequence and then the performance evaluation is carried out using standard 

evaluation metrics. All the algorithms developed for the research work which are discussed 

in the subsequent chapters of this thesis are based upon the general flow graph of GSP 

shown in Figure 1.6.      

 

 

Figure 1.6: Flow graph of GSP 

1.7  Organization of Thesis 

The thesis consists of total seven chapters. A brief description of each chapter is discussed as 

following: 
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Chapter 1: Introduction 

The introduction of the work which has been carried out in this thesis has been discussed in this 

chapter. The basics of molecular biology are covered in this chapter. This area has application 

problems for which signal processing based algorithms have been proposed as solution. 

  Chapter 2: Literature Review 

To formulate the problems existing in the molecular biology by developing clear understanding 

of this area, the existing literature was studied rigorously. The existing research gaps were 

identified which are described in this chapter. The computational algorithms are developed to 

address these research gaps and these are discussed in subsequent chapters. 

Chapter 3: Identification of Protein Coding Regions in DNA Sequences using Singular 

Value Decomposition based Modified P-Spectrum Algorithm Employing Optimized 

Window and S-Golay Filter 

In this chapter singular value decomposition based modified P-spectrum algorithm has been 

proposed for the identification of protein coding regions in the DNA sequences of eukaryotes. 

The area under the Receiver operating characteristics (ROC) curve has been chosen as the 

optimization parameter to optimize the window length. Savitzky- Golay (S-Golay) filter has been 

used to suppress the noise and to improve the signal-to-noise ratio by preserving the important 

features of signal. The performance of proposed method has been assessed on standard 

benchmark datasets and also has been compared with current state of art algorithms. 

Chapter 4: Identification of CpG Islands in DNA Sequences using Short-Time Fourier 

Transform  

In this chapter an algorithm based on short-time Fourier transform (STFT) has been proposed for 

the identification of CpG Islands (CGIs) in the DNA sequences. The periodicity features present 

in the CpG Islands have been detected with the help of STFT by conducting experiment on 

benchmark DNA sequence. Also, the performance of various existing numerical mapping 

methods has been assessed and then a solution based on combination of 24 mappings of integer 

mapping scheme has been proposed. A database consisting of 100 DNA sequences comprising of 
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human, fish, and mouse species has been made and the performance of proposed method has 

been tested and compared with other state of art methods for the data set. 

Chapter 5: Sensitivity Enhancement and overall improvement for the detection of CpG 

Islands in DNA sequences of Human Species using Modified P-Spectrum based Algorithm 

and Wavelet Transform based Proposed Algorithm Respectively  

This chapter consists of two parts. In the first part, a modified P-spectrum based algorithm has 

been proposed for the sensitivity enhancement of the detection of CpG Islands in the 100 DNA 

sequences of human species. In the second part of the chapter, a Wavelet transform based 

algorithm has been proposed for the overall improvement of standard evaluation metrics on the 

database of 100 DNA sequences of human species.  

Chapter 6: Detection of Tandem Repeats in DNA Sequences using Integer-Period Discrete 

Fourier Transform, and Modified Gabor Wavelet Transform based Proposed Algorithms 

The emphasis in this chapter is on development of signal processing based algorithms for the 

tandem repeats detection in the DNA sequences. This chapter contains two parts. In the first part, 

an integer-period discrete Fourier transform based algorithm has been presented to detect the 

tandem repeats in DNA sequences. Modified Gabor Wavelet transform based algorithm has been 

described in the second part of chapter.  

Chapter 7: Conclusion and Future Work 

The conclusion of the thesis work has been presented in this chapter. The future directions in 

which this thesis work can be extended along with some open research problems have also been 

provided in this chapter.  
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CHAPTER 2 

LITERATURE REVIEW 

Genomics data comes under the category of big data because it contains a vast and huge amount 

of data, it becomes very confusing to apply genomic signal processing tools without having 

knowledge of some hidden features present in the genomics data. But the presence of various 

periodicities helps and enables the researchers working in this field to obtain a better 

understanding of the characteristic features present in the DNA sequences and develop the 

computational tools for their analysis subsequently. And this all is possible because it is proved 

in literature that most of the genomic data consists of repetitive patterns. The analysis of 

genomics data to extract the information about their functionality can be done by detecting and 

locating the periodicities in the DNA sequences. Trifonov et al. [72] have revealed the hidden 

periodicities 400, 200, 10.5, and 3 bps present in the genomic sequences. The period-3 property 

also known as three-base periodicity (TBP) found in the DNA sequences as a result of codon 

bias or non uniform codon probability has very considerable role in the identification of exons or 

protein-coding regions, and introns or non-coding regions [35-36], [72-75]. The percentage of 

exonic regions in the whole genome is approximately 2%. The percentage of repetitive 

sequences in human genome is about 60% whereas exonic regions are present in very small 

percentage. The periodic recurring patterns which the repetitive sequences possess are of varying 

1/f base pairs periodicities [76-77]. Intronic regions show 10-11 bps periodicities and these are 

mostly associated with DNA folding, or the structure of DNA helical repeat [78-80] and these 

periodicities are not observed in regions where TBP is present. Along with these periodicities, 

various other periodicities which are reported in literature along with their feature description are 

presented in Table 2.1. 

Detection of exons/coding sequences (CDS) in annotation of eukaryotic genome is considered as 

highly important. The principle of signal processing based approaches is to utilize the TBP 

present in these exonic regions for their identification [71]. Another very important step in 

annotation of genome is detection of CpG Islands (CGIs) as their detection helps in prediction of 

promoter regions and subsequently genes, early prediction of cancer [5] and various other 

important biological/medical activities. Various computational algorithms have been developed 

for the identification of CGIs and been reviewed by Tahir et al. [3]. The tandem repeats which  
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Table 2.1: Periodicities present in DNA sequences 

S. No. Periodicity Feature/Repeats 

1 3 Protein-coding region 

2 5-6 Telomeric or Subtelomeric  

3 10-11 DNA bendability/Helical repeat structure 

4 48-50 Centromeric 

5 68 β satellite DNA 

6 102 Nucleosome structure in eukaryotes 

7 105-106 Isochores/regions having low C+G concentration 

8 ~135 Dimeric Alu repeat structure 

9 ~165 A rich Homopolymeric DNA sequence in Alu repeats 

10 171 α satellite DNA 

11 ~300 Alu  

12 ~680 DNA bend sites 

 

are associated with biological functionality of organisms and have periodicities ranging from 2 to 

>100 bps [72], [81-84]. For the identification of existing gaps in the already reported and 

existing methods for identification of these periodicities, the literature has been thoroughly and 

rigorously reviewed and the same has been discussed in following sections. 

2.1 Identification of Protein-Coding Regions in DNA Sequences 

In literature, various methods have been developed, reported, and proposed for the identification 

of protein-coding regions in DNA sequences of eukaryotic organisms since last two decades [85-

86]. There are three different categories in which these methods can be classified as suggested by 

Blanco et al. [87]. These categories are: search by signal or site, search based upon similarity, 

and search using content. Guigo [88] classified these methods in a different way as model-

dependent and model-independent techniques. The functioning of signal and similarity based 

search methods is based upon the principle of trained database which is known a priori and the 

same is applied to train supervised classifier such as Markov models. Such methods come under 

the category of model dependent methods. In these approaches, the classification amongst exons 

or introns requires a huge amount of data trained by machine learning based models or 

probabilistic models. Whereas content based search approaches explore for DNA sections with 
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particular features such as codon compositions, nucleotides‟ frequency, CpG islands, and the 

proportion of nucleotides with rich A-T or G-C contents etc. and such methods can be either 

model independent or model dependent as well. Discussion of various model dependent methods 

is presented in [89-91]. Gao et al. suggested a Z-curve based model dependent method in which 

compositional exploration has been used [89]. A method called „GeneScout‟ was proposed by 

Yin et al. [90] in which specially designed hidden Markov models have been used for the 

prediction of exon coding potential computation, and therefore this is model-dependent 

approach. Borodovsky et al. proposed Genemark [91] in which authors have used specific 

Markov models for exonic and intronic regions along with Bayes‟ decision making function 

which is categorized as model dependent approach. These model dependent methods have 

dependency on trained datasets for their functioning and therefore their performance can suffer 

because of addition of new data in repositories of genomic databases. There may occur unknown 

genes in the training datasets which are not the part of existing databases and hence the detection 

performance of such methods will be affected [92-93]. Under these circumstances, a better 

choice can be to use model independent methods; although model dependent methods are more 

precise.  

Nucleotides of DNA sequences get converted into aminoacids by triplets (codons) in protein-

coding regions. Proteins contain only 20 aminoacids. As the number of possible codons is 64, the 

number of aminoacids produced by using many to one mapping of codons is only 20 [88]. The 

codons responsible for coding the aminoacids may not have the uniform distribution of 

probability in a species. Due to this codon-bias which occurs as a result of non-uniform codon 

usage, three-base periodicity (TBP) has been observed in the protein-coding regions of 

eukaryotes. Most of the DSP based algorithms developed in last many years which are 

considered to be in the category of model independent methods have utilized this feature of TBP 

for the prediction of protein-coding regions and short-time discrete Fourier transform (STDFT) 

has been used in these approaches like in [37], [41], [94-96]. In these approaches, the DFT is 

computed by sliding a fixed length window across the length of DNA sequence to identify the 

TBP of protein-coding regions using f=1/3. The presence of spurious spectral peaks and few 

artifacts observed in the spectrum of windowed DFT is considered as the drawback of these 

methods. The dependency of STDFT approach upon the choice of window length and shape is a 

major limitation. The solution of this limitation of DFT method has been proposed by Rao et al. 
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[97], Mena-Chalco et al. [98] & Sahu et al. [99], Mariapushpam et al. [100] employing 

multiresolution based transform techniques such as wavelets, modified Gabor wavelet transform 

(MGWT), S-transform, and discrete Wavelet transform (DWT) respectively. However, 

computational complexity is a limitation of these methods. Akhtar et al. [101] proposed the 

paired and weighted spectral rotation (PSWR) measure for the reduction of computational 

complexity and the improvement in accuracy of gene prediction. Another solution of fixed 

window size limitation of DFT based method has been suggested by Shakya et al. [102] in which 

the authors have proposed the adaptive window length strategy in STFT as a remedy for the 

choice of window size problem and the method is known as AWSTFT. Another DSP based 

approach in which filtering technique has been employed by Vaidyanathan et al. [103] is a faster 

approach of prediction. Ramachandran et al. [104] suggested a filter based method but this 

approach is a model dependent method. Hota et al. [105] proposed the use of three antinotch 

filters for reduction of computational complexity load and for the improvement of accuracy of 

prediction of protein-coding regions. The use of instantaneous matched filtering based Statistical 

Optimal Null Filter (SONF) for the prediction of exons by detecting TBP in DNA sequences has 

been proposed by Kakumani et al. [106] and Zhang et al. [107]. The use of entropy measures for 

detection of exons has been proposed by Ginnori et al. [75], Roldan et al. [108], and Nicorici et 

al. [109]. In these approaches, Shannon entropy measure based entropic segmentation of DNA 

sequences into homogeneous domain has been utilized [75][108]. Renyi divergence measure, 

nucleotide statistics, and stop codon statistics have been employed in another entropic measure 

based method to identify exons [75][109]. Autoregressive (AR) model based exon detection has 

been proposed by Chackravarthy et al. [110]. Choong et al. developed AR model based 

multiscale parametric spectral analysis for exon identification whose performance is better than 

DFT and earlier AR model based algorithms [111]. The Wavelet subspace Hilbert-Huang 

transform (WSHHT) based exons identification has been developed by Jiang et al. [112]. Wide-

Range Wavelet Window (WRWW) method has been proposed by Marhan and Kremer [113] and 

their method is able to predict protein-coding regions satisfactorily across a range of length of 

protein-coding regions. Recently Adaptive S-transform-principle component analysis (AST-

PCA) based approach has been proposed by Sharma et al. [114]. In this method, the authors have 

identified the short exonic regions associated with intronic regions during alternative splicing 

and have employed multiple mapping schemes. Mostly transform based approaches have been 
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developed and proposed so far for the identification of protein-coding regions in the DNA 

sequences of eukaryotes. The fundamental procedure in transform based methods is to convert 

the signal from time-to-frequency domain. This transformation may result in domain bias and 

subsequently lead to loss of some important information of signal like protein-coding regions. 

Also, some of the approaches proposed so far have emphasized on detection of shorter length 

exons only while some approaches have focused on predicting bigger length exons only.  

2.2 Identification of CpG Islands in DNA Sequences 

CpG Islands (CGIs) are the regions where the DNA character „Cytosine‟ is followed by character 

„Guanine‟ along the length of DNA sequences in 5‟ to 3‟ direction. As CGIs are associated with 

various epigenetic functions such as genes mutation, gene regulation, promoters‟ prediction, 

chromosome inactivation, DNA methylation, and cancers etc. Hence, the detection of CGIs is 

considered as highly important. The CGIs can be predicted experimentally by the biologists and 

the results of prediction are considered as accurate. However such experimental methods of 

detection of CGIs are extremely time consuming as the amount of genomic data is huge [115]. 

Therefore, computational methods which are efficient in prediction of CGIs are considered a 

good choice. The first computational method for prediction of CGIs in vertebrates has been 

proposed by Garden et al. [116] and this method is popularly called as GGF. In this method, a 

particular section of DNA sequence which satisfies the following 3 conditions is categorized as 

CGI and otherwise non-CGI: The length of section has to be at least 200 bps, GC content which 

is referred to as proportion of Cs and Gs should be minimum 50%, and the observed/expected  

(o/e) ratio must be at least 0.6. Takai et al. [117] suggested rigorous modifications in GGF 

criteria with a minimum section to be 500 bps, GC content as minimum 55%, and ratio of o/e as 

0.65. The criterion for minimum sequence length to be 500 bps was incorporated for the 

prevention of Alu repeats. Depending upon the principle of working the computational methods 

developed for CGI identification are classified in four areas which are: window based methods, 

methods based upon Hidden Markov Model (HMM), methods on the basis of density, and 

methods developed using distance-/length criteria [3],[118].  

The functioning of window dependent methods is based upon a sliding window across the 

genome and prediction of CGIs is performed applying already defined statistical conditions. In 

these methods a moving window keeps on sliding by one nucleotide and checks continuously o/e 
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ratio and GC content in the window until the required conditions for CGI section are achieved. 

These methods are used very much because these methods firmly pursue the standards defined 

for categorization of a region of genome as CGI or non CGI. However the dependency on size of 

the scrolling window which is considered as a highly important factor to predict the CGI 

accurately is a great limitation of such methods. The smaller window size has the advantage of 

less computational complex but has the drawback of missing a probable CGI. The predictive 

accuracy is higher with larger window size but at the cost of high computational complexity [3], 

[118]. The CGI detection methods developed using window based approach is presented in [116-

117], [119-123]. The method developed by Ponger et al. is known as CpGProd [119]. Rice et al. 

proposed an approach called EMBOSS [120]. Chuang et al. proposed a novel idea termed as 

CPSORL which is based on particle swarm optimization for the detection of accurate CGI 

followed by some parameters and fast convergence [121]. Park et al. proposed a technique of 

CGI prediction coined as CpGPNP [122]. In this method a window shifts by 1 nucleotide along 

the length of DNA sequence to search the probable CGI using the predefined conditions of CGI. 

Yang et al. developed an ion motion optimization based algorithm for CGI prediction known as 

CpGIMO [123]. In this approach the authors have used 200 to 2000 bps window for the 

prediction of CGI randomly.  

The HMM was applied in sequence analysis earlier and thereafter the concept was successfully 

implemented for partition of genomes [3], [124]. The prediction of CGI applying HMM was 

proposed by Durbin et al. [125] and subsequently an extensible approach for the identification of 

CGI was proposed. In HMM based techniques, Markov chains based two different models for 

CGI and non-CGI separately are employed and according to the probability of CGI and non-CGI 

regions, the log-likelihood ratio is computed to show the difference between these two regions 

for every sequence. The prediction accuracy of these methods suffers because of variable 

patterns present in CGI which creates some noise and secondly lack of adequate data for training 

purpose. And also the computational capacity of such HMM methods is not very efficient [3], 

[118]. Some HMM based CGI detection methods are developed by Wu et al. [115], Yoon et al. 

[126]. In the approach proposed by Wu et al. the probability scores are generated as a result of 

the summary to indicate the status of CGI [115]. Yoon et al. have utilized the Markov chain 

model presented in [125] and proposed a technique based on a bank of IIR lowpass filters for 

CGI identification [126].  
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The calculation of density of CpG sites using statistical parameters just like window-based 

methods is the main principle of functioning of methods on the basis of density for detection of 

CGI. The density of CGI is computed by finding out the percentage of CpG sites in CpG Islands 

and the complete length of CpG Islands [3], [118]. In these methods the fundamental operation is 

to set the seeds initially for adjustment of the density variables on iterative basis and 

subsequently to expand the coverage of regions which are rich in CGI. To begin with, a low 

threshold value set for density is adjusted to analyze the predicted boundaries of CGIs. 

Subsequently a high threshold value of density is employed for the determination of range of 

borders of CGI where the criteria set for density is met by the DNA sequence. As the functioning 

of these methods is fully dependent on the thresholds of density, this is considered as a major 

limitation of such methods [3], [118]. The density based approach has been proposed by Ye et al. 

[127]. Ye et al. developed an algorithm termed as CpGIF (CGI Finder). They incorporated the 

distinctive features of existing methods and at the same time overcame their drawbacks. In their 

method, regions having high density of CGI which served as seeds are searched first and then 

final CGIs are computed by extension and clustering of those seeds [127].   

A faster way of predicting CGIs is employed in distance-/length based methods in which 

clustering of data between CpG sites is performed. A newer viewpoint of understanding the 

phenomena of CGIs is provided in these methods by analyzing the sequence property amongst 

any two aligned CpG sites but this is also considered as a point of criticism of these methods. 

There may occur varied outputs of a same CGI under different scenarios and hence the predictive 

sensitivity is low which is a major drawback of these methods [3], [118]. An approach based on 

this distance criterion has been proposed by Hackenberg et al. and the method developed by 

them is popularly called as CpGcluster [128]. In this method the CpG clusters are determined 

directly on the basis of physical distance. The classification of statistically significant clusters as 

CGIs is done after each group has been assigned the p-value [3], [128].  

In addition to these four categories of approaches for CGI detection, various other computational 

advanced techniques have also been reported. Kakumani et al. proposed a statistically optimal 

null filter (SONF) based CGI identification approach. In this approach the authors have proposed 

the combination of maximum signal to noise ratio and the criteria of least square optimization for 

the estimation of CGI prediction characteristic [5]. Gaussian model based algorithm termed as 
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GaussianCpG for the identification of CGI in human genome DNA sequences has been proposed 

by Yu et al. [118]. Gaussian model has been designed to represent the fundamentals of 

microscopic links in complex human genome. In this model at initial level, every CpG site‟s 

energy distribution is being investigated by scanning across the primary structure of human 

genome and subsequently statistical parameters are adjusted. A hybrid approach named 

CpGclusterTLBO in which clustering process and teaching learning based optimization (TLBO) 

process have been combined for the detection of CGIs in human genome has been proposed by 

Yang et al. [129]. In this approach clustering process has been employed to capture the candidate 

CGIs and the effect of clustering is the reduction of superfluous DNA segments out of huge 

volume of data. TLBO has been applied thereafter to finally capture verified CGIs out of 

candidate CGIs [129]. A discrete Wavelet transform (DWT) based improved algorithm for CGI 

detection has been developed by Mariapushpam et al. [130]. In this proposed approach the 

authors have applied DWT using Symlet 11 wavelet function for filtering and subsequently 

recursive least squaring (RLS) based adaptive filtering has been employed to predict the CGI in 

genomic sequences [130].  

As the nature of DNA sequences represent the recurring patterns which indicate in the direction 

that CpG Islands can have some periodic patterns hidden inside them. The CpG Islands 

prediction approaches developed so far have not focussed on hidden periodic patterns in the 

CGIs.           

2.3 Tandem Repeats Identification in DNA Sequences 

The role of computational methods for the analysis and processing of biological signals is of 

great impact. The abinitio techniques developed for identification of repeats in DNA sequences 

of eukaryotes have a great significance. The repeats in DNA data are associated with a lot of 

diseases. Tandem and interspersed repeats are the two broad classes in which DNA repeats are 

categorized. If two or more than two copies of a particular period are located in a continuous 

manner, such repeats are termed as tandem repeats. On the other hand, the non-continuous 

location of two or more copies of a particular pattern in the DNA sequences correspond to 

interspersed repeats. Microsatellites, Minisatellites, and Satellites are the three classes in which 

tandem repeats can be placed according to the length of repeated pattern. If the repeated pattern‟s 

length varies between 2-8 bps, such repeats are termed as microsatellites which are also known 



25 
 

as short tandem repeats (STR). The 9-80 bps size of repeated pattern place the repeats in 

category of Minisatellites; and Satellites are the repeats whose periodic pattern size is above 100 

bps [47]. As mutation affects and replaces the character of DNA sequence, this effect can be 

observed in terms of tandem repeats as perfect and imperfect repeats. If the accurate number of 

copies of a particular pattern is observed in DNA data, such repeats indicate perfect tandem 

repeats. On the other hand, the inexact number of copies of a certain pattern gives rise to 

imperfect tandem repeats. In the literature, numerous computational techniques have been 

reported for the detection of tandem repeats. Correspondingly, researchers have designed and 

proposed various algorithms for the detection of periodic pattern, their location, number of 

copies, and structure of these periodicities in the DNA data. The two main areas in which these 

approaches can be broadly classified are: stochastic and deterministic [131]. A lot of probable 

paths occur in stochastic models for a process which starts from the known points. The popular 

use of sequence alignment following probabilistic models is in the prediction of microsatellites 

[132]. The heuristic approaches have been proposed for the reduction of run time of these 

algorithms [133]. However, prior information regarding the period of repeat or the fundamental 

pattern of the segment is considered a limitation on the applicability of these methods. The 

solution of many of the limitations of such methods has been provided by Benson [134]. The 

method developed by Benson is popularly known as Tandem Repeats Finder (TRF), and the 

working of TRF is based on stochastic model [134]. TRF method is able to predict repeats 

having larger patterns and its detection capability is governed by indel (insertion/deletion) 

probabilities, matching probabilities, and some model-based statistical criteria. The conversion 

of character sequence of DNA into numerical sequence with the help of numerical mapping 

schemes has opened up many directions for signal processing based algorithms to be applied and 

further analyze the DNA sequences [69]. Various deterministic algorithms which employ signal 

processing methods have been reported for the identification of tandem repeats. The behaviour of 

deterministic algorithms is predictable and also the advantage of such algorithms is that these can 

detect more number of repeats in DNA data with enhanced sensitivity towards detection of 

approximate repeats. Algorithms which apply correlation techniques and are based on signal 

processing methods have been designed to detect the TBP of protein-coding regions in DNA 

sequences of eukaryotes [102]. These methods can predict higher number of approximate tandem 

repeats because of higher sensitivity of such methods towards latent periodicities. On the other 
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hand, it becomes very difficult task for methods based on string-matching conditions to predict 

approximate repeats which results from mutations because the matching conditions are very 

stringent of these methods. A review of string matching principle based algorithm has been 

provided by Lim et al. [135]. Some signal processing methods such as DFT (discrete Fourier 

transform) [44], [136], modified Fourier product spectrum [137], STPT (short-time periodicity 

transform) [138], EPSD (exactly periodic subspace decomposition) [46], QPT (quaternion 

periodicity transform) [45], OMWSA (optimized moving window spectral analysis) [140], AR 

(auto regressive) model [6], WBEMD (Wavelet-based empirical mode decomposition) [139], 

AST (adaptive S-transform) [141-142], ST (S-transform) [143] have been developed and 

reported in literature for the prediction of short tandem repeats. Development of Fourier 

transform based algorithms for the prediction of tandem repeats has remained very popular 

amongst the researchers working in the area of SP based methods. DFT [136], SRF (spectral 

repeats finder) [44], MFPS (modified Fourier product spectrum) [137] are some of the Fourier 

transform based tandem repeats detection approaches proposed in the literature. The detection of 

tandem repeat having any arbitrary periodicity present in the DNA sequences is considered an 

advantage of these methods. The DFT method is capable of detecting imperfect or approximate 

tandem repeats in the DNA sequences. SRF method which is based on DFT approach primarily 

detects the repetitive periodicities located inside any DNA sequence and thereafter the DNA 

sequence is scanned at these periods to locate the approximate segments where the repeat 

patterns are contained. The power spectrum containing peaks having high intensity is observed 

for large number of exact tandem repeats in this method. The degradation of signal‟s quality in 

the case of DNA sequence having mutations is considered as a limitation of this approach. The 

solution to this problem which occurs because of spectrum sum has been proposed by Tran et al. 

[137]. They proposed the use of Fourier product spectrum and detected weak approximate 

tandem repeats. To overcome the shortcomings of spectral methods, Buckner et al. have 

introduced a time-domain approach known as STPT (short-time periodicity transform) to 

localize the tandem repeats properly using periodogram [138]. However, in both the Fourier 

transform and STPT based algorithms, the limitation of multiple periodicities has been observed 

which implies that it is difficult to predict a particular detected repeat to be period p or multiples 

of p such as 2p, 3p, and  likewise. The EPSD (exactly periodic subspace decomposition) method 

proposed by Gupta et al. [46] does not suffer from multiple periodicities problem & classifies a 
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detected repeat to be of period p or its multiple and this method is able to detect exact and 

approximate tandem repeats as well. However, requirement of various window sizes with 

different repeat periodicities and no precise specification of criteria to decide the window size are 

the limitations of EPSD approach. To address the shortcomings of EPSD approach, Brodzik et 

al. proposed a solution by developing QPT (quaternion periodicity transform) method [45]. This 

method overcomes various shortcomings such as symbol bias, absence of criteria to detect the 

indels, and lack of an appropriate postprocessing stage. However, the detection capability of this 

method is restricted because the minimum length of repeat period has to be specified in advance. 

An approach named as OMWSA (optimized moving window spectral analysis) has been 

suggested by Liping et al. which is robust and perfect method in the presence of indels in DNA 

sequences as compared to FT based methods [140]. An AR (auto regressive) model based on 

parametric spectral estimation (PSE) developed by Zhou et al. analyzes the DNA sequences 

using their spectrograms [6]. This approach has been considered as an improvement/extension 

over OMWSA approach. The background noise is reduced to a great extent in this method and 

this model generates a sharp peak. However, as per the characteristics of data, the optimal order 

of the AR model has to be decided which is not known in advance in this method. And the 

working of this approach is based upon deciding the smallest frequency for the calculation of 

repeat periodicity when several frequencies are contained in the power spectrum of repeats. 

Hence, there arises the possibility of false detection of tandem repeat when the smallest 

frequency to be predicted is too weak. Moreover, the choice of an appropriate length of window 

is also a limitation of this approach. The solution of this problem of order selection and window 

length, Zribi et al. [143] has suggested a solution using S-transform based approach in which p-

nuc coding has been employed. Jiang et al. [139] has proposed an approach named as EMWD 

(Empirical mode and Wavelet decomposition) in which the authors have employed wavelet 

algorithm in combination with EMD (empirical mode decomposition) in the pre-processing stage 

and a cross-correlation analysis (CCA) as post-processing stage. The power spectral density has 

been displayed efficiently for both short and long signals in the 2-dimensional (2-D) frequency-

time plane [139]. Sharma et al. has proposed the AST (adaptive S-transform) based 

microsatellite detection [141]. The authors have optimized the standard deviation of Gaussian 

window kernel to be used in the S-T for integer periodicities with the help of maximization of 

concentration measure. This algorithm can detect microsatellites only and not able to capture 
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minisatellites which is reported as a limitation of this method. Sharma et al. has also proposed 

another AST (adaptive S-transform) based algorithm using Kaiser window and this window 

function helped in the detection of both long and short repeats [142]. The authors have also 

detected exact and approximate tandem repeats as well. 

2.4 Research Gaps Existing in Current Solutions 

Having undergone the exhaustive review of the current solutions for the research problems 

discussed in Section 2.1 to 2.3, the potential of improvisation over existing reported methods was 

observed. The various number of efficient and accurate methods has been developed for the 

identification of protein-coding regions many of which are based on transforms. As the domain 

transformation may lead to biasing in context of losing of very important information, hence an 

approach which does not require any transformation is strongly required to detect the protein-

coding regions. Also, some methods are able to capture short length exons only whereas other 

methods can identify bigger length exons only. Hence, an approach which can capture both 

shorter and bigger length exons simultaneously is highly required. The CpG Islands detection 

methods reported so far have not explored the hidden periodicities inside them. Therefore, an 

algorithm which can reveal this periodicity feature with experimental proofs is extremely desired 

for efficient detection of CpG Islands. The tandem repeats detection approaches developed so far 

suffer from some shortcomings which require to be addressed. The research problems proposed 

in this dissertation have been formulated based on these research gaps. 

2.5 Problems Formulation 

The following research problems have been formulated on the basis of detailed study of the 

existing work: 

i) To develop a signal processing based algorithm for the detection of protein-coding 

regions in the DNA sequences of eukaryotes. 

ii) To develop an efficient signal processing based approach for the detection of CpG 

Islands in the DNA sequences. 

iii) To improve the sensitivity and overall performance for the CpG Islands detection in 

the DNA sequences of human species using signal processing based algorithms. 
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iv) To develop signal processing based methods for the detection of tandem repeats in 

DNA sequences. 
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CHAPTER 3 

IDENTIFICATION OF PROTEIN-CODING REGIONS IN DNA 

SEQUENCES OF EUKARYOTES USING SINGULAR VALUE 

DECOMPOSITION BASED MODIFIED P-SPECTRUM BASED 

ALGORITHM 

 

Mostly transform based approaches have been developed and proposed so far for the 

identification of protein-coding regions in the DNA sequences of eukaryotes. The fundamental 

procedure in transform based methods is to convert the signal from time-to-frequency domain. 

This transformation may result in domain bias and subsequently lead to loss of some important 

information of signal like protein-coding regions. The solution to this issue has been proposed in 

this chapter using singular value decomposition (SVD) based modified P-spectrum [144-146] 

based algorithm (MPSA). Also, many of the approaches developed so far emphasize on 

prediction of shorter length exons only while other approaches have focused on detecting bigger 

length exons only. Therefore, an approach which can identify both smaller and bigger length 

exons simultaneously is highly required. Again, this issue has also been covered by the proposed 

algorithm discussed in this chapter. The 24 possible combinations of integer mapping are applied 

to convert DNA characters to numerical values. The window length has been optimized which 

has been varied from value 27 to 351 in the step size of value 3 by maximizing the performance 

metric: area under curve (AUC). The Savitzky-Golay (S-Golay) filter has been applied as a post-

processing step to filter out the noise while retaining the important features of signal.    

3.1 Proposed Algorithm for Identification of Protein-Coding Regions 

The flow graph of the proposed algorithm has been depicted in Figure 3.1 and the steps of the 

proposed algorithm are outlined as:  

i) The DNA sequence in which protein-coding regions have to be identified is applied 

to the proposed algorithm. 

ii) The value of window length is selected as 27 initially. 
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Figure 3.1: Flow graph of the proposed algorithm 
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iii) The first value of mapping out of 24 possible combinations of integer mapping 

scheme being chosen as numerical mapping method to convert the DNA characters to 

numerical values is applied to given data. 

iv) The most popular anti-notch filter proposed by Vaidyanathan et al. [94], [103] in the 

area of protein-coding region identification whose centre is at corresponding to 

period-3 frequency which is 2π/3 is applied to numerical sequence to filter out the 

noisy elements from the data. The value of bandwidth control parameter to be used in 

the filter which is also considered as quality control parameter has been chosen as 

0.992.   

v) The SVD based modified P-spectrum is applied to detect the hidden TBP in the given 

data. 

vi) After applying all 24 combinations of integer mapping, the 24 spectrums obtained are 

added linearly. 

vii) The S-Golay filter is applied as post-processing step to the spectrum to remove the 

noise in the detected spectrum of TBP of protein-coding regions. The key elements of 

designing of S-Golay filter are the polynomial order and the frame size. It is desirable 

to keep the polynomial order always than the frame size to achieve better smoothing. 

The polynomial order value has been chosen as 3 and the frame size has been selected 

as 41 empirically.   

viii) The AUC of detected protein-coding region of the given DNA sequence for the initial 

window length is computed. 

ix) The window length value is now changed to 30 and similarly next time in step size of 

3; the steps outlined from iii) to viii) are repeated until the last window length value 

as 351. The total window length iterations thus undertaken from 27 to 351 in step size 

of 3 are 109.   

x) The AUC is computed for proposed algorithm run for all 109 window lengths and the 

maximum value of AUC out of 109 iterations is selected finally. 

The details of the methodologies employed in the proposed algorithm are presented as follows: 
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3.2 Modified P-Spectrum 

It is well known that the protein-coding regions reveal three–base periodicity which is popularly 

called as TBP or period-3 property while non coding regions generally do not possess such 

property [2]. Many digital signal processing based algorithms have been proposed since last two 

decades for the identification of the protein-coding regions whose principle of working is based 

upon detection of TBP. The main idea is to have the algorithm capable of detecting the TBP in 

the DNA sequences to correctly classify the region as protein-coding region. To detect the TBP, 

modified P-spectrum has been used in this paper. The use of P-spectrum for periodicity detection 

is not new; it has been used by Kanjilal et al. [144] to detect and then correspondingly separate 

the periodic components which are entrenched in an irregular series. Qiu et al. have used 

modified P-spectrum for the detection of QRS component in Electrocardiograph (ECG) signals 

[145]. Liscombe et al. [146] have proposed modified P-spectrum with considerable reductions in 

the computational complexity and processing time. Garg et al. have used P-spectrum to identify 

the tandem repeats present in the DNA sequences [147]. It has been observed from these 

proposed approaches that P-spectrum is an effective and robust method for the detection of 

periodicities present in the different types of data. Therefore modified P-spectrum has been used 

in the proposed algorithm and tuned to detect the TBP present in the protein-coding regions of 

DNA sequences. The overview of P-spectrum and subsequently its counterpart modified P-

spectrum are discussed now in detail as follows: 

For a probable value of periodicity „p‟ which is TBP in protein-coding regions, a discrete-time 

signal C may be represented as shown in following equation: 

𝐶 =   𝑐1   𝑐2   𝑐3  . …   𝑐𝑀                                                                                                             (3.1) 

It is necessary that the given signal is a strict multiple of the „p‟ period for the computation of P-

spectrum. To achieve the same, the number of zeros obtained by the difference of the period and 

remainder are added after the last element of the signal C where the remainder can be calculated 

by dividing the given signal C with „p‟ period. The signal C after this rearrangement can be 

written now as: 

𝐶 =   𝑐1   𝑐2   𝑐3  𝑐4 … .  0 0 0 0. …                                                                                              (3.2)                      
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The matrix Bp is now obtained as represented in equation (3.3) whose rows are corresponding to 

the „j‟ non-overlapping sections in respect of period „p‟ generated from signal C.  

 

Bp =  

c1    c2    c3 ⋯ cn              cn+1 ⋯ cp

cp+1
⋯

   cp+2  
⋯

cp+3
⋯

⋯ cp+n
⋯

     cp+n+1
⋯

⋯ c2p
⋯

cjp+1  cjp +2  cjp+3 cM           0 0
                                                                  (3.3) 

The computation of modified P-spectrum is discussed in the following steps: 

The matrix 𝐵𝑝
′  is obtained from matrix Bp by considering the starting two rows of Bp as 

following [146]:  

Bp
′ =  

 c1     c2      c3  …      cp

cp+1  cp+2   cp+3  …  c2p
                                                                                                   (3.4) 

Now the singular value decomposition (SVD) of matrix 𝐵𝑝
′  is computed to obtain signal Dsvd and 

the first singular value is selected which is considered as the most dominating value because it 

indicates the presence of strong periodic component. The SVD is known as the most robust 

method for extracting this singular value. 

𝐷𝑠𝑣𝑑 =  max(𝑆𝑉𝐷 𝐵𝑝
′  )                                                                                                            (3.5) 

In the next step, all the elements of matrix 𝐵𝑝
′  are added and the signal obtained is named as Esum: 

Esum =  sum  Bp
′                                                                                                                        (3.6) 

And now an auxiliary spectrum signal called as auxspec is derived from signal Esum using 

following equation: 

auxspec =  max  
Esum

2                                                                                                          (3.7) 

In the final step, the spectrum corresponding to the TBP of DNA sequences is computed by 

multiplication of the rows of signal 𝐷𝑠𝑣𝑑   and auxspec  to obtain the signal named (resultantspec) 

as: 

 resultantspec =  Dsvd   ×  auxspec                                                                                             (3.8) 
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The modified P-spectrum is believed to detect the periodicity based on the singularity of matrix 

𝐵𝑝
′  [145]. 

3.3 Savitzky-Golay Filter 

S-Golay filter is a digital filter which is considered as a smoothing filter. The basic principle of 

working of S-Golay filter is to search the best fit of the data inside a movable window utilizing 

the least-squares polynomial fitting theory [148-149]. This principle helps to achieve a high 

value of signal-to-noise ratio and consequently important features of a signal like as height, peak, 

and width are retained satisfactorily. The operation of smoothing in S-Golay filter is achieved by 

sliding a window of length WL (which needs to be odd value) upon the data having noise. In this 

process, some mathematical operation is employed to get the windowed data converged to a 

single value which is the window‟s midpoint. The following equation describes the smoothing 

operation:   

 Bi =  
 aj b i+1

j=n
j=−n

W L
                                                                                                                        (3.9) 

, where Bi indicates the smoothed data at index i and bi corresponds to the noisy data at index i. 

The local indexing of data inside the window is represented by index j, the coefficient 

corresponding to j
th

 smoothing is shown by aj. WL is taken as 2j+1 and represents the data points 

inside the smoothing window. 

3.4 Numerical Representation Method 

DNA sequences are comprised of A, G, T, and C characters. In the area of development of 

digital signal processing based algorithm for genomic signal processing, it becomes necessary to 

convert the character sequence to obtain the numerical sequence employing numerical 

representation scheme. A lot of numerical representation schemes are reported in literature for 

this function [41], [69], [150-152]. One of the numerical representation schemes is integer 

mapping. In this mapping scheme, the numerical values A=1, G=2, T=3, C=4 are assigned to the 

DNA characters. But this configuration of mapping can suffer from nucleotide bias effect [153] 

which will affect the performance of algorithm. Hence to overcome such nucleotide bias effect, 
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the following possible combinations of integer mapping can be obtained which are called as 24 

possible combinations of integer mapping: 

Table 3.1: Possible combinations of integer mapping 

 Possible combinations of integer mapping 

for conversion of DNA characters 

 A G T C 

i=1 1 2 3 4 

i=2 1 4 3 2 

i=3 1 2 4 3 

i=4 1 4 2 3 

i=5 1 3 2 4 

i=6 1 3 4 2 

i=7 2 4 3 1 

i=8 2 1 4 3 

i=9 2 3 1 4 

i=10 2 1 3 4 

i=11 2 3 4 1 

i=12 2 4 1 3 

i=13 3 2 1 4 

i=14 3 2 4 1 

i=15 3 4 1 2 

i=16 3 1 4 2 

i=17 3 1 2 4 

i=18 3 4 2 1 

i=19 4 3 2 1 

i=20 4 1 3 2 

i=21 4 2 3 1 
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i=22 4 3 1 2 

i=23 4 2 1 3 

i=24 4 1 2 3 

 

3.5 Applicability of Proposed Algorithm on a Benchmark DNA Sequence 

A benchmark DNA sequence F56F11.4 [1], [98], [102] which is reported in literature by many 

researchers working in this field has been chosen as an example sequence to show the 

applicability of the proposed algorithm. The DNA sequence F56F11.4 consists of 8100 base 

pairs (bps) and there exists five protein-coding regions in this sequence at location: 928-1039, 

2528-2857, 4114-4377, 5465-5644, and 7255-7605 [102]. The proposed algorithm‟s result 

obtained on the example DNA sequence is depicted in Figure 3.2: 

 

Figure 3.2: Result obtained of proposed algorithm on example DNA sequence F56F11.4  
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The period-3 power spectrum of protein-coding regions depicted in Figure 3.2 is computed by 

running the proposed MPSA for the window length varying from 27 to 351, the maximum AUC 

value 0.9617 is obtained at window length 78. 

3.6 Experimental Analysis for Optimization of Window Length 

The experiments are performed on the example DNA sequence using proposed algorithm for the 

window length varying from 27 to 351. The reason is that the performance parameter selected for 

optimization is AUC and the values of AUC obtained for varying window lengths are different. 

Out of these, the window length at which the maximum AUC is obtained has been then selected 

finally and the spectrum of protein-coding regions is plotted for that window length. The values 

obtained of AUC for varying window lengths for example DNA sequence F56F11.4 is tabulated 

in Table 3.2 and it has been observed that the optimized window length for example DNA 

sequence is 78. 

Table 3. 2: Value of AUC for varying window lengths for example DNA sequence F56F11.4 

Index Window Length AUC 

1 27 0.9530 

2 30 0.9544 

3 33 0.9562 

4 36 0.9575 

5 39 0.9578 

6 42 0.9578 

7 45 0.9581 

8 48 0.9582 

9 51 0.9589 

10 54 0.9586 

11 57 0.9592 

12 60 0.9599 

13 63 0.9603 

14 66 0.9608 

15 69 0.9606 

16 72 0.9614 

17 75 0.9604 

18 78 0.9617 

19 81 0.9604 

20 84 0.9613 

21 87 0.9605 

22 90 0.9608 

23 93 0.9603 

24 96 0.9601 

25 99 0.9600 

26 102 0.9596 

27 105 0.9592 

28 108 0.9589 
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29 111 0.9587 

30 114 0.9584 

31 117 0.9578 

32 120 0.9571 

33 123 0.9567 

34 126 0.9560 

35 129 0.9559 

36 132 0.9556 

37 135 0.9555 

38 138 0.9552 

39 141 0.9554 

40 144 0.9551 

41 147 0.9550 

42 150 0.9547 

43 153 0.9545 

44 156 0.9542 

45 159 0.9538 

46 162 0.9534 

47 165 0.9527 

48 168 0.9521 

49 171 0.9515 

50 174 0.9511 

51 177 0.9509 

52 180 0.9503 

53 183 0.9499 

54 186 0.9493 

55 189 0.9486 

56 192 0.9480 

57 195 0.9475 

58 198 0.9470 

59 201 0.9466 

60 204 0.9462 

61 207 0.9456 

62 210 0.9452 

63 213 0.9446 

64 216 0.9440 

65 219 0.9437 

66 222 0.9434 

67 225 0.9431 

68 228 0.9429 

69 231 0.9426 

70 234 0.9421 

71 237 0.9416 

72 240 0.9412 

73 243 0.9406 

74 246 0.9401 

75 249 0.9397 

76 252 0.9391 

77 255 0.9386 

78 258 0.9380 

79 261 0.9375 

80 264 0.9370 

81 267 0.9363 
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82 270 0.9357 

83 273 0.9351 

84 276 0.9345 

85 279 0.9339 

86 282 0.9335 

87 285 0.9332 

88 288 0.9328 

89 291 0.9320 

90 294 0.9315 

91 297 0.9310 

92 300 0.9304 

93 303 0.9297 

94 306 0.9291 

95 309 0.9285 

96 312 0.9276 

97 315 0.9266 

98 318 0.9259 

99 321 0.9252 

100 324 0.9248 

101 327 0.9239 

102 330 0.9232 

103 333 0.9225 

104 336 0.9219 

105 339 0.9212 

106 342 0.9204 

107 345 0.9197 

108 348 0.9192 

109 351 0.9186 

 

The reason for choosing the window length values minimum as 27 and maximum as 351 is that 

for many data set sequences of HMR195, BG570, and GENSCAN datasets [114], [154-155]; the 

maximum AUC value obtained is at minimum window length value 27 and below window 

length value 27 the AUC value observed is not significant. And the maximum value of window 

length has been chosen as 351 because again for many data set sequences of HMR195, BG570, 

and GENSCAN datasets; the maximum AUC value obtained is at maximum window length 

value 351 and above window length value 351 the AUC value observed is not significant.  

3.7 Experimental Analysis for Choice of 24 Combinations of Integer Mapping 

Experiments are performed on example DNA sequence using numerical representation schemes 

other than 24 combinations of integer mapping. The numerical representation schemes 

considered are integer mapping, electron-ion-interaction potential (EIIP) mapping, modified EIIP 

mapping, atomic number, Complex mapping, four-bit binary, pseudo EIIP, three-bit binary, two-

bit binary, nucleotide frequency occurrence, real number, molecular mass, and quaternary. The 
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value assigned to the four characters of DNA sequence using these numerical representation 

schemes is presented in Table 3.3, and the value of performance parameter AUC obtained 

corresponding to optimal window length using these mapping methods is summarized in Table 

3.4. The result obtained using proposed algorithm applying these mapping schemes in place of 

combination of 24 mappings of integer mapping and keeping all other steps same; are 

represented in Figure 3.3-3.15. 

Table 3. 3: Numerical values assigned to DNA characters for different mapping schemes 

Numerical 

representation 

scheme 

Numerical values assigned to DNA 

characters 

 A G T C 

Integer 1 3 4 2 

EIIP 0.1260 0.0806 0.1335 0.1340 

Modified EIIP 0.1260 1 0.1335 1 

Atomic Number 70 78 66 58 

Complex 1+j -1-j 1-j -1+j 

Four-bit binary 0010 0001 0100 1000 

Pseudo EIIP 0.1994 0.0123 0.1933 0.0692 

Three-bit binary 010 001 000 100 

Two-bit binary 11 10 01 00 

Nucleotide 

frequency 

occurrence 

0.28142 0.28179 0.20354 0.23326 

Real number -1.5 -0.5 1.5 0.5 

Molecular mass 134 150 125 110 

Quaternary 1 -1 j -j 
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Table 3.4: AUC obtained on example DNA sequence using different mapping schemes 

Numerical representation 

scheme 

AUC (Optimal window 

length) 

Integer mapping 0.7018 (342) 

EIIP 0.8037 (351) 

Modified EIIP 0.8091 (342) 

Atomic number 0.9153 (297) 

Complex 0.9366 (240) 

Four-bit binary 0.5793 (171) 

Pseudo EIIP 0.8075 (351) 

Three-bit binary 0.6466 (237) 

Two-bit binary 0.7967 (339) 

Nucleotide frequency 

occurrence 

0.8818 (351) 

Real number 0.7878 (321) 

Molecular mass 0.9155 (270) 

Quaternary 0.9366 (240) 

Combination of 24 

mappings of integer 

mapping 

0.9617 (78) 

 

 

Figure 3.3: Result obtained using integer mapping on example DNA sequence F56F11.4  
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Figure 3.4: Result obtained using EIIP mapping on example DNA sequence F56F11.4 

 

Figure 3.5: Result obtained using modified EIIP mapping on example DNA sequence F56F11.4 
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Figure 3.6: Result obtained using atomic number mapping on example DNA sequence F56F11.4 

 

Figure 3.7: Result obtained using complex number mapping on example DNA sequence F56F11.4 
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Figure 3.8: Result obtained using four-bit binary mapping on example DNA sequence F56F11.4 

 

Figure 3.9: Result obtained using pseudo EIIP mapping on example DNA sequence F56F11.4 
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Figure 3.10: Result obtained using three-bit binary mapping on example DNA sequence F56F11.4 

 

Figure 3.11: Result obtained using two-bit binary mapping on example DNA sequence F56F11.4 
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Figure 3.12: Result obtained using nucleotide frequency occurrence mapping on example DNA sequence F56F11.4 

 

Figure 3.13: Result obtained using real number mapping on example DNA sequence F56F11.4 
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Figure 3.14: Result obtained using molecular mass mapping on example DNA sequence F56F11.4 

 

Figure 3.15: Result obtained using quaternary mapping on example DNA sequence F56F11.4 
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It has been observed from Table 3.4 that none of the numerical representation schemes 

considered in the experiment is able to achieve the value of AUC as the combination of 24 

mappings of integer mapping scheme in the proposed algorithm has achieved. Therefore, the 24 

combinations of integer mapping scheme has been selected as numerical representation scheme. 

 3.8 Results and Discussion 

Many methods have been proposed in literature for the identification of protein-coding regions, 

some methods focus on locating short length protein-coding regions only while other methods 

emphasis on detecting larger length protein-coding regions only. In this research work, the 

protein-coding regions of any length varying from shorter to larger are identified. The 

benchmark datasets considered previously in literature [114], [154-155] are applied to proposed 

approach and other methods as well for performance comparison. These datasets are HMR195, 

BG570, and GENSCAN. There are 195 mammalian sequences in HMR dataset which have 

precisely one complete single-exon or multi-exon genes. In this dataset, human: mouse: rat 

sequences are in the proportion of 103:82:10. The protein-coding regions in this dataset are 948 

and the average length of protein-coding regions is 208 base pairs (bps) [98]. There are 570 

vertebrate multi-exon gene sequences in the BG570 dataset. This dataset contains 2649 protein-

coding regions and the average length of protein-coding regions is 168 bps. GENSCAN dataset 

comprises of 65 selected coding sequences, and the average length of exons is 150.          

The performance metric considered in the paper for evaluation and comparison purpose is area 

under the receiver operating characteristics (ROC) curve (AUC) [114]. The following 

performance parameters which are considered as the standard outcomes of any algorithm are 

used in the calculation of AUC. True positive (TP) depicts those locations which have been 

identified aptly by the algorithm where true exons are located, false positive (FP) tells those 

segments which have been detected erroneously by the algorithm where true exons are actually 

not located, true negative (TN) represents those sections which are detected precisely where true 

exons are not located, and those portions which are not captured by the algorithm where true 

exons are located are termed as false negative (FN). Using these four possible outcomes, the 

customary performance parameters, sensitivity (Sn), specificity (Sp), true positive rate, and false 

positive rate are computed. Sn (TP/(TP+FN)) highlights the details related to the proportion of 

TP which have been detected correctly by the algorithm. Sp (TN/(TN+FP)) gives the statistics 
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related to the proportion of TN predicted appropriately by the algorithm. True positive rate 

shows the probability of correct detections which is same as Sn, and false positive rate (1-Sp) is 

computed from Sp. The ROC curve is calculated by plotting the values of false positive rate 

against true positive rate by varying values of threshold. The characteristic of ROC which is a 

single number obtained by calculating the area under ROC curve is known as AUC. It is always 

desired to have the value of AUC as maximum as achievable for a better prediction accuracy; 

which is governed by ROC curve. If the ROC curve is nearer to 1, the AUC will be higher and 

the algorithm will be better compared to that which has lesser value of AUC.  

The value of AUC obtained for these datasets using proposed algorithm and the other reported 

methods is summarized in Table 3.5. 

Table 3.5: AUC value on benchmark datasets 

Dataset Method Value of AUC 

 

 

HMR195 

AST-PCA [114] 0.8285 

MGWT [98] 0.8396 

WRWW [113] 0.8317 

AWSTFT [102] 0.7917 

Proposed 0.8407 

 

 

BG570 

AST-PCA [114] 0.8257 

MGWT [98] 0.8203 

WRWW [113] 0.8137 

AWSTFT [102] 0.7756 

Proposed 0.8237 

 

 

GENSCAN 

AST-PCA [114] 0.8502 

MGWT [98] 0.8486 

WRWW [113] 0.8418 

AWSTFT [102] 0.8158 

Proposed 0.8539 

 

 

Overall (Whole 

data set) 

 

 

AST-PCA [114] 0.8348 

MGWT [98] 0.8353 

WRWW [113] 0.8291 

AWSTFT [102] 0.7944 

Proposed 0.8394 

 

The superiority of proposed algorithm over other methods has been examined in Table 3.5. It has 

been observed from Table 3.5 that the proposed algorithm‟s performance in terms of AUC over 

other methods is the highest for datasets HMR195, GENSCAN. For the dataset BG570, the AUC 

value of AST-PCA method is the highest whereas the proposed algorithm‟s AUC value is very 

closer to this method. And the performance of proposed method is the best over all other 
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methods in terms of the highest value of AUC for combined data set. The performance 

improvement of proposed algorithm in the value of AUC over other methods has also been 

computed and depicted in Table 3.6. 

Table 3.6: % improvement of proposed algorithm in value of AUC over other methods 

Dataset Method % improvement 

in the value of 

AUC 

 

 

HMR195 

AST-PCA [114] 1.45% 

MGWT [98] 0.13% 

WRWW [113] 1.07% 

AWSTFT [102] 5.83% 

 

 

BG570 

AST-PCA [114] --- 

MGWT [98] 0.41% 

WRWW [113] 1.21% 

AWSTFT [102] 5.84% 

 

 

GENSCAN 

AST-PCA [114] 0.43% 

MGWT [98] 0.62% 

WRWW [113] 1.42% 

AWSTFT [102] 4.46% 

 

 

Overall (Whole 

data set) 

AST-PCA [114] 0.55% 

MGWT [98] 0.49% 

WRWW [113] 1.23% 

AWSTFT [102] 5.37% 

 

It has been observed from Table 3.6 that the proposed algorithm has achieved significant 

improvement in the value of AUC over other methods for HMR195, GENSCAN datasets; and 

the percentage improvement for BG570 dataset over MGWT, WRWW, AWSTFT methods is 

considerable. Also it has been observed that the percentage improvement of proposed method 

over all other methods on overall dataset is significantly high.  

3.9 Summary 

In the recent past, many transform based approaches have been proposed for the identification of 

protein-coding regions in DNA sequences of eukaryotes. The major limitation of the transform 

based approaches is that their principle of working is based on the transformation of domain of 

signal. This can result in loss of important information probably and hence may affect the 

performance of algorithm. An approach based on SVD called as modified P-spectrum algorithm 

(MPSA) which does not require any domain transformation is proposed in this research work. 

The modified P-spectrum which has been reported in literature in some other applications has 



52 
 

been tuned in this research work to capture the TBP and identify the protein-coding regions. The 

window length of proposed algorithm has been varied over a range of 27 to 351 and the 

optimized window length corresponding to maximum AUC obtained has been selected. The 

benchmark datasets have been used to verify the applicability and to prove the superiority of 

proposed MPSA over existing methods in terms of identification of protein-coding regions of 

any size. The results obtained prove that the proposed algorithm is an effective and efficient 

approach for the identification of protein-coding regions in the DNA sequences of eukaryotes. 

The limitation of MPSA is its computational complexity because of optimization of window 

length for 109 iterations and applying 24 combinations of integer mapping scheme.   
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CHAPTER 4 

SHORT-TIME FOURIER TRANSFORM BASED APPROACH 

FOR CPG ISLANDS DETECTION IN DNA SEQUENCES  

 

CpG Islands (CGIs) are considered as significant constituent of DNA sequences. Some of the 

important activities which represent the significance of CGIs can be described as: the 

identification of CGIs helps in the identification of promoter regions and subsequently genic 

regions [4], inactivation of X chromosome, some human malignancies, suppression of repetitive 

elements, and also can be beneficial in case of prediction of cancers at an early stage [5]. 

Therefore, the detection of CGIs in DNA sequences is considered as very important. As the 

nature of DNA sequences represent the repeating patterns which points towards that CGIs can 

have some periodic patterns hidden inside them. The approaches developed and proposed so far 

for CGIs prediction have not focussed on hidden periodic patterns in the CGIs. In this research 

work, an approach based on short-time Fourier transform (STFT) has been proposed in which the 

periodicities present in the CGIs have been analysed through experimental proofs on benchmark 

data; and subsequently the proposed approach has been applied on a dataset of hundred DNA 

sequences comprising of human, fish, and mouse species.            

4.1 Periodicity Feature in CGIs 

It has been reported that CGIs are high frequency repeating patterns of CG dineucleotide [5] in 

DNA sequences. Hence, small periodicities have been considered as a feature of CGIs in this 

research work. For the validation of the periodicity feature, first step is to convert the DNA 

characters T, C, G, A into numerical sequences employing integer mapping scheme [69] and 

thereafter to compute the short-time Fourier transform (STFT) of all of the seventeen CGIs 

present in the benchmark DNA sequence having accession number L44140 [1, 130] individually. 

For the computation of STFT of the DNA data, DFT has been used to obtain the power spectrum 

of windowed sequence using moving window approach [41]. The calculation of an 𝑁-point DFT 

for a numerical sequence b(𝑖)  at each nucleotide position „i‟ is performed as [41]: 

𝐵 𝑘 =  𝑏 𝑖 𝑤(𝑖)𝑒
−𝑗2𝜋𝑖𝑘

𝑁𝑁−1
𝑖=0                                                                                                    (4.1) 
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where, 𝑤 𝑖 = (1/𝜎 2𝜋)exp(−𝑖2/2𝜎2), i corresponds to Gaussian window‟s length, 𝜎 = 𝑖/2𝛼, 𝛼 

represents shaping parameter of window. In this research work, the value of parameter „i‟ =210, 𝛼 = 

2.5, length of FFT (N) = 2520, and k = 0… N-1 have been chosen. The windowed sequence‟s 

power spectrum calculated using equation (4.1) is as follows:  

𝑃1 𝑘 =  𝐵 𝑘  2                                                                                                                             (4.2)                                                                                                                                    

The equation (4.3) has been applied for the computation of power spectrum with respect to the 

periodicities (𝑝 = 2 𝑡𝑜 10) from windowed power spectrum  𝑃1 𝑘  at every position of nucleotide:  

𝑃 𝑖, 𝑝 = 𝑃1 𝑖, 𝑁/𝑝                                                                                                                       (4.3)                                   

where, 𝑖 corresponds to the position of nucleotide where center point of window is located; it varies 

from  𝑖 = 0 … . . 𝐿 , where  𝐿  shows the entire length of DNA sequence. The plots of nucleotide- 

position versus periodicities for seventeen existing CGI sections of DNA sequence L44140 are 

represented in Figure 4.1 (i-xvii):  

 

(i)                                                                                        (ii) 
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                               (iii)                                                                                        (iv)    

 

 

                                (v)                                                                                        (vi) 
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                                (vii)                                                                                       (viii)       

 

 

(ix)                                                                                     (x)               
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                                 (xi)                                                                                     (xii) 

 

 

                                (xiii)                                                                                      (xiv) 
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                                (xv)                                                                                       (xvi) 

 

                                (xvii)         

Figure 4.1 (i-xvii): Plot of nucleotide‟s position vs periodicity of seventeen CGIs of DNA sequence L44140 

The criterion applied for extraction of dominant periodicities from the plots obtained in Figure 

4.1(i-xvii) is as follows:  

 The period whose minimum section‟s length is twice of the respective period has been 

considered as periodicity present. 
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 In those sections of obtained periodicities which are having overlapping with other 

periods, minimum period out of the overlapping periods has been selected as dominating 

period. For example if in some particular section, period 3, period 6, and period 9 are 

obtained which are overlapping then period 3 must be chosen in that particular section.   

Thereafter, the verification step in which 2 necessary conditions of GGF criterion {which are i) CG 

% has to be at least 50%, ii) the observed/expected ratio should be above 0.6} have been applied on 

the predicted sections of dominant periodicities the segments of the detected dominant periodicities. 

Those sections of predicted periodicities which satisfy the above mentioned 2 conditions of GGF 

criterion required for classification of CGI have been finally selected as verified dominating 

periodicities; otherwise rejected. 

The dominating periodicities in CGI sections of DNA sequence L44140 which are predicted and 

finally verified also are represented in Table 4.1: 

Table 4.1: Obtained periodicities in seventeen CGI segments of DNA sequence L44140 

S. No. Start and end position 

of CGI in accordance 

with NCBI website 

CGI  

segment’s 

length 

(bps) 

Periodicities 

acquired by 

proposed 

algorithm in 

CGI segments  

Periodicities 

after 

verification 

step present 

in  CGI 

segments  

CGI 1 3095-3426 332 4 ___ 

CGI 2 11638-13564 1927 3, 6, 7 3, 6 

CGI 3 40983-42150 1168 3, 5, 6 3, 5, 6 

CGI 4 44799-45386 588 2, 3, 4, 5, 6, 7 2, 3, 4, 5, 7 

CGI 5 48446-50350 1905 2, 3, 4, 6, 8, 10 2, 3, 4, 6, 8, 

10 

CGI 6 59461-61404 1944 2, 3, 6, 7 3, 6, 7 

CGI 7 67900-69472 1573 2, 3, 5, 6, 7, 9, 

10 

2 

CGI 8 81836-82633 798 4, 6, 7, 8 4, 6 

CGI 9 98783-99468 686 2, 3, 6, 7, 10 2, 3, 6, 7, 10 

CGI 10 106826-108158 1333 3, 4, 6, 7, 8, 9 3, 6, 9 
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CGI 11 114316-114957 642 2, 3, 4, 6, 8, 9 2, 3, 4, 6, 8 

CGI 12 128187-129236 1050 2, 3, 8, 9, 10 2, 3, 8 

CGI 13 148990-149796 807 2, 5, 6, 10 2, 6, 10 

CGI 14 156388-157495 1108 2, 4, 6, 7, 8 2, 6, 7, 8 

CGI 15 160697-161402 706 2, 5, 6 2, 5, 6 

CGI 16 186412-186922 511 2, 3, 5 2 

CGI 17 216617-217876 1260 2, 6, 7 2, 6 

 

The fact observed from experimental analysis results carried out on benchmark DNA sequence 

which are tabulated in Table 4.1 is that CGIs possess 2 to 10 periodicities. Therefore, with the help 

of these verified dominating periodicities, the proposed algorithm for the detection of CGIs is now 

discussed in the following sections.  

4.2 Proposed Algorithm for Detection of CGIs 

The flow graph of the proposed algorithm which is based on capturing the dominating periodicities 

present in CGIs is depicted in Figure 4.2.  

The DNA sequence with accession number L44140 which belongs to Homo sapiens chromosome X 

region from filamin gene to glucose-6-phosphate dehydrogenase gene which is a benchmark DNA 

sequence has been chosen here as an example sequence for the discussion of the steps of the 

proposed approach. This DNA sequence consists of 219447 bps and there exists seventeen CGIs in 

this sequence [1]. The detailed discussion of the steps employed in the proposed approach is as 

follows: 

4.2.1 Conversion of DNA Characters to Numerical Values 

The important step in the application of DSP based methods to be applied for the analysis of DNA 

data is the mapping of characters of DNA to the numerical values with the help of numerical 

mapping scheme. For an instance, a DNA string CGATCGCGTTAA can be converted to 

231423234411 using integer mapping [69]. 
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Figure 4.2: Flow graph of the proposed algorithm 

4.2.2 Calculation of Resultant Power Spectrum 

The power spectrum components with respect to every dominating value of periodicity i.e. 

periodicity 2 to 10 have been obtained with the application of short-time DFT in equation (4.3). The 

No 

  Yes 

DNA sequence 

Convert the DNA characters to 

numerical sequence using „m
th

‟ 

integer mapping 

Calculate the dominant power 

spectrum for „m
th

‟ mapping            

[P (i, p)] 

Calculate the resultant spectrum 

RPSm (i) 

Verification of candidate CGIs 

using GGF‟s criteria                  

[FCGI (i)]  

Combine the results for all mapping 

schemes by adding all the spectrums 

CGIs detected 

m ≤ 24? 

Extract candidate CGIs using 

thresholding operation               

[CCGI (i)] 
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obtained value of power spectrums with respect to dominating periodicities at every nucleotide 

location have been added linearly then and the resultant power spectrum with respect to a mapping 

scheme „m‟ has been computed as represented in equation (4.4):   

𝑅𝑃𝑆𝑚(𝑖) =  𝑃 𝑖, 𝑝 10
𝑝=2                                                                                                                                         (4.4) 

The result obtained for resultant value of power spectrum 𝑅𝑃𝑆𝑚 𝑖  on example DNA sequence 

L44140 has been depicted in Figure 4.3:   

 

Figure 4.3: Resultant power spectrum 

4.2.3 Identification of Candidate CGIs 

A threshold value selected empirically as 10% of the maximum value of the resultant power 

spectrum 𝑅𝑃𝑆𝑚 𝑖  has been employed for the extraction of candidate CGIs from resultant power 

spectrum. Those segments of power spectrum whose peak value crosses the selected threshold limit 

have been classified as candidate CGIs.   

𝐶𝐶𝐺𝐼 𝑖 =  
𝑅𝑃𝑆𝑚 𝑖  𝑖𝑓 𝑅𝑃𝑆𝑚  𝑖 > 𝑇ℎ𝑟 

0,                        𝑒𝑙𝑠𝑒             
                                                                                                                (4.5) 

where, 𝑇ℎ𝑟 = 0.1 ∗ max(𝑅𝑃𝑆𝑚 𝑖 ) 

The candidate CGI spectrum CCGI(i) obtained is shown in Figure 4.4. 
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4.2.4 Verification of Candidate CGIs 

The GGF criterion has been applied as a post processing step on the detected segments 

corresponding to candidate CGI to verify and classify finally such segments as detected CGIs as per 

equation (4.6):  

 

Figure 4.4: Obtained spectrum of candidate CGIs 

FCGI  i =  
CCGI  i ,  segments out of CCGI  i  which meet GGF Criteria  

0 ,                                                                          else
                                  (4.6) 

The obtained spectrum of predicted candidate CGIs after verification step FCGI  i  is highlighted in 

Figure 4.5.  

4.2.5 Combine the Mapping Results 

To analyze the effect of numerical mappings on the performance of proposed algorithm, experiment 

has been performed with the help of 12 mapping schemes and using 24 combinations of integer 

mapping scheme which has been used in this research work. The results obtained in terms of 

standard performance metrics using all these mappings are shown in Table 4.2. 

As it has been noticed from Table 4.2 that the value of performance metrics, sensitivity (Sn), and 

accuracy (AC) of the proposed approach with 24 combinations of integer mapping scheme is much 
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better in comparison with other mapping schemes considered here; therefore, the final spectrum 

with respect to CGIs has been computed by combining the verified spectrums of 24 mapping 

schemes in accordance with equation (4.7). 

 

Figure 4.5: Obtained power spectrum FCGI  i  after verification of candidate CGIs 

Table 4.2: Performance metrics obtained in DNA sequence L44140 using proposed approach employing various 

mappings  

Mapping Scheme Performance Measure 

  Sp                Sn                     AC                

Complex 1 0.0295 0.5148 

Atomic 0.9767 0.0440 0.5104 

EIIP 0.9538 0.4131 0.6834 

Four-bit-binary 0.9888 0.0699 0.5293 

Integer 0.9782 0.4758 0.7270 

Three-bit-binary 0.9942 0.0154 0.5048 

Real Number 0.9822 0.0336 0.5079 

Two-bit-binary 0.9618 0.5202 0.7410 

Modified EIIP 0.9492 0.5991 0.7742 

Pseudo EIIP 0.9656 0.5464 0.7560 

Quaternary 0.9689 0.4152 0.6920 

Molecular Mass 0.9826 0.0440 0.5133 

Adding 24 

combinations of 

mappings of integer 

mapping 

0.8285 0.9590 0.8938 
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        FSCGI (i) =  FCGI  i 24
m=1    , m ∈   1, 24                                                                                           (4.7)   

The result of final spectrum FSCGI  i  for CGIs which has been obtained using proposed approach 

is depicted in Figure 4.6. The x-axis represents the nucleotides‟ position and the y-axis 

corresponds to power spectrum value with respect to nucleotides‟ position in Figure 4.6. 

 

Figure 4.6: FSCGI  i  of detected CGIs 

As the length of DNA sequence L44140 is 219447 bps, it appears bit difficult to visualize the 

locations of the detected segments very precisely. Hence, the Figures 4.7- 4.11 are represented as 

a magnified view of the Figure 4.6 which is shown in smaller segments to have a better 

visualization of the result obtained. 

Now, to get further better understanding of the locations of detected CGIs segments by proposed 

method, these locations are checked and tabulated in Table 4.3.   
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Figure 4.7: FSCGI  i  of detected CGIs for segment 1-55000 bps  

 

Figure 4.8: FSCGI  i  of detected CGIs for segment 55001-110000 bps  
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Figure 4.9: FSCGI  i  of detected CGIs for segment 110001-165000 bps  

 

Figure 4.10: FSCGI  i  of detected CGIs for segment 165001-220000 bps 
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Table 4.3: Detected CpG Islands  

DNA Sequence  Start and end location of CGI in 

accordance with NCBI website 

Start and end location of CGI obtained 

using proposed approach 

L44140  Start location End location Start location End location 

1 3095 3426 3192 3576 

2 11638 13564 10470 14217 

   18353 18656 

  25277 25597 

  27863 28072 

  30464 30766 

   34931 35166 

3 40983 42150 41089 42737 

4 44799 45386 43840 53495 

5 48446 50350 43840 53495 

6 59461 61404 56715 63740 

   64457 64720 

   66726 67012 

7 67900 69472 67102 70028 

   76336 76687 

   80444 80658 

8 81836 82633 81493 83393 

   85176 85394 

   86475 86879 

   93080 93286 

   96768 96993 

9 98783 99468 98000 100530 

10 106826 

 

108158 106816 

107345 

107300 

107583 
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107587 107843 

11 114316 114947 113832 115318 

12 128187 129236 127582 129155 

   130652 131218 

   131394 131879 

   138508 139016 

13 148990 149796 147981 151460 

14 156388 157495 155887 157400 

15 160697 161402 160653 163220 

   175115 175407 

   184658 185511 

16 186412 186922 186327 187110 

   187304 187786 

17 216617 217876 216200 219447 

 

It has been noticed from Table 4.3 that proposed approach is able to capture all the seventeen CGIs 

which are contained in benchmark DNA sequence L44140. However, the proposed approach has 

identified some false locations of CGIs also.  

If the length of a particular CGI is 200 bps then 10% of it is 20 bps, 20% comes out to be 40 bps, 

similarly 90% of the length of this CGI will be 180 bps, and 100% value is 200 bps. Now the 

performance of proposed approach has been examined on the basis of the percentage coverage of 

the true CGI‟s length; and the performance comparison has been carried out with other recent state-

of-art algorithms. Table 4.4 shows that out of seventeen CGIs present in DNA sequence L44140, 

which method has identified/not identified a particular CGI at 80 percent, 90 percent, and 100 

percent (full length) coverage of true CGI‟s length. The summary of CGIs identified by the various 

methods in accordance with coverage of portion of length of true CGI at 80 percent, 90 percent, and 

100 percent (full length) is tabulated in Table 4.5. 
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Table 4.4: CGI identified/not identified by methods for seventeen CGIs at various percentage coverages 

CGI and 

its 

location 

CGI identified/not-identified corresponding to percentage coverage of true CGI’s length 

METHODS 

                80percent                                                    90percent                                                    100percent                                                                                    

Pr.            TLBO      PNP         DWT     Pr.         TLBO       PNP         DWT         Pr.         TLBO      PNP       DWT 

CGI-1 

(3095-

3426) 

            

CGI-2 

(11638-

13564) 

            

CGI-3 

(40983-

42150) 

            

CGI-4 

(44799-

45386) 

            

CGI-5 

(48446-

50350) 

            

CGI-6 

(59461-

61404) 

            

CGI-7 

(67900-

69472) 

            

CGI-8 

(81836-

82633) 

            

CGI-9 

(98783-             



71 
 

99468) 

CGI-10 

(106826-

108158) 

            

CGI-11 

(114316-

114947) 

            

CGI-12 

(128187-

129236) 

            

CGI-13 

(148990-

149796) 

            

CGI-14 

(156388-

157495) 

            

CGI-15 

(160697-

161402) 

            

CGI-16 

(186412-

186922) 

            

CGI-17 

(216617-

217876) 

            

 

In Table 4.4, the heading marked as Pr. represents the „Proposed approach‟, TLBO corresponds to 

„CpGclusterTLBO‟ [129], PNP corresponds to „CpGPNP‟ [122], and DWT corresponds to DWT 

based CGI detection algorithm [130]. The symbols and  in Table 4.5 signifies „identified‟ and 

„not identified‟ a particular CGI respectively. 
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Table 4.5: Total CGIs identified out of 17 in DNA sequence L44140 

 

Methods 

Number of CGIs identified corresponding to 

percentage coverage of true CGI’s length   

                                                             

80percent           90percent       100percent 

Proposed  15 15 12 

CpGclusterTLBO 9 5 0 

CpGPNP 4 3 2 

DWT based 

method 

0 0 0 

 

It has been noticed from Table 4.5 that the performance of proposed approach in context of 

identification of CGIs at varying % coverage from 80% to 100% (full length of a CGI) of the length 

of actual CGIs is the highest compared to other recent state-of-art methods. The proposed approach 

has identified 15 CGIs out of total 17 CGIs present in DNA sequence L44140 at 80% & 90% 

coverage, and 12 CGIs at 100% (full length of CGI) coverage of actual CGI length; whereas no 

other recent method is able to detect these number of CGIs. 

Having proved with experimental analysis the performance of proposed approach on a benchmark 

DNA sequence, the experiments have been performed on a big data set comprising of hundred DNA 

sequences. The explanation of data set, performance parameters used, and the obtained results are 

discussed now in following sections.   

4.3 Data Set of CGIs and Performance Parameters  

4.3.1 Data Set of CGIs 

A CGI data set of hundred DNA sequences has been prepared by us by acquiring the details from 

National Centre for Biotechnology Information (NCBI) website [1]. For the testing of universal 

applicability of proposed approach, the data set has been prepared comprising of Human (Homo 

sapiens), fish, and mouse species. The complete details of the data set such as Gene bank accession 

number, number of base pairs (bps) in a sequence, number of CGIs, and start and end locations of 

CGI within a sequence are described in Table 4.6: 
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Table 4.6: Details of hundred DNA sequence‟s CGI data set  

S. No. 

Gene 

bank 

accession 

number 

Number of 

base pairs 

(bps) 

Number 

of CGIs 

 

Start and end location of CGI as acquired from 

NCBI website 

Data set of 85 DNA sequences of human species 

1 AL442638 188247 

4 17472-17700, 22868-23148, 93250-93495,   

163847-164132 

2 AC073335 68275 

3 

31813-32080, 33619-34458, 50802-51655 

3 AC073517 67706 1 35431-35977 

4 AC127379 67291 2 30060-30318, 38447-39437 

5 AC064843 66898 1 5531-5785 

6 AC129782 66860 1 38868-40898 

7 AC013270 66660 

4 6075-6881, 25374-26035, 34710-36183, 48185-

48621 

8 AC074386 66610 2 15847-16381, 16593-16830 

9 AC092103 66565 1 24844-25119 

10 AC124014 66552 1 56936-57769 

11 AL137791 66254 

4 30724-31272, 46196-46906, 52979-53956, 61007-

62096 

12 AC096553 66229 1 11867-12256 

13 AC105413 65958 1 50478-50751 

14 AC005003 65750 1 38374-41067 

15 AC145546 65625 1 52797-53645 

16 AC105402 65449 2 15774-16973, 28628-28925 

17 AC112698 65335 1 42309-43546 

18 AC104129 65189 

8 2966-3334, 8763-9020, 14023-14383, 20695-20991, 

26472-26735, 28330-29188, 31762-32009, 55671-

55878 
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19 BN000001 64961 1 895-1123 

20 AC138782 64744 1 23500-24633 

21 AC005021 64607 2 24663-25225, 63177-63512 

22 AC093086 64601 1 58914-59518 

23 AC005233 64359 1 16579-18003 

24 AC013436 63823 

5 12411-12652, 21066-21331, 24980-26051, 26467-

26807, 60097-60448 

25 AC131957 63780 1 45526-45799 

26 AC004694 63749 2 9107-9494, 54481-54756 

27 AC108463 63525 3 26008-26366, 26575-26982, 27079-27538 

28 AC080165 63279 1 8258-8531 

29 AC010890 62764 

4 11407-11926, 13574-13801, 53142-53415, 53755-

54041 

30 AC108142 62624 1 8864-11837 

31 AC080068 62623 1 535-774 

32 AC093785 62466 1 31397-31665 

33 AC003079 62331 1 50250-50471 

34 AC078937 62035 1 38149-39359 

35 AC114803 61579 

7 3256-4009, 18815-19353, 32398-32647, 33247-

33659, 36773-37302, 39696-39964, 55808-56144 

36 AC093652 61340 1 48156-49072 

37 AC093377 61056 1 729-1003 

38 AC073201 60776 1 9738-11862 

39 AC113611 60597 1 8638-9514 

40 AC099394 60024 

7 2826-4863, 10806-11866, 19723-19934, 25482-

25769, 31861-32884, 36728-36931, 54994-55361 

41 AC098831 59776 2 39343-39572, 51406-51689 

42 AC074013 59657 3 22602-22873, 51602-52508, 53105-53331 

43 AC062028 59634 1 44629-44851 
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44 AC106875 59580 1 4526-5382 

45 AC023670 59565 1 25568-27400 

46 AC079882 59427 1 39153-39736 

47 AC006008 57554 1 28800-30423 

48 AC108222 21776 1 21237-21776 

49 AH006464 21230 1 1187-2051 

50 AC093609 20710 1 7857-8257 

51 AL590794 18042 1 11568-12215 

52 AC136375 17863 1 16369-17534 

53 BD432859 14646 2 2762-2973, 4065-5181 

54 AC111201 13470 3 4327-4727, 5323-5554, 12500-13455 

55 NM005876 10782 1 6154-7734 

56 NM053043 10168 1 9597-9820 

57 AC093460 10103 1 6951-7418 

58 AC108032 9716 1 30-269 

59 X86012 9541 1 335-3853 

60 AC106048 8594 1 7941-8180 

61 AH008870 6797 1 341-1340 

62 AC079401 6568 1 3086-3935 

63 AH007568 6513 3 543-803, 1212-1430, 1662-2474 

64 AC105385 5952 1 2844-3080 

65 AJ308559 5596 1 1228-1657 

66 M92844 3889 1 3198-3889 

67 AF196313 3700 1 2092-3580 

68 AF281043 3662 1 1611-2734 

69 U48937 3278 1 2588-3230 

70 AF307776 3113 2 2334-2745, 2791-3064 
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71 AJ000757 3046 1 650-2840 

72 AJ289875 2916 1 2325-2916 

73 L07287 2704 1 1-1350 

74 Z92546 73511 1 20746-21240 

75 AL591222 147211 2 54605-55080, 68825-69091 

76 AL513502 174636 1 116364-117432 

77 AL513498 155780 1 18305-18582 

78 AL357615 171446 2 56753-57030, 59607-59874 

79 AL353786 139565 1 19000-19400 

80 AL121926 139544 2 102641-104201, 126562-127299 

81 AL049547 129811 

5 27801-29311, 37094-37773, 109041-110125, 

113196-114024, 126815-127265 

82 AL031706 13012 1 7-552 

83 AL031703 35098 

4 15319-17699, 25107-26048, 30327-30736, 31615-

32204 

84 AJ006998 123521 1 11140-11417 

85 AL031707 28707 4 6050-6520, 6693-7445, 24481-25248, 28059-28669 

Data set of 9 DNA sequences of Mouse species 

86 AJ970309 7050 1 3025-4010 

87 AC149868 190971 4 

38226-39751, 109499-110391, 114105-114977, 

167115-168150 

88 AC125063 194931 4 

97498-98367, 99058-100402, 106255-107246, 

144134-145047 

89 AC124505 222439 4 

36111-37119, 132685-133458, 139610-140565, 

202532-203418 

90 AC145199 220892 6 

29996-30867, 59938-60771, 114341-115758, 

133121-133903, 204198-205934, 217247-218028 

91 AC122821 220013 6 

43295-44322, 59514-60693, 122943-123697, 

163194-164078, 185979-186978, 218075-218923 

92 AF073797 46872 4 
9395-9666, 18386-18651, 32350-32477, 33946-
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34206 

93 AC126029 212472 5 

5851-6810, 75564-76663, 82722-84043, 152561-

153650, 195134-196503 

94 AF059580 36326 3 2076-3209, 2382-3017, 14983-15869 

Data set of 6 DNA sequences of Fish species 

95 AL603785 89874 1 4151-4634 

96 AL672065 82767 1 44999-45681 

97 AL672083 111516 1 88040-88588 

98 AL691521 109831 1 34191-36572 

99 AL672171 114103 1 50521-51167 

100 AL713869 104577 1 6954-7435 

   

4.3.2 Performance Parameters 

For the assessment and comparison of performance of proposed approach over other recent state-of-

art methods, the performance parameters such as Sn (sensitivity), Sp (specificity), F-Measure [156], 

and AC (accuracy) [157] have been employed in this work. The following equations define these 

performance parameters: 

Sn (sensitivity) =  
TP

TP +FN
                                                                                                               (4.8) 

Sp (specificity) =  
TN

TN +FP
                                                                                                               (4.9) 

F − measure =  
2∗(prec ∗rec )

(prec +rec )
                                                                                                          (4.10) 

where,    𝑝𝑟𝑒𝑐  precision =  
TP

TP +FP
  , rec (recall) =  

TP

TP +FN
                             

AC (accuracy) =  
Sn +Sp

2
                                                                                                                (4.11) 

 

The outcome of an approach applied for detection of CGIs consists of four possible parameters and 

these are: true positive (TP), true negative (TN), false positive (FP), and false negative (FN). TP 

depicts those locations of DNA sequence which are captured by the algorithm correctly and true 

CGIs are located at those locations. TN tells those segments where no CGIs are captured and actual 
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CGIs are also not located there. FP represents those erroneously identified locations of CGIs where 

actual CGIs are not located, and those sections of true CGI which are not captured by method are 

termed as FN. Using these four parameters, the evaluation metrics Sn, Sp, F-measure, and AC can 

be assessed. The range of value of all four evaluation metrics Sn, Sp, F-measure, and AC lies 

between 0-1. An approach is considered to be perfect if the value of evaluation metrics Sn, Sp, F-

measure, and AC obtained using that approach is closer to 1. The parameter Sn corresponds to the 

percentage of TPs which have been perfectly identified by the approach; and the parameter Sp 

signifies the proportion of TNs which have been precisely detected by the approach. The parameter 

which highlights the simultaneous effect of both Sn and Sp is termed as AC. The accuracy of 

approach is computed using parameter F-measure which calculates the harmonic mean of prec 

(precision) and rec (recall). If the performance evaluation has been carried out at a single threshold 

only, then F-measure is s suitable parameter for assessment in place of ROC (receiver operating 

characteristics). 

4.4 Results and Discussion 

The performance comparison of the proposed approach has been carried out with other recent state-

of-art methods on the data set of hundred DNA sequences. The methods used for comparison are as 

follows: CpGclusterTLBO [129], CpGPNP [122], and DWT based method for CGIs detection 

[130]. The results obtained in terms of performance parameters TP, TN, FP, FN, Sn, Sp, F-measure, 

and AC using all the methods for data set of 85 DNA sequences of human species, 9 DNA 

sequences of mouse species, 6 DNA sequences of fish species, and overall 100 DNA sequences 

comprising of all 3 species are highlighted in Table 4.7, 4.8, 4.9, and 4.10 respectively. 

Table 4.7: Performance metrics obtained in human species‟ 85 DNA sequences using all methods 

Evaluation 

metric 

CGI detection methods 

Proposed CpGclusterTLBO CpGPNP DWT based 

method 

TP 78338 71218 66048 65822 

TN 4456041 4444891 4358640 1772242 

FP 130623 136172 228024 2814422 
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FN 25419 27735 37709 37938 

Sn 0.7550 0.7197 0.6366 0.6344 

Sp 0.9715 0.9702 0.9503 0.3864 

F-measure 0.5010 0.4650 0.3320 0.0441 

AC 0.8632 0.8449 0.7934 0.5104 

              

Table 4.8: Performance metrics obtained in mouse species‟ 9 DNA sequences using all methods 

Evaluation 

metric 

CGI detection methods 

Proposed CpGclusterTLBO CpGPNP DWT 

based 

method 

TP 30434 25985 11155 17192 

TN 1262233 1260968 1210651 703139 

FP 55750 57015 107332 614844 

FN 3540 7989 22819 16782 

Sn 0.896 0.765 0.328 0.506 

Sp 0.958 0.957 0.919 0.533 

F-measure 0.5066 0.4443 0.1463 0.0516 

AC 0.927 0.861 0.624 0.52 

   

Table 4.9: Performance metrics obtained in fish species‟ 6 DNA sequences using all methods 

Evaluation 

metric 

CGI detection methods 

Proposed CpGclusterTLBO CpGPNP DWT 

based 

method 

TP 3496 2763 3181 3555 

TN 595415 579762 576127 236594 

FP 12020 27673 31308 370842 
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FN 1731 2464 2046 1672 

Sn 0.67 0.53 0.61 0.68 

Sp 0.98 0.954 0.948 0.389 

F-measure 0.3371 0.1550 0.1602 0.0187 

AC 0.825 0.742 0.779 0.535 

 

Table 4.10: Performance metrics obtained in overall hundred DNA sequences using all methods 

Evaluation 

metric 

CGI detection methods 

Proposed CpGclusterTLBO CpGPNP DWT 

based 

method 

TP 112268 99966 80384 86569 

TN 6313689 6285621 6145418 2711975 

FP 198393 220860 366664 3800108 

FN 30690 38188 62574 56392 

Sn 0.7853 0.7236 0.5623 0.6055 

Sp 0.9695 0.9661 0.9437 0.4165 

F-measure 0.4950 0.4356 0.2725 0.0430 

AC 0.8774 0.8448 0.7530 0.5110 

 

The superiority of proposed approach over other state-of-art methods has been noticed from Tables 

4.7, 4.8, 4.9, and 4.10. All the performance parameters TP, TN, FP, FN obtained using proposed 

approach for 85 DNA sequences of human species and 9 DNA sequences of mouse species are 

much better than other methods; and subsequently evaluation metrics Sn, Sp, F-measure, and AC 

are having much higher value than other methods. The performance parameters TN, FP acquired 

using proposed approach for 6 DNA sequences of fish species are better than all other methods, 

however TP and FN parameters are little lesser than DWT based method but higher than other 

methods. Consequently, evaluation metrics Sp, F-measure and AC obtained using proposed 
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approach are much higher than all other methods, whereas Sn of proposed approach is little lesser 

than DWT based method but much higher than other methods. The overall performance of proposed 

method on the whole data set of hundred DNA sequences is the best in all parameters and metrics 

compared to all other recent state-of-art methods. The percentage improvement in terms of 

evaluation metrics Sn, Sp, F-measure, and AC of proposed approach over other methods has been 

calculated and shown in Table 4.11. 

Table 4.11: Percentage improvement of proposed algorithm in value of performance metrics over other methods 

Evaluation 

metric 

CGI detection methods 

CpGclusterTLBO CpGPNP DWT based 

method 

Sn 7.86% 28.40% 22.90% 

Sp 0.35% 2.66% 57.04% 

F-measure 12% 44.95% 91.31% 

AC 3.72% 14.18% 41.76% 

The performance of proposed approach has also been assessed on the basis of the percentage 

coverage of the true CGI‟s length and the performance comparison has been carried out with other 

recent state-of-art algorithms. Table 4.12 shows the number of CGIs identified by all methods out 

of total 194 CGIs present in hundred DNA sequences comprised of human, mouse, and fish species 

at 80 percent, 90 percent, and 100 percent (full length) coverage of true CGI‟s length.  

Table 4.12: Number of CGIs identified out of total 194 in hundred DNA sequences  

 

Methods 

Number of CGIs identified corresponding to 

percentage coverage of true CGI’s length   

                                                             

80percent           90percent       100percent 

Proposed  112 101 93 

CpGclusterTLBO 108 76 50 

CpGPNP 60 46 39 

DWT based 

method 

1 0 0 

 

The superiority of proposed approach over other state-of-art methods has been noticed from Table 

4.12. The number of detection of CGIs at 80 percent, 90 percent, and 100 percent (full length) 

coverage of true CGI‟s length by proposed approach is much higher than all other methods. 
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4.5 Summary 

In this research work detection of CGI in DNA sequences with the help of STFT based approach 

has been developed and proposed. It has been examined and proved that application of 24 

combinations of integer mapping scheme functions much better than other mapping schemes 

considered in this work for CGI identification. The important feature hidden in CGIs in terms of 

periodicities has been examined and experimentally proved on a benchmark DNA sequence. And 

then the self created data set of hundred DNA sequences comprising of human, fish and mouse 

species has been applied to test and prove the universal applicability and superiority of proposed 

approach over other recent state-of-art methods. The proposed algorithm‟s performance has been 

noticed much better over other methods in terms of evaluation metrics Sn, Sp, F-measure, and AC. 

Also, the performance of proposed approach has been found the best amongst all other methods in 

the context of identification of more number of CGIs at percentage of 80 percent, 90 percent, and 

100 percent (full length) of true CGI‟s length. 
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CHAPTER 5 

MODIFIED P-SPECTRUM BASED ALGORITHM AND 

MODIFIED GABOR WAVELET TRANSFORM BASED 

APPROACHES FOR CPG ISLANDS DETECTION IN DNA 

SEQUENCES  

 

The main limitation of STFT is that the window length employed in it is fixed to a suitable value. 

This limitation may affect the performance of algorithm applied for CGIs identification in terms 

of missing of significant information such as CpG Islands hidden in DNA sequences. Hence the 

sensitivity and overall performance of algorithm may be affected which requires improvisation. 

To address this limitation, in this research work two approaches namely modified P-spectrum 

and modified Gabor Wavelet transform based algorithms for CGI identification have been 

proposed. A dataset of hundred DNA sequences comprising of human species has been used in 

both the approaches. The enhancement in sensitivity of CGI identification in context of 

prediction of greater number of CGIs has been achieved using modified P-spectrum based 

approach and an overall improvement in all performance metrics for CGI identification has been 

obtained using modified Gabor Wavelet transform (MGWT) based algorithm. 

Part 1: Modified P-Spectrum based Algorithm for Sensitivity Enhancement of 

CpG Islands Detection in DNA Sequences  

5.1 Proposed Approach for CGIs Identification 

 The important feature in terms of periodicities present in CGIs has been explored with 

experimental validation by the authors in [158]. It has been proved in [158] that periodic pattern 

corresponding to periodicities 2-10 remain hidden in CGIs of DNA sequences. This feature of 

periodicity has been employed in this research work. Using this feature, the flow graph of the 

approach proposed in this research work has been depicted in Figure 5.1: 
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Figure 5.1: Flow graph of the proposed approach 

The periodicity-spectrum (p-spectrum) as reported in literature has been considered to be 

conceptually, computationally, and theoretically a highly robust technique to detect the periodic 

components. This is possible because the p-spectrum uses the LS estimation of the most significant 

periodic pattern in a sequence of given signal [144]. This property of p-spectrum makes it 

applicable for the identification of buried periodic features in signals [144-145]. It is well known 

that the DNA sequences of genomic data contains a lot of buried periodic patterns, CGI is an 

example of such periodic pattern. Hence, to capture the hidden dominating periodicities in CGIs a 

modified P-spectrum based approach has been developed and proposed in this research work for the 
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detection of CGIs in DNA sequences. The detailed discussion of the steps of proposed approach is 

presented as follows: 

a) The DNA sequence in which the CGIs have to be detected is taken from standard   

        database and fed to the algorithm. 

b) The alphabets of DNA sequence are then mapped to numerical values with the help of 

EIIP (electron ion interaction potential) numerical conversion scheme. The numerical values A= 

0.1260, C=0.1340, T= 0.1335, G=0.0806 are given to the alphabets of DNA data and numerical 

sequence is thus obtained.  

c) For the purpose of filtering the noisy components, an anti notch filter has been utilized as 

a pre-processing step. The transfer function of a second order anti notch filter used in this 

work is represented as: 

          H  z =  (1 − z−2) (1 − 2Rcos  
2π

3
 z−1 + R2Z−2 )                                                        (5.1) 

        As noticed in equation (5.1) that the center of anti notch filter is located at an angular            

         frequency 2π/3. The value of R has been selected as 0.992 empirically. 

d) The dominating 2 to 10 periodicities are then extracted with the help of modified P-

spectrum. The functioning of p-spectrum and subsequently modified P-spectrum for 

any arbitrary period „p‟ which has been employed in this work is now described in the 

following points:  

1) The discrete version of  a data (D) can be represented as:  

                                  D =   d1   d2  d3 …   dM                                                                                  (5.2) 

2) The data signal D is desired to be an exact multiple of period „p‟. Therefore, 

the data can be rearranged by inserting adequate zeros in the last row. A matrix 

Rp has been created which consists of „a‟ segments having length „p‟ and are 

non-overlapping as shown in equation (5.3). 
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Rp =  

d1    d2    d3 ⋯ di              di+1 ⋯ dp

dp+1
⋯

   dp+2  
⋯

dp+3
⋯

⋯ dp+i
⋯

     dp+i+1
⋯

⋯ d2p
⋯

dap +1  dap +2  dap +3 dM           0 0

                                  (5.3) 

 

3) The presence of dominating periodic component in matrix Rp can be obtained 

by first singular value for which the most robust technique i.e. SVD (singular 

value decomposition) has been employed in next step to calculate the signal 

shown in following equation: 

highest_singular =  max(SVD Rp )                                                           (5.4)   

4) In the next step, all the elements of matrix Rp are added to obtain signal 

„summate‟; and another signal „modified_s‟ is acquired as shown in following 

equation:  

                                modified_s =  max summate
2                                                                         (5.5) 

5) To obtain the modified P-spectrum, the last step is to compute the 

„mod_p_spec‟ signal which is obtained as per following equation: 

mod_p_spec =  highest_singular × modified_s                                              (5.6) 

The× operation in equation (5.6) has been performed by taking the row-wise 

multiplication of the elements of two signals. 

e) The combined spectrum corresponding to dominating periodicities is then computed by 

adding the spectrums of these periodicities by applying the steps of modified P-

spectrum marked in d) point. 

f)  An empirical value chosen as 10% corresponding to maximum value of the combined 

spectrum is then applied as threshold. 

g) Those regions of combined spectrum which crosses the chosen threshold limit are 

finally categorized as CGIs and the performance assessment has been carried out for 

such regions.  

Now to verify the applicability of proposed approach, a DNA sequence having Genebank accession      

number AC005003 [1] (consisting of 65750 bps and having one CGI located at position 38374-
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41067) has been selected as an example sequence and the plot of combined spectrum acquired using 

proposed approach is depicted in Figure 5.2: 

 

Figure 5.2: Proposed approach‟s result obtained of combined spectrum for example DNA sequence AC005003 

The result in terms of probable prediction outputs and correspondingly the evaluation parameters Sn 

(sensitivity), Sp (specificity) which are obtained using proposed approach and other state-of-art 

methods for example DNA sequence is tabulated in Table 5.1: 

Table 5.1: Evaluation parameters obtained for example DNA sequence AC005003 

Performance 

parameter 

Methods 

Proposed 

approach 

STFT based 

method [158] 

CpGPNP 

[122] 

CpGclusterTLBO 

[129] 

DWT based 

method [130] 

TP 2694 2603 2363 2223 1700 

TN 40165 61350 57943 60135 24395 

FP 22890 1705 5112 2920 38660 

FN 0 91 331 471 994 

Sn 1 0.9662 0.8771 0.8252 0.6310 

Sp 0.6370 0.9730 0.9189 0.9537 0.3869 
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It has been noticed from Table 5.1 that the proposed approach is capable to enhance the sensitivity 

of CGI detection for considered example DNA sequence AC005003. As the length of CGI present 

in this sequence is 2694 which means that the number of TPs (true positive) in this sequence is 

2694; the proposed approach is able to capture all the TPs in this sequence. Correspondingly, the 

value of Sn (sensitivity) obtained using proposed approach is 1. Whereas, the other state-of-art 

methods have not detected all the TPs in this sequence and hence the value of Sn obtained using 

these methods is not achieved as theoretically desired value of 1. Hence, it can be presumed from 

the experiment carried out on an example DNA sequence that the capability of proposed approach 

in terms of detection of number of CGIs is enhanced compared to other recent state-of-art methods. 

At the same time, it has been noticed from Table 5.1 that the number of FPs (false positive) 

obtained using the proposed approach are also on the higher side compared to STFT, CpGPNP, and 

CpGclusterTLBO based approaches for CGIs identification but lesser than DWT based algorithm 

for CGIs identification. Subsequently, the value of Sp (specificity) obtained using proposed 

approach is smaller compared to STFT, CpGPNP, and CpGclusterTLBO based approaches; 

however the value of Sp is higher compared to DWT based algorithm of CGIs identification.  

Having verified the applicability and sensitivity enhancement of proposed approach using an 

example DNA sequence, the performance of proposed approach and other recent state-of-art 

methods have now been tested using a large data set of hundred DNA sequences of human species. 

The example DNA sequence used in this section has been considered in the whole data set of 

hundred DNA sequences for the computation of performance metrics in Results section. 

5.2 Data Set of CGIs and Performance Metrics  

5.2.1 Data Set of CGIs 

A CGI data set of hundred DNA sequences of human species has been prepared by us by acquiring 

the details from publically available database website: National Centre for Biotechnology 

Information (NCBI) [1]. The complete details of the data set like Gene bank accession number, 

number of base pairs (bps) in a sequence, number of CGIs, and start & end locations of CGIs within 

a sequence are presented in Table 5.2: 
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Table 5.2: Details of hundred DNA sequence‟s CGI data set  

S. No. 

Gene bank 

accession 

number 

Number of 

base pairs 

(bps) 

Number 

of CGIs 

 

Start and end location of CGI as acquired from 

NCBI website 

1 AL024496 27210 

5 1284-1927, 9755-10674, 13099-13615, 15578-

16126, 21132-21595 

2 AL109743 96006 

2 

31713-33048, 56464-57695 

3 AC027644 188207 3 27115-27651, 51380-51705, 130590-131909 

4 AC110076 105211 1 93622-94410 

5 AC073271 117930 1 102756-103541 

6 AC005282 98219 2 8323-9168, 79507-80293 

7 AC110787 7335 1 11-1165 

8 L47124 6996 1 3226-4068 

9 AC010990 6708 2 2347-2685, 4079-4357 

10 AF129290 6324 

6 2026-2238, 2436-2679, 2730-3021, 3033-3353, 

3355-3637, 4479-4891 

11 D13370 3730 1 226-1645 

12 AH004914 5426 1 1018-1636 

13 AC079588 4249 1 1137-2422 

14 AH009772 4240 2 1-555, 656-1588 

15 AL132818 38860 1 33379-33940 

16 AL442638 188247 

4 17472-17700, 22868-23148, 93250-93495,   

163847-164132 

17 AC073335 68275 3 31813-32080, 33619-34458, 50802-51655 

18 AC073517 67706 1 35431-35977 

19 AC127379 67291 2 30060-30318, 38447-39437 

20 AC064843 66898 1 5531-5785 

21 AC129782 66860 1 38868-40898 
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22 AC013270 66660 

4 6075-6881, 25374-26035, 34710-36183, 48185-

48621 

23 AC074386 66610 2 15847-16381, 16593-16830 

24 AC092103 66565 1 24844-25119 

25 AC124014 66552 1 56936-57769 

26 AL137791 66254 

4 30724-31272, 46196-46906, 52979-53956, 61007-

62096 

27 AC096553 66229 1 11867-12256 

28 AC105413 65958 1 50478-50751 

29 AC005003 65750 1 38374-41067 

30 AC145546 65625 1 52797-53645 

31 AC105402 65449 2 15774-16973, 28628-28925 

32 AC112698 65335 1 42309-43546 

33 AC104129 65189 

8 2966-3334, 8763-9020, 14023-14383, 20695-20991, 

26472-26735, 28330-29188, 31762-32009, 55671-

55878 

34 BN000001 64961 1 895-1123 

35 AC138782 64744 1 23500-24633 

36 AC005021 64607 2 24663-25225, 63177-63512 

37 AC093086 64601 1 58914-59518 

38 AC005233 64359 1 16579-18003 

39 AC013436 63823 

5 12411-12652, 21066-21331, 24980-26051, 26467-

26807, 60097-60448 

40 AC131957 63780 1 45526-45799 

41 AC004694 63749 2 9107-9494, 54481-54756 

42 AC108463 63525 3 26008-26366, 26575-26982, 27079-27538 

43 AC080165 63279 1 8258-8531 

44 AC010890 62764 

4 11407-11926, 13574-13801, 53142-53415, 53755-

54041 
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45 AC108142 62624 1 8864-11837 

46 AC080068 62623 1 535-774 

47 AC093785 62466 1 31397-31665 

48 AC003079 62331 1 50250-50471 

49 AC078937 62035 1 38149-39359 

50 AC114803 61579 

7 3256-4009, 18815-19353, 32398-32647, 33247-

33659, 36773-37302, 39696-39964, 55808-56144 

51 AC093652 61340 1 48156-49072 

52 AC093377 61056 1 729-1003 

53 AC073201 60776 1 9738-11862 

54 AC113611 60597 1 8638-9514 

55 AC099394 60024 

7 2826-4863, 10806-11866, 19723-19934, 25482-

25769, 31861-32884, 36728-36931, 54994-55361 

56 AC098831 59776 2 39343-39572, 51406-51689 

57 AC074013 59657 3 22602-22873, 51602-52508, 53105-53331 

58 AC062028 59634 1 44629-44851 

59 AC106875 59580 1 4526-5382 

60 AC023670 59565 1 25568-27400 

61 AC079882 59427 1 39153-39736 

62 AC006008 57554 1 28800-30423 

63 AC108222 21776 1 21237-21776 

64 AH006464 21230 1 1187-2051 

65 AC093609 20710 1 7857-8257 

66 AL590794 18042 1 11568-12215 

67 AC136375 17863 1 16369-17534 

68 BD432859 14646 2 2762-2973, 4065-5181 

69 AC111201 13470 3 4327-4727, 5323-5554, 12500-13455 

70 NM005876 10782 1 6154-7734 
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71 NM053043 10168 1 9597-9820 

72 AC093460 10103 1 6951-7418 

73 AC108032 9716 1 30-269 

74 X86012 9541 1 335-3853 

75 AC106048 8594 1 7941-8180 

76 AH008870 6797 1 341-1340 

77 AC079401 6568 1 3086-3935 

78 AH007568 6513 3 543-803, 1212-1430, 1662-2474 

79 AC105385 5952 1 2844-3080 

80 AJ308559 5596 1 1228-1657 

81 M92844 3889 1 3198-3889 

82 AF196313 3700 1 2092-3580 

83 AF281043 3662 1 1611-2734 

84 U48937 3278 1 2588-3230 

85 AF307776 3113 2 2334-2745, 2791-3064 

86 AJ000757 3046 1 650-2840 

87 AJ289875 2916 1 2325-2916 

88 L07287 2704 1 1-1350 

89 Z92546 73511 1 20746-21240 

90 AL591222 147211 2 54605-55080, 68825-69091 

91 AL513502 174636 1 116364-117432 

92 AL513498 155780 1 18305-18582 

93 AL357615 171446 2 56753-57030, 59607-59874 

94 AL353786 139565 1 19000-19400 

95 AL121926 139544 2 102641-104201, 126562-127299 

96 AL049547 129811 

5 27801-29311, 37094-37773, 109041-110125, 

113196-114024, 126815-127265 
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97 AL031706 13012 1 7-552 

98 AL031703 35098 

4 15319-17699, 25107-26048, 30327-30736, 31615-

32204 

99 AJ006998 123521 1 11140-11417 

100 AL031707 28707 4 6050-6520, 6693-7445, 24481-25248, 28059-28669 

 

5.2.2 Performance Metrics 

To examine and compare the performance of proposed approach over other recent state-of-art 

methods, the standard performance metrics such as Sn (sensitivity), and Sp (specificity) are used in 

this work. The following equations define these performance parameters: 

Sn (sensitivity) =  
TP

TP +FN
                                                                                                               (5.7) 

Sp (specificity) =  
TN

TN +FP
                                                                                                               (5.8) 

The possible outcome of any algorithm which is applied for detection of CGIs consists of four 

parameters and these are: true positive (TP), true negative (TN), false positive (FP), and false 

negative (FN). TP depicts those locations of DNA sequence which are captured by the algorithm 

correctly and true CGIs are located at those locations. TN tells those segments where no CGIs are 

captured and actual CGIs are also not located there. FP represents those erroneously identified 

locations of CGIs where actual CGIs are not located, and those sections of true CGI which are not 

captured by method are termed as FN. Using these four parameters, the performance metrics Sn, 

and Sp can be obtained. The range of value of these performance metrics Sn, and Sp lies between 0-

1. If the value of performance metrics Sn, and Sp obtained using that algorithm is closer to 1, that 

algorithm is considered to be perfect. The parameter Sn corresponds to the percentage of TPs which 

have been perfectly predicted by the algorithm; and the parameter Sp signifies the proportion of 

TNs which have been accurately captured by the algorithm. 

5.3 Results and Discussion 

The performance comparison of the proposed approach has been carried out with four recent state-

of-art methods of CGI detection on the data set of hundred DNA sequences of human species. The 
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methods which have been used for comparison are as follows: STFT [158], CpGPNP [122], 

CpGclusterTLBO [129], and DWT based method for CGIs detection [130]. The value of sensitivity 

and specificity obtained using all methods for hundred sequences have been tabulated in Table 5.3 

and Table 5.4 respectively. 

Table 5.3: Value of sensitivity on data set of hundred DNA sequences 

S. 

No. 

Accession 

number 

Sensitivity (Sn) 

Methods 

Proposed algorithm       STFT based       CpGPNP      CpGclusterTLBO       DWT based  

                                         method                                                                           method              

1 AC110076 1 1 0 0.8479 0.8517 

2 AC073271 1 1 0 0.6539 0.584 

3 AC005282 1 0 0.5003 0.9314 0.4507 

4 AC110787 1 1 1 0.9671 0.6641 

5 L47124 1 1 1 0.7248 0.8422 

6 AC010990 1 0.9385 1 0.8641 0.5955 

7 AF129290 1 1 1 0.4161 0.5314 

8 D13370 1 1 1 0.6458 0.6958 

9 AH004914 1 1 1 0.5347 0.6817 

10 AC079588 1 1 1 0 0.8336 

11 AH009772 1 1 0.9926 0.3239 0.4153 

12 AL132818 1 1 0.1975 0.4484 0.7954 

13 AL024496 0.1774 0.2608 0.818 0.4399 0.4337 

14 AL109743 0.4283 0.8026 0.6347 0.7741 0.5565 

15 AC027644 0 0.9647 0.2455 0.6899 0.4219 

16 AL442638 0.5058 0.0518 0.0691 0.8196 0.5307 

17 AC073335 0.8634 0.4246 0.3089 0.8711 0.6646 

18 AC073517 1 1 0.6618 0.7587 0.7916 

19 AC127379 0.448 0.5312 0.7344 1 0.6776 

20 AC064843 1 1 0.0941 1 0.6353 

21 AC129782 1 1 0.7962 0.6760 0.5362 

22 AC013270 0.9077 0.5485 0.6698 0.7553 0.5518 

23 AC074386 0.6572 1 0.8202 0.6792 0.6223 

24 AC092103 1 1 0.0362 0.8551 0.5616 

25 AC124014 1 1 0.1691 0.9029 0.9053 

26 AL137791 0.8287 0.7879 0.3618 0.8236 0.512 

27 AC096553 1 0.5744 0.5 0.9615 0.4333 

28 AC105413 0 0 0 0.6350 0.5985 

29 AC005003 1 0.9622 0.8771 0.8252 0.631 

30 AC145546 0.3498 0.6078 0.3062 1 0.4511 

31 AC105402 1 0.9506 0.8825 1 0.713 

32 AC112698 1 0.9814 0.7294 0.5412 0.622 

33 AC104129 0 0.4763 0.5667 0.7730 0.515 

34 BN000001 0.1572 1 1 0.6157 0.7991 

35 AC138782 1 0.6376 0.8148 1 0.7681 

36 AC005021 1 0.9789 0.4483 0.7175 0.7408 

37 AC093086 1 1 0 0.5736 0.5041 

38 AC005233 1 0.5074 0.7782 0.8618 0.4751 

39 AC013436 0.883 0.7387 0.6876 0.9987 0.6045 

40 AC131957 1 1 0 0.8431 0.6314 
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41 AC004694 0.5994 0.6898 0.4925 0.7199 0.5105 

42 AC108463 1 0.2926 0.3676 1 0.7196 

43 AC080165 1 1 0 0.9453 0.7263 

44 AC010890 0.2872 0.2315 0.3972 0.8411 0.6516 

45 AC108142 0.9976 1 0.8783 0.6338 0.649 

46 AC080068 1 1 1 0.6542 0.5958 

47 AC093785 1 0 0.2937 0.8773 0.6022 

48 AC003079 1 1 0 1 0.7703 

49 AC078937 1 1 0.7201 1 0.6565 

50 AC114803 0.9191 0.7332 0.5679 0.968 0.6536 

51 AC093652 1 1 0.6336 1 0.6347 

52 AC093377 0 0.9709 1 0.8945 0.2473 

53 AC073201 0.8306 1 0.984 0.4739 0.7275 

54 AC113611 1 0.7514 0.8198 0.6602 0.52 

55 AC099394 0.8397 0.6341 0.6986 0.5935 0.6258 

56 AC098831 0.4475 0.4475 0 0.6595 0.8171 

57 AC074013 0.84 0.9787 0.3741 0.9239 0.5597 

58 AC062028 0.8117 0 0 0.9283 0.5336 

59 AC106875 1 1 1 1 0.7398 

60 AC023670 0.934 1 0.7763 0.9902 0.6454 

61 AC079882 1 1 0.2911 0.8545 0.512 

62 AC006008 1 1 0.7482 0.2654 0.7211 

63 AC108222 0.6889 1 0.5325 1 0.613 

64 AH006464 1 1 1 1 0.7087 

65 AC093609 1 0.4763 1 0.995 0.399 

66 AL590794 1 0.5216 0.9784 0.9398 0.696 

67 AC136375 1 1 0.8902 0.8259 0.711 

68 BD432859 0.7208 0.5342 1 0.7013 0.7035 

69 AC111201 0.8295 0.5935 0.8798 0.2102 0.8049 

70 NM005876 1 0 0.4902 0.3276 0.7989 

71 NM053043 0 1 0.8884 1 0.4063 

72 AC093460 1 0.1517 1 0.5662 0.6709 

73 AC108032 1 0.9 1 0.7375 0.7667 

74 X86012 0.8008 1 0.6641 0.2577 0.6095 

75 AC106048 1 0 0 1 0.75 

76 AH008870 1 1 1 0.628 0.765 

77 AC079401 1 0.6918 1 0.8106 0.6812 

78 AH007568 1 0.7981 0.7981 0.6234 0.4524 

79 AC105385 1 0.9705 0 1 0.8523 

80 AJ308559 1 1 1 1 0.7116 

81 M92844 1 1 1 0.5818 0.5303 

82 AF196313 1 1 1 0 0.7918 

83 AF281043 1 1 1 0 0.6922 

84 U48937 1 1 1 0.7341 0.6283 

85 AF307776 1 1 1 0.3411 0.7289 

86 AJ000757 1 1 1 0 0.8203 

87 AJ289875 1 0.4484 0.9949 0.8443 0.4949 

88 L07287 1 1 1 0.36 0.6519 

89 Z92546 1 1 0.6303 1 0.7313 

90 AL591222 1 0.6406 0 0.7914 0.6608 

91 AL513502 1 0.9149 0 0.9645 0.6146 

92 AL513498 1 1 0.259 0.9892 0.4137 

93 AL357615 0.4908 1 0 0.7766 0.7106 
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94 AL353786 0 0 0.6185 0.8155 0.5062 

95 AL121926 0.9004 1 0.0857 1 0.5646 

96 AL049547 0.3317 0.8090 0.2794 0.7608 0.6354 

97 AL031706 1 1 0.4176 0 0.6667 

98 AL031703 0.9357 0.5508 0.7252 0.3944 0.6155 

99 AJ006998 0.2878 0.9532 0.7158 0.8669 0.5971 

100 AL031707 0.6646 0.2347 0.4802 0.3077 0.6669 

 

Table 5.4: Value of specificity on data set of hundred DNA sequences 

S. 

No. 

Accession 

number 

Specificity (Sp) 

Methods 

Proposed algorithm        STFT based      CpGPNP      CpGclusterTLBO       DWT based 

                                          Method                                                                         method 

1 AC110076 0.4001 0.9768 0.9628 0.9765 0.3451 

2 AC073271 0.4521 0.9822 0.9795 0.9814 0.3517 

3 AC005282 0.2111 0.9864 0.8425 0.9305 0.4452 

4 AC110787 0.0333 0.6399 0.9205 0.9675 0.2517 

5 L47124 0.2588 0.7689 0.8123 1 0.2736 

6 AC010990 0.0191 0.8487 0.7982 0.9905 0.2422 

7 AF129290 0.0553 0 0.6793 0.9159 0.3805 

8 D13370 0.0922 0.7003 0.8523 0.9701 0.2326 

9 AH004914 0 0.7588 0.9255 0.9536 0.335 

10 AC079588 0 0 0.7171 0 0.2407 

11 AH009772 0.1578 0.1807 0.5594 0.992 0.4638 

12 AL132818 0.186 0.9643 0.9744 0.9825 0.2871 

13 AL024496 0.9405 0.9091 0.7704 0.969 0.4864 

14 AL109743 0.3101 0.9209 0.9145 0.9364 0.3607 

15 AC027644 0.9869 0.9672 0.9381 0.9501 0.5536 

16 AL442638 0.3287 0.9972 0.982 0.9874 0.3624 

17 AC073335 0.1097 0.9661 0.9656 0.9735 0.3071 

18 AC073517 0.2149 0.9788 0.9523 0.9656 0.3568 

19 AC127379 0.3741 0.9965 0.957 0.9498 0.3445 

20 AC064843 0.4289 0.9901 0.9153 0.9268 0.3849 

21 AC129782 0.4033 0.9752 0.9924 0.9995 0.3803 

22 AC013270 0.3683 0.982 0.9405 0.9741 0.3822 

23 AC074386 0.5019 0.9824 0.9812 0.9677 0.4454 

24 AC092103 0.138 0.9853 0.9654 0.9524 0.3025 

25 AC124014 0.5209 0.9791 0.9623 0.961 0.5132 

26 AL137791 0.1881 0.9717 0.9177 0.9582 0.4978 

27 AC096553 0.4214 0.991 0.9772 0.9872 0.4198 

28 AC105413 0.1725 0.9968 0.9751 0.983 0.317 

29 AC005003 0.637 0.973 0.9189 0.9537 0.3869 

30 AC145546 0.2747 0.9716 0.9526 0.9716 0.4136 

31 AC105402 0.4867 0.9508 0.9705 0.9757 0.4104 

32 AC112698 0.3394 0.9552 0.902 0.948 0.4796 

33 AC104129 0.9474 0.9359 0.7631 0.97 0.4313 

34 BN000001 0.3544 0.9546 0.9002 0.9272 0.4317 

35 AC138782 0.1509 0.9999 0.9547 0.9536 0.3326 

36 AC005021 0.2251 0.9647 0.9682 0.9762 0.3092 

37 AC093086 0.105 0.9775 0.9603 0.9776 0.373 

38 AC005233 0.2301 0.9808 0.9443 0.9364 0.3681 

39 AC013436 0.1887 0.9234 0.8985 0.9564 0.3996 
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40 AC131957 0.1651 0.9945 0.986 0.9924 0.3201 

41 AC004694 0.5042 0.991 0.9589 0.9541 0.329 

42 AC108463 0.665 0.9982 0.9797 0.9776 0.4553 

43 AC080165 0.3284 0.9923 0.9769 0.9777 0.2883 

44 AC010890 0.4875 1 0.9802 0.9834 0.3227 

45 AC108142 0.1235 0.9353 0.9404 0.9699 0.3203 

46 AC080068 0.1638 0.9839 0.977 0.9819 0.2981 

47 AC093785 0.2562 0.9874 0.9519 0.9561 0.2993 

48 AC003079 0.4059 0.9914 0.9809 0.9874 0.4515 

49 AC078937 0.3972 0.9678 0.9753 0.9695 0.3559 

50 AC114803 0.2099 0.9299 0.9215 0.9427 0.3891 

51 AC093652 0.1795 0.9314 0.959 0.9726 0.3285 

52 AC093377 0.833 0.9859 0.9727 0.9755 0.4276 

53 AC073201 0.1744 0.9822 0.9861 0.9752 0.3693 

54 AC113611 0.2596 0.9879 0.9399 0.9682 0.5701 

55 AC099394 0.2681 0.9149 0.8447 0.9792 0.4369 

56 AC098831 0.1673 0.9962 0.9591 0.9753 0.3071 

57 AC074013 0.1084 0.9224 0.8953 0.9394 0.3115 

58 AC062028 0.1531 0.9966 0.9355 0.9465 0.338 

59 AC106875 0.4289 0.9436 0.954 0.9686 0.4711 

60 AC023670 0.214 0.9562 0.9217 0.9465 0.3269 

61 AC079882 0.3346 0.9876 0.8858 0.9416 0.4239 

62 AC006008 0.1289 0.9573 0.9537 0.9673 0.336 

63 AC108222 0.1939 0.9245 0.9595 0.9402 0.3377 

64 AH006464 0.5067 0.9036 0.9679 0.9685 0.3131 

65 AC093609 0.1067 0.9821 0.9806 0.9607 0.3283 

66 AL590794 0.0981 1 0.983 0.9872 0.3154 

67 AC136375 0.0767 0.9517 0.9408 0.9873 0.3377 

68 BD432859 0.1612 0.9794 0.9313 1 0.2474 

69 AC111201 0.1853 0.9944 0.9143 0.9997 0.4914 

70 NM005876 0.0668 0.3609 0.394 0.8936 0.2498 

71 NM053043 0.3628 0.9293 0.7535 0.8128 0.3787 

72 AC093460 0.1133 0.9592 0.9077 0.926 0.3028 

73 AC108032 0.0356 0.966 0.9484 0.9614 0.2602 

74 X86012 0.4405 0.3385 0.9666 1 0.5026 

75 AC106048 0.0038 0.9595 1 0.9719 0.2645 

76 AH008870 0 0.9332 0.9795 1 0.26 

77 AC079401 0.1786 1 0.9542 0.9851 0.2405 

78 AH007568 0 0.8178 0.9276 0.9615 0.4794 

79 AC105385 0.0201 0.9942 1 0.9804 0.2331 

80 AJ308559 0.1001 0.6256 0.8712 0.9601 0.2492 

81 M92844 0 0 0.3935 1 0.3025 

82 AF196313 0 0 0.8742 0 0.3805 

83 AF281043 0.1143 0 0.6496 0 0.2081 

84 U48937 0 0.7065 0.8246 0.9882 0.2532 

85 AF307776 0 0 0.7951 0.9802 0.2675 

86 AJ000757 0 0 0.1753 0 0.4056 

87 AJ289875 0 1 1 1 0.225 

88 L07287 0 0 0.6179 1 0.2365 

89 Z92546 0.2989 0.9713 0.9291 0.958 0.4015 

90 AL591222 0.2801 0.997 0.9862 0.9926 0.3405 

91 AL513502 0.4576 0.9911 0.9869 0.9893 0.3578 

92 AL513498 0.7217 0.9906 0.9854 0.985 0.6358 
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93 AL357615 0.4363 0.9974 0.9936 0.9944 0.4234 

94 AL353786 0.5656 0.9965 0.9742 0.9723 0.4504 

95 AL121926 0.2369 0.9683 0.9604 0.9714 0.4051 

96 AL049547 0.9653 0.9654 0.9091 0.9654 0.3799 

97 AL031706 0 0.9245 0.8073 0.9247 0.3449 

98 AL031703 0.1959 0.9653 0.7463 0.9555 0.4786 

99 AJ006998 0.2448 0.9973 0.9946 0.9948 0.3255 

100 AL031707 0.1184 0.9748 0.8734 0.9449 0.3298 

 

The overall value obtained of performance metrics (TP, TN, FP, FN, Sn, and Sp) for the whole data set of 

hundred DNA sequences using all the methods are depicted in Figure 5.3-5.8 and has been tabulated in Table 

5.5. 

 

Figure 5.3: Value of True Positive obtained using all methods 
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Figure 5.4: Value of True Negative obtained using all methods 

 

Figure 5.5: Value of False Positive obtained using all methods 
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Figure 5.6: Value of False Negative obtained using all methods 

 

Figure 5.7: Value of Sensitivity obtained using all methods 
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Figure 5.8: Value of Specificity obtained using all methods 

Table 5.5: Performance parameters obtained using all methods for hundred DNA sequences  

Performance 

parameter 

Methods 

Proposed 

approach 

STFT based 

method [158] 

CpGPNP 

[122] 

CpGclusterTLBO 

[129] 

DWT based 

method [130] 

TP 100559 94193 79444 83584 76934 

TN 1979090 5112809 5000128 5109201 2063066 

FP 3303813 170094 283775 165139 3220837 

FN 23598 29961 43710 34480 46223 

Sn 0.8099 0.7587 0.6451 0.7080 0.6247 

Sp 0.3746 0.9678 0.9463 0.9687 0.3904 

 

The proposed approach‟s superiority in the context of prediction of greater number of CGIs 

compared to other recent state-of-art methods has been noticed from Figure 5.3, 5.6, 5.7 and Table 

5.5. The proposed approach has detected the greatest number of TPs in hundred DNA sequences of 

human species amongst all other methods, and hence the sensitivity of proposed approach is the 

greatest amongst all methods. As the detection capability of any approach applied for CGIs 

identification is reflected by the value of Sn, hence the greatest value of Sn obtained using proposed 

approach clearly shows that the proposed approach is able to identify higher number of CGIs in 
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hundred DNA sequences of human species compared to all other recent methods. However, the 

proposed approach has identified more number of FPs in the hundred DNA sequences as compared 

to other methods and subsequently the specificity of proposed approach is lesser compared to other 

methods. 

The enhancement in sensitivity of CGIs detection obtained with the help of the proposed approach 

has also been examined on the basis of the % coverage of the true CGIs length. At 60%, the 

proposed approach has detected 134/181 CGIs, STFT based method has detected 116/181 CGIs, 

CpGPNP method has detected 95/181 CGIs, CpGclusterTLBO method has detected 127/181 CGIs, 

and DWT based method has detected 1/181 CGIs. At 70%, the proposed approach has detected 

130/181 CGIs, STFT based method has detected 108/181 CGIs, CpGPNP method has detected 

85/181 CGIs, CpGclusterTLBO method has detected 111/181 CGIs, and DWT based method has 

detected 1/181 CGIs. At 80%, the proposed approach has detected 129/181 CGIs, STFT based 

method has detected 105/181 CGIs, CpGPNP method has detected 69/181 CGIs, CpGclusterTLBO 

method has detected 98/181 CGIs, and DWT based method has detected 1/181 CGIs. At 90%, the 

proposed approach has detected 125/181 CGIs, STFT based method has detected 100/181 CGIs, 

CpGPNP method has detected 61/181 CGIs, CpGclusterTLBO method has detected 68/181 CGIs, 

and DWT based method has detected 1/181 CGIs. At full percentage of coverage of true CGI length 

i.e. 100%, the proposed approach has detected 123/181 CGIs, STFT based method has detected 

91/181 CGIs, CpGPNP method has detected 50/181 CGIs, CpGclusterTLBO method has detected 

40/181 CGIs, and DWT based method has detected 1/181 CGIs. The performance of proposed 

approach is the best in terms of detection of more number of CpG Islands at high percentage 

coverage of true CGIs length from 60 to 100%. However, the proposed algorithm has detected 

lesser number of CGIs at lower % coverage varying from 10% to 50%.   

5.4 Summary 

In this research work, an approach employing SVD based modified P-spectrum has been developed 

and proposed for the identification of CGIs in DNA sequences. The approach has been applied and 

compared with recent state-of-art methods on a data set of hundred DNA sequences comprising of 

human species downloaded from NCBI website. The sensitivity obtained using proposed approach 

on the whole data set is the highest amongst all methods with value 0.8099 and the proposed 

approach is able to capture larger number of CGIs at value of percentage coverage ranging high 
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from 60 percent to 100 percent (full length) of true length of CGI. Therefore, the conclusion drawn 

is that the proposed approach has enhanced the sensitivity of CGIs detection for the data set of 

hundred sequences of human species in comparison with other recent state-of-art methods. However 

as the detection of number of false positives is little higher, the value of specificity of proposed 

approach is lower than other methods.  

Part 2: Modified Gabor Wavelet-Transform based Algorithm for Overall 

Performance Improvement of CpG Islands Detection in DNA Sequences  

An approach based on MGWT has been developed and proposed for the identification of CGIs in 

the DNA sequences in this section now. The proposed approach has been applied to overcome the 

limitation „fixed size of window‟ of recent STFT based algorithm for CGIs identification. The 

threshold selection process has been done optimally with the help of experimental analysis. And an 

overall enhancement has been achieved in all performance metrics using the proposed approach.  

5.5 Proposed Approach for CGIs Identification 

The important feature in terms of periodicities present in CGIs has been explored with experimental 

validation by the authors in [158]. It has been proved in [158] that periodic pattern corresponding to 

periodicities 2-10 remain hidden in CGIs of DNA sequences. This feature of periodicity has been 

employed in this research work and the CGIs have been identified. Using this feature, the steps 

employed in the approach proposed in this research work have been shown in Table 5.6: 

TABLE 5.6: Steps of proposed approach for CGIs detection 

 

                                                                Input: DNA sequence 

1) For imc = 1:24   % imc: integer mapping combinations 

                       2)           For periodicities = 2:10 

                                            Compute the power spectrums of dominating periods                                      

with the help of MGWT 

                                               End (loop ended for periodicities) 

 Compute the addition of power spectrums obtained 

                                           corresponding to periodicities. 

    Application of appropriate threshold for the                                                                                                        

   selection of probable CGIs. 

 Post processing step using GGF criteria for the 

verification of CGIs. 

3)          Save the final spectrum for every imc
th

 iteration. 

4)          End (loop ended for imc) compute the sum of all 24 final spectrums obtained.    
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                       Output: CGIs detected and evaluate the performance.  

 

A DNA sequence possessing accession number AC105413 [1] has been chosen as an example 

sequence to discuss the steps and applicability of proposed approach for CGIs detection. This 

sequence consists of 65958 bps and possesses a CGI of length 274 bps located at 50478-50751. 

5.5.1 Conversion of DNA Characters to Numerical Values 

The first and necessary step after obtaining the DNA sequence from standard database is to map the 

characters of DNA data to numerical values. Then the DSP operations can be applied on the 

numerical sequence conveniently. In this research work, the 24 possible representations of integer 

mapping have been applied to convert the four alphabets of DNA to numerical values. The 

representation of these 24 combinations of integer mapping is tabulated in Table 5.7: 

Table 5.7: Possible combinations of integer mapping 

 Possible combinations of integer mapping 

for conversion of DNA characters 

 A G T C 

i=1 1 2 3 4 

i=2 1 4 3 2 

i=3 1 2 4 3 

i=4 1 4 2 3 

i=5 1 3 2 4 

i=6 1 3 4 2 

i=7 2 4 3 1 

i=8 2 1 4 3 

i=9 2 3 1 4 

i=10 2 1 3 4 

i=11 2 3 4 1 

i=12 2 4 1 3 
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i=13 3 2 1 4 

i=14 3 2 4 1 

i=15 3 4 1 2 

i=16 3 1 4 2 

i=17 3 1 2 4 

i=18 3 4 2 1 

i=19 4 3 2 1 

i=20 4 1 3 2 

i=21 4 2 3 1 

i=22 4 3 1 2 

i=23 4 2 1 3 

i=24 4 1 2 3 

 

 5.5.2 Modified Gabor Wavelet Transform (MGWT) 

To capture the spectrums of dominating 2-10 periodicities, the tuning of MGWT has been done in 

this research work. The MGWT can be represented with the help of a numerical sequence f(u) as 

following: 

 F n, a  P =  f(u)e
−(u−n )2

2a 2 ejω0(u−n) du                                                                                           (5.9) 

The spectrums of different periodicities „p‟ (which are 2 to 10 in this work) have been computed 

applying equation (5.9) and a fixed value of ω0 = S/p has been kept to predict the periodic „p‟ 

segments, where S represents the length/size of the DNA section which is under analysis. The 

equation (5.10) has been applied for the computation of squared complex modulus corresponding to 

coefficients of MGWT and the power spectrum of sequence has been obtained. 

C n, p  P =  F  n, a  P 
2                                                                                                                (5.10) 

The 40 analyzing functions equivalent to scale values of 40 which are exponentially separated from 

0.1 to 0.7 for every periodicity value „p‟ have been employed in this research work. A linear 
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addition of obtained spectrums in response to 2-10 periodicities as shown in equation (5.11) has 

been performed to calculate the resultant spectrum RSi(n), where „i‟ corresponds to a particular 

numerical mapping as shown in Table 5.7.  

𝑅𝑆𝑖   𝑛 =  C(n, p)10
p=2                                                                                                                (5.11) 

5.5.3 Application of Threshold 

To select the probable CGIs spectrum from resultant spectrum RSi(n) , the experiments have been 

performed to obtain the optimal threshold by varying its value form 10% to 50% in a step size of 

5%. The obtained value of performance metrics with respect to (w.r.t.) varying values of thresholds 

on the example DNA sequence AC105413 is highlighted in Table 5.8: 

Table 5.8: Obtained values of performance metrics using proposed approach w.r.t. varying thresholds on example DNA 

sequence AC105413 

Evaluation 

metric 

Thresholds 

10% 15% 20% 25% 30% 35% 40% 45% 50% 

TP 0 274 235 274 260 226 200 0 0 

TN 65474 65323 65678 65022 65362 65179 65683 65683 65683 

FP 209 360 5 661 321 504 0 0 0 

FN 274 0 39 0 14 48 74 274 274 

Sn 0 1 0.858 1 0.949 0.825 0.73 0 0 

Sp 0.997 0.995 0.999 0.99 0.995 0.992 1 1 1 

AC 0.498 0.997 0.929 0.995 0.972 0.909 0.865 0.5 0.5 

 

The observation carried out from Table 5.8 is that the proposed approach‟s performance for 

example sequence at 15% threshold value is better in the reference of performance metrics Sn 

(sensitivity) and AC (accuracy) than other values of threshold considered. Although the value of Sn 

is 1 at threshold value of 25% which is same as value of Sn at 15% threshold as observed from 

Table 5.8 but value of other performance metrics Sp, and AC are lesser at 25% threshold than value 

at 15% threshold. Therefore, in this research work the 15% threshold value has been finalized to 

carry out analysis work of the proposed approach. Based upon this value of threshold, those 

segments of the resultant spectrum RSi(n) whose peak value is able to cross the threshold limit have 

been classified as probable CGIs as represented in equation (5.12): 

𝑃𝑟𝐶𝐺𝐼 𝑛 =  
𝑅𝑆𝑖 𝑛  𝑖𝑓 𝑅𝑆𝑖 𝑛 > 𝑇ℎ𝑟 
0,                        𝑒𝑙𝑠𝑒             

                                                                                                              (5.12) 
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where, 𝑇ℎ𝑟 = 0.15 ∗ max(𝑅𝑆𝑖 𝑛 ) 

5.5.4 Verification of Probable CGIs 

The GGF criterion has been applied as a post processing step for the reduction of false spectrum of 

probable CGIs and to finally categorize the predicted segments of probable CGIs as detected CGIs 

after verification step. The equation (5.13) shows the calculation of power spectrum w.r.t. verified 

CGIs obtained from probable CGIs. 

VeCGI  n =  
PrCGI  n , those segments of PrCGI  n  which satify GGF Criteria  

0 ,                                                                          else
                        (5.13) 

5.5.5 Combine the Mapping Results corresponding to 24 combinations 

The steps of the proposed approach outlined in 5.5.1 to 5.5.4 are applied to obtain the verified 

power spectrums of CGIs w.r.t. 24 possible combinations of integer mapping scheme. The 24 power 

spectrums thus obtained are then linearly added and the final power spectrum FinalCGI (n)  is 

computed according to following equation: 

FinalCGI (n) =  VeCGI  n 24
m=1    

The result of final power spectrum FinalCGI  n  obtained using proposed approach on example DNA 

sequence AC105413 is depicted in Figure 5.9. 

To better understand the applicability of the proposed approach, the locations of detected CGIs 

segments by proposed method are checked w.r.t. true CGIs location and the obtained location 

results are tabulated in Table 5.9.   

From Table 5.9, it has been interpreted that MGWT based proposed approach has detected the 

complete CGI present in the DNA sequence AC105413; however the approach has detected some 

false positives. The experiment performed on example DNA sequence AC105413 show the 

applicability of the proposed approach. Now, to prove the superiority of the proposed approach over 

other recent state-of-art methods of CGIs detection, the proposed approach‟s performance has been 

compared using standard evaluation metrics and the results obtained have been depicted in Table 

5.10. 
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Figure 5.9: FinalCGI  n  of detected CGIs 

Table 5.9: Detected CGIs by proposed approach for example DNA sequence 

DNA Sequence  Start and end location of CGI in 

accordance with NCBI website 

Start and end location of CGI obtained 

using proposed approach 

AC105413  Start location End location Start location End location 

1 50478 50751 50341 50762 

   60218 60433 

 

Table 5.10: Evaluation metrics comparison on example DNA sequence AC105413  

 

Performance 

parameter 

Methods 

Proposed 

approach 

STFT based 

method 

[158] 

CpGPNP 

[122] 

CpGclusterTLBO 

[129] 

DWT based 

method [130] 

Modified P-

spectrum based 

method [159] 

TP 274 0 0 174 164 0 

TN 65323 65473 64045 64569 20822 11333 

FP 360 210 1638 1114 44861 54350 

FN 0 274 274 100 110 274 

Sn 1 0 0 0.6350 0.5985 0 

Sp 0.9945 0.9968 0.9751 0.9830 0.3170 0.1725 

F-measure 0.6035 0 0 0.2228 0.0072 0 

AC 0.9973 0.4984 0.4875 0.8090 0.4578 0.0863 
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The evaluation metrics on example DNA sequence AC105413 shown in Table 5.10 clearly prove 

that the proposed approach is much better than other recent state-of-art methods of CGIs detection 

in terms of sensitivity (Sn), F-measure, and accuracy (AC). Now having verified the applicability 

and observed the improvement in evaluation metrics of proposed approach on an example DNA 

sequence, the performance of proposed approach and recent state-of-art methods have been tested 

using a large data set of hundred DNA sequences of human species. The example DNA sequence 

used in this section has been considered in the whole data set of hundred DNA sequences for the 

computation of performance metrics in Results section. 

5.6 Data Set of CGIs and Performance Metrics  

5.6.1 Data Set of CGIs 

A CGI data set of hundred DNA sequences of human species which is presented in Table 5.2 has 

been utilized in this work also. 

5.6.2 Performance Metrics 

The comprehensive assessment of the proposed approach and the other recent state-of-art 

algorithms has been carried out with the help of the evaluation parameters such as Sn (sensitivity), 

Sp (specificity), F-Measure [156], and AC (accuracy) [157]. The following equations describe these 

performance parameters: 

Sn (sensitivity) =  
TP

TP +FN
                                                                                                             (5.14) 

Sp (specificity) =  
TN

TN +FP
                                                                                                             (5.15) 

F − measure =  
2∗(prec ∗rec )

(prec +rec )
                                                                                                          (5.16) 

where,    𝑝𝑟𝑒𝑐  precision =  
TP

TP +FP
  , rec (recall) =  

TP

TP +FN
                             

AC (accuracy) =  
Sn +Sp

2
                                                                                                                (5.17) 

 

True positive (TP), true negative (TN), false positive (FP), and false negative (FN) are the four 

possible performance parameters corresponding to the outcome of an approach applied for detection 

of CGIs. TP represents those locations of DNA sequence which are captured by the algorithm 
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correctly and true CGIs are located at those locations. TN depicts those sections where no CGIs are 

captured and actual CGIs are also not located there. FP represents those erroneously identified 

locations of CGIs where actual CGIs are not located, and those sections of true CGI which are not 

captured by method are termed as FN. Using these four parameters, the evaluation metrics Sn, Sp, 

F-measure, and AC can be assessed. The range of value of all four evaluation metrics Sn, Sp, F-

measure, and AC lies between 0-1. An approach is considered to be perfect if the value of 

evaluation metrics Sn, Sp, F-measure, and AC obtained using that approach is closer to 1. The 

parameter Sn corresponds to the percentage of TPs which have been perfectly identified by the 

approach; and the parameter Sp signifies the proportion of TNs which have been precisely detected 

by the approach. The accuracy of approach is computed using parameter F-measure which 

calculates the harmonic mean of prec (precision) and rec (recall). If the performance evaluation has 

been carried out at a single threshold only, then F-measure is s suitable parameter for assessment in 

place of ROC (receiver operating characteristics). The parameter which highlights the simultaneous 

effect of both Sn and Sp is termed as AC.  

5.7 Results and Discussion 

The performance comparison of the proposed approach has been carried out with five recent state-

of-art methods of CGI detection on the data set of hundred DNA sequences of human species. The 

methods which have been used for comparison are as follows: STFT [158], CpGPNP [122], 

CpGclusterTLBO [129], DWT [130], and modified P-spectrum based approach for CGIs detection 

[159]. The value obtained of performance metrics (TP, TN, FP, FN) for the whole data set of hundred DNA 

sequences using all the methods has been shown in Table 5.11. 

Table 5.11: Performance metrics obtained using all methods for 100 sequences of human species 

Evaluation  

parameter 

Methods 

Proposed 

approach 

STFT based 

method [158] 

CpGPNP 

[122] 

CpGclusterTLBO 

[129] 

DWT based 

method 

[130] 

Modified P-

spectrum based 

method [159] 

TP 102443 94193 79444 83584 76934 100559 

TN 5101651 5112809 5000128 5109201 2063066 1979090 

FP 181252 170094 283775 165139 3220837 3303813 

FN 21714 29961 43710 34480 46223 23598 

 

The observation which has been made from Table 5.11 is that the proposed approach‟s value of 

TP is the highest compared to all other methods and consequently the value of performance 
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metric FN is the lowest amongst all methods. However, the proposed approach‟s value of FP is 

slightly greater than STFT based method and CpGclusterTLBO method whereas this value is 

lesser compared to CPGPNP, DWT based method, and modified P-spectrum based method of 

CGIs detection. Subsequent to it, the value of TN obtained for proposed approach is slightly 

lesser compared to STFT based method and CpGclusterTLBO method whereas this value is 

greater than CPGPNP, DWT based method, and modified P-spectrum based algorithm of CGIs 

detection. With the help of these four performance parameters, the evaluation metrics Sn, Sp, F-

Measure, and AC are computed for all methods and these are depicted in Figure 5.10-5.13: 

 

 

Figure 5.10: Value of Sensitivity obtained using all methods 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Sensitivity

0.8251

0.7587

0.6451
0.708

0.6247

0.8009



112 
 

 

Figure 5.11: Value of Specificity obtained using all methods 

 

 

Figure 5.12: Value of F-Measure obtained using all methods 
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Figure 5.13: Value of Accuracy obtained using all methods 

The superiority of proposed approach in terms of overall improvement in performance metrics over 

other state-of-art methods has been noticed in Figure 5.10, 5.12, and 5.13. The indication of 

detection is examined by parameter „Sn‟ and the value of Sn obtained using proposed approach is 

the largest with value 0.8251 amongst all approaches as observed from Figure 5.10. The other 

performance metrics F-measure and AC obtained using the proposed approach are also observed to 

be the highest having value 0.5024 and 0.8954 respectively which has been noticed from Figure 

5.12 and 5.13 respectively. However, the value of metric performance Sp obtained using the 

proposed approach (0.9657) is slightly lower than STFT based method (0.9678) and 

CpGclusterTLBO (0.9687) method and much higher than CpGPNP (0.9463), DWT based approach 

(0.3904), and modified P-spectrum (0.3746) based approach of CGIs identification as noticed from 

Figure 5.11.     

The percentage improvement w.r.t. evaluation metrics Sn, F-measure, and AC of proposed approach 

over other methods has been computed as shown in Table 5.12. 
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Table 5.12: % improvement of proposed algorithm in value of performance metrics (Sn, F-measure, and AC) over 

other methods 

Evaluation 

metric 

CGI detection methods 

STFT based 

method 

[158] 

CpGPNP [122] CpGclusterTLBO 

[129] 

DWT based 

method [130] 

Modified P-

spectrum based 

method [159] 

Sn 8.05% 21.82% 14.2% 24.29% 2.93% 

F-measure 3.48% 34.97% 9.28% 91.04% 88.65% 

AC 3.6% 11.13% 6.38% 43.31% 33.85% 

 

5.8 Summary 

In this research work, an approach employing MGWT has been developed and proposed for the 

identification of CGIs in DNA sequences. The approach has been applied and compared with recent 

state-of-art methods on a data set of hundred DNA sequences comprising of human species 

downloaded from NCBI website. It has been noticed that the overall improvement in the 

performance metrics Sn, F-measure, and AC has been obtained using proposed approach over other 

recent state-of-art methods. However, the value of specificity of proposed approach is almost same 

as that of STFT based method and CpGclusterTLBO method and much higher than CpGPNP, DWT 

and modified P-spectrum based methods of CGIs identification. Therefore, the conclusion drawn is 

that the proposed approach has improved the overall performance of CGIs detection for the data set 

of hundred sequences of human species over other recent state-of-art methods.  
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CHAPTER 6 

DETECTION OF TANDEM REPEATS IN DNA SEQUENCES 

USING SIGNAL PROCESSING BASED APPROACHES 

In this chapter the tandem repeats in DNA sequences have been detected using signal processing 

based algorithms. Two algorithms have been developed and proposed to identify tandem repeats. 

ST-IPDFT (Short-time integer period discrete Fourier transform) based proposed approach has 

been discussed in part 1 of the chapter. Tandem repeats detection using MGWT based proposed 

approach has been presented in part 2 of the chapter. 

Part 1: Algorithm based on IPDFT for Identification of Tandem Repeats in 

DNA Sequences  

6.1 Proposed Approach for Identification of Tandem Repeats 

The flow graph of the approach proposed in this part of research work has been depicted in 

Figure 6.1: 

 

Figure 6.1: Flow graph of the proposed approach 
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The description of the steps of proposed approach is as following: 

a) The DNA sequence in which the tandem repeats have to be detected is taken from 

standard database and fed to the proposed algorithm.  

b) The 4 characters of DNA sequence are then mapped to numerical values with the help of 

EIIP (electron ion interaction potential) numerical conversion scheme. The numerical values A= 

0.1260, T= 0.1335, C=0.1340, G=0.0806 are given to the characters of DNA data and numerical 

sequence is thus obtained.  

c) The ST-IPDFT has been then computed. For a signal s(n), the equation to represent the 

IPDFT [160] is as follows:  

sIP p =  s n e
−j2πn

p   ,N−1
n=0  p = 1, 2, 3, 4, … P < 𝑁                                                     (6.1) 

             where P represents the maximum period. There exists a linear relation of IPDFT with        

             periodicity „p‟, on the contrary there exists a linear relation of DFT with frequency. 

             The following equation has been then applied to calculate the ST-IPDFT for the purpose        

             of localization of the TRs situated in the DNA Sequences.   

                sIP (p, m) =  s n ∗ w n − m e
−j2πn

p    N−1
n=0                                                                 (6.2) 

              where, w(n) corresponds to Hanning window whose centre at initial level is nucleotide     

              position m=0 and thereafter it is moved by one (1) nucleotide till the last nucleotide of    

              the DNA sequence. The length of window has been chosen as 20*p in this research    

              work. The DNA sequence having Genbank Id X64775 [1] has been preferred as   

              an example sequence to show the applicability of proposed approach. The nucleotide    

              position-periodicities plot obtained has been depicted in Figure 6.2:   
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Figure 6.2: Nucleotide-position versus periodicities plot for DNA sequence X64775 

d) A suitable threshold (Thr) has been applied using the thresholding equation (6.3) for the 

identification of location of tandem repeats of a specific periodicity. 

Thr = mean(
s5 p 

max  s5 p  
)                                                                                               (6.3) 

where, 𝑠5 corresponds to the sum of power spectrum as represented in equation (6.4): 

 s5 p =  sIP (p, m)M
m=0                                                                                                (6.4) 

The nucleotide position-periodicities plot (post thresholding) obtained after applying 

equation (6.5) has been shown in Figure 6.3. 

SIP p, m =  
1, if sIP p, m ≥ Thr

0, if sIP p, m ≤ Thr
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Figure 6.3: Nucleotide-position versus periodicities plot after thresholding for DNA sequence X64775 

The periodicities 3, 7, 10, and 11 have been noticed from Figure 6.3 as probable tandem 

repeats. Periodicity 3 is located at nucleotide position 1-182 & 234-303, periodicity 7 is 

noticed at location 234-289, periodicity 10 is noticed at location 225-284, and nucleotide 

position 44-139 corresponds to periodicity 11.     

    

e) The probable tandem repeats captured after thresholding step are then verified using 

verification step employing the approach proposed by Boeva et al. [161]. The details of 

tandem repeats after verification step is represented in Table 6.1 as follows: 

 

Table 6.1: Result of verification step for probable tandem repeats 

Sr. 

No. 

Periodi

-city 

Probable tandem repeats captured after 

thresholding step 

Verification of captured  probable 

tandem repeats 

Position of 

base pairs 

Pattern Location Patterns No. of 

copies 

1 3 1-182 

 

 

 

 

 

 

ATGGAGAGCGACTGC

CAGTTCTTGGTGGCGC

CGCCGCAGCCGCACA

TGTACTACGACACGGC

GGCGGCGGCGGTGGA

CGAGGCGCAGTTCTTG

CGGCAGATGGTGGCC

19-24 GTT 

CTT 

02 

25-30 GGT 

GGC 

02 

31-45 GCC 

GCC 

GCA 

05 
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GCGGCGGATCACCAC

GCGGCCGCCGCTGGG

AGAGGAGGCGGCGAC

GGCGACGGCGGCGGC

GGCGGCGGCGGCG 

GCC 

GCA 

50-58 TAC 

TAC 

GAC 

03 

60-77 CGG 

CGG 

CGG 

CGG 

CGG 

TGG 

06 

78-83 ACG 

AGG 

02 

89-94 TTC 

TTG 

02 

102-107 

 

 

 

TGG 

TGG 

02 

108-116 CCG 

CGG 

CGG 

 

03 

117-123 ATC 

ACC 

02 

125-136 GCG 

GCC 

GCC 

GCT 

04 

142-183 AGG 

AGG 

CGG 

CGA 

CGG 

CGA 

CGG 

CGG 

CGG 

CGG 

CGG 

CGG 

CGG 

CGG 

14 

234-303 AGACGCGTTCCACGC

GCGGCGGGCCAAGCT

GGAGCCGCGGGAGAA

GGCGGACGTGGCGCG

GGAGCTCGGG 

250-255 

 

CGG 

CGG 

02 

 

268-273 

 

 

CCG 

CGG 

02 

 

274-279 

GAG 

AAG 

02 

2 7 234-289 AGACGCGTTCCACGC Discarded Discarded Discarded 
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GCGGCGGGCCAAGCT

GGAGCCGCGGGAGAA

GGCGGACGTGG 

3 10 225-284 GGTCGCTGGAGACGC

GTTCCACGCGCGGCG

GGCCAAGCTGGAGCC

GCGGGAGAAGGCGGA 

Discarded Discarded Discarded 

4 11 11-139 GACTGCCAGTTCTTGG

TGGCGCCGCCGCAGC

CGCACATGTACTACGA

CACGGCGGCGGCGGC

GGTGGACGAGGCGCA

GTTCTTGCGGCAGATG

GTGGCCGCGGCGGAT

CACCACGCGGCCGCC

GCTGGG 

 

Discarded Discarded Discarded 

  

It has been noticed from Table 6.1 that the proposed algorithm has captured periodicity 3 

correctly whereas other probable periodicities 7, 10, and 11 are false and hence have been 

discarded after verification step.  

 6.2 Performance Comparison of Proposed Approach with Other Methods 

The performance assessment of the proposed approach has been done on DNA sequence X64775 

[1]. The comparison of performance of proposed approach with other methods has also been 

computed and the comparison result has been represented in Table 6.2. 

Table 6.2: Comparison of results of proposed approach with other state-of-art methods 

Periodicity Method Position of base 

pairs post 

thresholding step 

Positions of base 

pairs post 

verification step 

Consensus 

Pattern 

Copies Total 

Copies 

 

 

3 

 

Proposed 

approach 

 

 

1-182 

 

19-24 GTT 

CTT 

02  

 

53 25-30 GGT 

GGC 

02 

31-45 GCC 

GCC 

GCA 

GCC 

GCA 

05 

50-58 TAC 

TAC 

GAC 

03 
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60-77 CGG 

CGG 

CGG 

CGG 

CGG 

TGG 

06 

78-83 ACG 

AGG 

02 

89-94 TTC 

TTG 

02 

102-107 

 

TGG 

TGG 

02 

108-116 CCG 

CGG 

CGG 

03 

117-123 ATC 

ACC 

02 

125-136 GCG 

GCC 

GCC 

GCT 

04 

142-183 AGG 

AGG 

CGG 

CGA 

CGG 

CGA 

CGG 

CGG 

CGG 

CGG 

CGG 

CGG 

CGG 

CGG 

14 

250-255 

 

CGG 

CGG 

02 

268-273 

 

CCG 

CGG 

02 

 

274-279 

GAG 

AAG 

02 

Adaptive S-

transform [141] 

19-44 20-25 TTC(TTG) 02  

 

48 25-42 GCC 06 

61-86 61-79 GGC 07 

89-104 89-94 TTC(TTG) 02 

94-99 GCG(GCA) 02 

108-122 108-116 CGG 03 

117-122 ATC(ACC) 02 

125-135 125-135 CCG 03 

141-149 141-149 GAG 03 

160-186 160-186 CGG 09 

194-207 194-199 AGG(AAG) 02 

199-204 GCG 02 

211-223 211-219 GGA 03 
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274-283 274-279 GAG(AAG) 02 

EMWD [162] 57–72 57–72 CGG 5.5  

21 140–187 140–187 GGC 15.5 

Parametric 

Spectral 

Estimation [6] 

45-90 49-57 TAC 03  

24.7 59-76 CGG 06 

140-200 141-188 GGC 15.7 

 

The comparison of proposed approach with other state-of-art methods in terms of detection of 

number of copies of periodicity 3 has been represented in Figure 6.4. 

 

Figure 6.4: Proposed approach‟s comparison in terms of detection of number of copies with state-of-art methods 

It has been noticed from Figure 6.4 and Table 6.2 that the proposed approach‟s performance is 

better in terms of detection of more number of copies of periodicity 3 in comparison with all 

other state-of-art methods in DNA sequence X64775. 

6.3 Summary 

The tandem repeats situated in the DNA sequences have been detected successfully using the 

approach presented in this part of the chapter. The conclusion drawn is that the proposed 

approach’s performance in terms of identification of number of copies is better as compared to 

0
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48
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24.7
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other state-of-art methods considered in this part of research work for comparison purpose. The 

fixed value of length of window is considered as the limitation of the proposed approach.   

 

Part 2: Algorithm based on MGWT (Modified Gabor Wavelet Transform) for 

Identification of Tandem Repeats in DNA Sequences  

6.4 Proposed Approach for Identification of Tandem Repeats 

The flow graph of the approach proposed in this part of research work has been depicted in 

Figure 6.5: 

 

Figure 6.5: Flow graph of the proposed approach 

The description of the steps of proposed approach is as following: 

a) The DNA sequence in which the tandem repeats have to be detected is taken from 

standard database and fed to the proposed algorithm.  

b) The 4 characters of DNA sequence are then mapped to numerical values with the help of 

binary numerical conversion scheme [69].  
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c) The MGWT has been then applied for the computation of component of periodicity „p‟ 

spectrum at each nucleotide‟s position. For a numerical sequence „b(x)‟, the MGWT can 

be represented as [98] : 

B n, a  P =  b(x)e
−(x−n )2

2a 2 ejω0(x−n) dx                                                                                       (6.5)      
                                                             

The spectrums of different periodicities „p‟ (which are 2 to 12 in this work) have been computed 

applying equation (6.5) and a fixed value of ω0 = Len/p has been kept to predict the periodic 

„p‟ segments, where „Len‟ represents the length/size of the DNA section which is under analysis. 

The equation (6.6) has been applied for the computation of squared complex modulus 

corresponding to coefficients of MGWT and the power spectrum of sequence has been obtained. 

P n, p  P =  B  n, a  P 
2                                                                                           (6.6) 

The spectrum computed in equation (6.6) has to be projected on the position axis to detect the 

periodicity „p‟ component at each nucleotide position. The equation (6.7) has been then utilized 

to compute this projection spectrum for every periodicity „p‟ component for a DNA sequence 

having length „Len‟.  

C n  P =   B n, a  P 
2

a  , n=1……Len                                                                      (6.7) 

The DNA sequence having Genbank Id X64775 [1] has been preferred as an example sequence 

to show the applicability of proposed approach. The nucleotide position-periodicities plot 

obtained for the visualization of tandem repeats of varying periodicities in DNA sequence 

X64775 has been depicted in Figure 6.6:   

 

Figure 6.6: Nucleotide-position versus periodicities plot for DNA sequence X64775 
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d) The information regarding the starting and ending location of the tandem repeats is not 

obtained from the nucleotide position –periodicities plot depicted in Figure 6.6. Hence, a 

suitable fixed value (0.35) of threshold selected empirically has been then applied to 

binarize the plot obtained in Figure 6.6 and the plot obtained after thresholding step is 

represented in Figure 6.7. 

 

Figure 6.7: Nucleotide-position versus periodicities plot for DNA sequence X64775 after thresholding 

step (threshold value fixed as 0.35) 

6.5 Discussion of Results and Performance Comparison of Proposed 

Approach with Other Methods 

Forty (40) analyzing functions equivalent to scale values of 40 which are exponentially alienated 

from 0.2 to 0.7 for every periodicity value „p‟ have been employed in this research work. The 

limit of these functions is set to 120 sequence points in length. The result obtained on DNA 

sequence X64775 shown in Figure 6.6 reveals that periodicities 2 and 3 have been captured using 

proposed MGWT based algorithm. Various patterns of tandem repeats having perfect and 

imperfect patterns corresponding to periodicity 2 and 3 have been detected using proposed 

approach as noticed from Figure 6.7 which has been obtained using fixed threshold value of 

0.35. The exact location of these detected tandem repeats is presented in Table 6.3. Also, the 

performance assessment and comparison of proposed approach with other state-of-art methods 

has been computed and the comparison result has been represented in Table 6.3. 
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Table 6.3: Comparison of results of proposed approach with other state-of-art methods 

Method Periodicity Location 

of 

detected 

periodicity 

in DNA 

sequence 

‘X64775’ 

Number of 

copies 

corresponding 

to periodicity 

Nucleotides’ pattern 

 

Proposed 

approach 

2 4-15 

42-47 

294-296 

6 

3 

2 

GA 

CA 

GA 

3 27-43 

49-56 

59-82 

91-114 

127-133 

142-184 

212-229 

263-283 

6 

3 

8 

8 

2 

15 

6 

7 

GCC 

TAC 

CGG 

GGC 

GCC 

GGC 

GGA/GGT 

GGA (consensus pattern) 

IPDFT 

based 

method 

[163] 

3 19-24 

25-30 

31-45 

50-58 

60-77 

78-83 

89-94 

102-107 

108-116 

117-123 

125-136 

142-183 

 

250-255 

268-273 

274-279 

2 

2 

5 

3 

6 

2 

2 

2 

3 

2 

4 

14 

 

2 

2 

2 

GTT/CTT 

GGT/GGC 

GCC/GCC/GCA/GCC/GCA 

TAC/TAC/GAC 

CGG/CGG/CGG/CGG/CGG/TGG 

ACG/AGG 

TTC/TTG 

TGG/TGG 

CCG/CGG/CGG 

ATC/ACC 

GCG/GCC/GCC/GCT 

AGG/AGG/CGG/CGA/CGG/CGA/CGG/CGG/CGG/ 

CGG/CGG/CGG/CGG/CGG 

CGG/CGG 

CCG/CGG 

GAG/AAG 

Parametric 

Spectral 

Estimation 

[6] 

3 49-57 

59-76 

141-188 

3 

6 

15.7 

TAC 

CGG 

GGC 

Tandem 

Repeats 

Finder 

[134] 

3 145-188 14 .33 GGC 

S-

transform 

based 

method 

[143] 

3 

3 

3 

27-37 

59-71 

146-183 

4 

4 

13 

CGC 

CGG 

GGC 

 

It has been noticed from Table 6.3 that the proposed approach has detected periodicities 2 and 3 

in DNA sequence X64775, whereas other state-of-art methods such as IPDFT [163] based 
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approach, Parametric Spectral Estimation [6], Tandem Repeats Finder [134], and S- transform 

based approach [143] have identified periodicity 3 only and these methods have not captured 

period 2 in DNA sequence X64775. Moreover, the proposed approach has identified total 55 

copies of period 3; whereas IPDFT based approach[163], Parametric Spectral Estimation [6], 

Tandem Repeats Finder [134], and S- transform based approach 143] have detected 53, 24.7, 

14.33, and 21 number of copies of period 3 respectively. The proposed approach has captured 

total 11 number of copies corresponding to periodicity 2 whereas none of the state-of-art 

methods has detected period 2 in DNA sequence X64775.  

6.6 Summary 

In this research work, an MGWT based approach has been developed and proposed for the 

detection of tandem repeats and the patterns of repeats with reference to their periodicity and 

exact position have been visualized. The proposed approach has identified perfect and imperfect 

tandem repeats both. The proposed approach has captured one extra periodicity corresponding to 

period 2 which remained undetected by other state-of-art methods. Also, the number of total 

copies of periods identified by proposed approach is more in comparison with other state-of-art 

methods.  
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CHAPTER 7 

CONCLUSION AND FUTURE WORK 

 

The main aim of this research work is to develop accurate and efficient signal processing based 

approaches for the detection and localization of hidden patterns in the DNA sequences. Sequencing 

of genome and annotation thereafter generates a large amount of annotated genomic data. 

Development of computational approaches to extract the useful information inside the hidden 

patterns of annotated genomic data is a great help for the medical society. An important region of 

gene which is responsible for the synthesis of various proteins in organisms is termed as protein-

coding regions or exons. But the process of mutation in the DNA sequence may change the normal 

protein formation to aberrant protein synthesis and that may lead to development of dangerous 

diseases. Therefore, the accurate identification of exons is considered highly important. Most of the 

signal processing based approaches developed so far are transform based. The transformation of 

domain may result in the loss of very important feature hidden in the signal such as exons. The 

solution to this issue has been provided in this work by developing a modified P-spectrum based 

algorithm for the identification of exons. Also, the selection of an appropriate length of window has 

always remained a challenging task in the detection of exons. This issue has been resolved in the 

proposed algorithm by developing an optimal window based algorithm in which optimal window 

length according to the characteristics of DNA sequence has been chosen for every sequence. 

Moreover, some approaches developed till now have identified short exons only and some other are 

able to detect large size exons only. The proposed algorithm is able to detect exons of short and 

large size as well.  

Detection of CpG Islands accurately in the DNA sequences is highly essential as the contribution of 

CpG Islands in finding the epigenetic reasons of cancer is of great significance. The important 

contribution in terms of revealing the periodicities present in the CpG Islands with experimental 

proofs is being provided in this research work employing short-time Fourier transform based 

approach. Also, the selection of a particular numerical mapping technique affects the performance 

of detection of CpG Islands. Experiments have been performed using existing mapping schemes 

and thereafter a mapping scheme employing 24 possible combinations of integer mapping to reduce 
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the nucleotide bias effect has been used in the proposed algorithm for detection of CpG Islands. A 

self created data set of hundred DNA sequences for CpG islands identification has been further 

contributed in the proposed algorithm. Further improvisation in the detection of CpG Islands by 

enhancing the sensitivity has been proposed by modified P-spectrum based algorithm and an overall 

improvement has been achieved with the help of modified Gabor Wavelet transform based approach 

proposed for the detection of CpG Islands.  

Another important hidden pattern in DNA sequences which is associated with various 

neurodegenerative diseases, useful in the prediction of social behavior and DNA forensic analysis is 

short tandem repeats known as microsatellites. Microsatellites are characterized by regions having 2 

to 8 bps periodicities. Approaches based upon integer period discrete Fourier transform and 

modified Gabor Wavelet transform have been proposed in this research work for the detection of 

microsatellites. The proposed approaches have identified the microsatellites successfully. 

There exists a potential for expansion and improvisation of the algorithms proposed in this research 

work. The future directions in which the research work can be pursued are as following: 

1) Classification of detected CpG Islands as methylated or non-methylated. 

2) Identification of single nucleotide polymorphism in DNA sequences. 

3) Identification of splice sites in DNA sequences.     

4) Identification of hot spots in proteins. 
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