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Abstract

The objective of this thesis entitled, “Some New Approaches to Solve Decision Mak-
ing Problems Under Pythagorean Fuzzy Set Environment”, is to study new notions of
Pythagorean Fuzzy soft matrices and information measures with their applications in
decision making processes. The way we think, we process information, we make our
decision and particularly in our language, fuzziness can be found everywhere. In real
world scenario, decision making is the biggest challenge now a days due to its significance
and importance everywhere such as in companies, in industries, in institutions and many
more. Thus it is the need of the hour to handle uncertainty, vagueness and impreciseness

involved in the decision making problems by developing some new techniques.

The reported work in the thesis is classified into two categories: one is related to the
notion of soft matrices and other is related to the information measures. The main
goal of the thesis is to deal with the uncertainty, vagueness and impreciseness available
in the informational data and solve the multi-criteria decision making problems. For
handling such circumstances, we have utilized the several extensions of fuzzy set theory

as Pythagorean fuzzy set. The work related to the thesis is described as:

In Chapter 1, we have presented the preliminaries related to the proposed work, which
covers all the basic definitions related to the extensions of fuzzy set theory to Pythagorean
fuzzy set along with the literature reviewed on the soft matrices and information measure

such as entropy, divergence.

In Chapter 2, we have developed the new kind of soft matrix called Pythagorean
fuzzy soft matrix with its different possible types and also presented binary operations
satisfying various properties with the proof of their validity. Some new kinds of matrices
such as choice matrix, weighted choice/score matrix, & utility matrix have also been
proposed in a modified format. Further, we have utilized these matrices to solve the
multi-criteria decision making problem, medical diagnosis problem and presented some

observed comparative remarks in contrast with the other existing methods.

The dimensionality reduction plays an effective role in downsizing the data having
irregular factors and acquires an arrangement of important factors in the information.
Sometimes, most of the attributes in the information are found to be correlated and
hence redundant. The process of dimensionality reduction has a wider applicability in
dealing with the decision making problems where a large number of factors are involved.
In Chapter 3, we have presented an algorithm for the dimensional reduction of the infor-

mational data under Pythagorean fuzzy setup by using the proposed definitions of the

viil



object-oriented matrix, the parameter-oriented Pythagorean fuzzy soft matrix and the
threshold value. We have illustrated the methodology of the proposed technique to solve
the multi-criteria decision making problem and also provided the comparative remarks

& additional advantages of the technique in view of some existing recent methodologies.

In Chapter 4 & 5, we have developed a parametric entropy measure and also a
divergence measure for the Pythagorean fuzzy set along with their proof of validity re-
spectively. The monotonic property of these information measures in relation with their
parameters have also been studied and presented in these chapters. Further, we have
implemented these measures in providing different algorithms for solving multi-criteria
decision making and other soft computing applications. The comparative analysis has
also been presented for clearly depicting the important observations and advantages of

the proposed methodologies in these chapters.

In Chapter 6, we proposed the modified VIKOR and modified TOPSIS multi-criteria
decision making technique by incorporating (R, S)-Norm Pythagorean fuzzy entropy and
respective discriminant measure in two different stages. Further, the proposed techniques
have been implemented and illustrated by solving the hydrogen power plant site selection
problem with proper matching of the laid down essential criteria under a wider sense
of Pythagorean fuzzy information. A detailed comparative analysis and the sensitivity
analysis have been carried out for a better understanding and clarity of the proposed

methodologies. Finally, the works reported in this thesis have been concluded in Chapter
7.
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Chapter 1

Introduction

Decision making is a very significant area and its omnipresence in business, manufac-
turing, services etc. are quite enough to understand its importance. It is a cognitive
process/method to choose the best/optimal alternative among the available alternatives.
There are several decisions in our daily routine which have the immediate or long-term
effect on us or others whether it may be related to our personal life or professional life.
As far as the significance of decision-making is concerned, we all know that the survival
of people, growth in business, promotion in jobs etc. are totally dependent on the po-
tential of decision making tasks. The process to select the best/optimal option among
available ones with multiple, usually conflicting criteria under the presence of one/many

decision makers is applied in multi-criteria decision making problems.

In different practical and real-life situations, the way towards making a decision
is strongly roused by the advantages out of it and it also depends on our perception
and prior information. In view of the deficiency in the information and possibility of
human errors, it is probably expected to have inherited complexity in the environment
and having incomplete knowledge of the systems. In this way, it appears to be tough to
get an optimal decision in a stipulated time. As the complexities are increasing day by
day, decision makers come across many problems to decide within a reasonable time by
using the information which is vague/uncertain/imprecise in nature. Pythagorean fuzzy
set theory [106], an extension of novel concept of Zadeh’s fuzzy set [68] is one of the

most acceptable theory to deal with the uncertainties, vagueness and incompleteness in



the information.
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1.1 Basic Notions and Preliminaries

In this section, we have presented some basic notions related to the Pythagorean fuzzy

set.

1.1.1 Fuzzy Set

The crisp or classical set is a well defined collection of elements/objects from the universe
of discourse or universal set (u € U), that can be finite/countable/uncountable. Every
individual member of the crisp set A C U, either belong to A (u € A) or does not
belong to A (u ¢ A). A classical/crisp set can be represented in two ways: one can

either present the set analytically or enumerate the elements which belong to the set.

An ordinary or crisp set A in a universal set U can be described by listing all
its members or by defining the conditions to classify the elements v € A, ie., A =

{ulu meets some condition}. The characteristic function x associated with A, is a map-



ping x4 : U — {0, 1} such that for any element v € U, xa(u) = 1, if u € A and
xa(u) =0, if u & A.

Fuzzy set (FS) [68] is an extension of crisp set. Any fuzzy set A over a set U
(universe of discourse) can be characterized by its membership function, i.e., y : U —
[0, 1] and the output value given by this function represents the grade of degree to which
an element of the set U belongs to the set A. Thus, an element in the fuzzy set may
belong to a greater or lesser degree as represented by a larger or smaller membership

grade.

Remark: Fuzziness is often confused with probability. An event is probabilistic if
it has a degree of actual occurrence or it has the results of well identified but random
occurrence, i.e., probability measures the likelihood of a future event based on something
known now. On the other hand, fuzziness depicts the lack of distinction of an event,
whereas the probability describes the uncertainty in the occurrence of the event. In other
words, probability relates to randomness and is not an efficient concept to counter the

issue of uncertainty and impreciseness resulting due to incompleteness in the informaton.

Definition 1.1.1 [68] “Consider two fuzzy sets A and B over the universe of discourse

set U. The binary operations defined over the fuzzy sets are as:

e Intersection: pisnp(u) = min{ps(u), up(u)},u € U.
o Union: piaup(u) = max{pa(u), pp(u)},u € U.
e Complement: jz(u) =1— pa(u),ueU.
e Probabilistic Sum: paip(u) = pa(u) + pp(u) — pa(u) - pp(u),u € U.
e Bounded Sum: psgp(u) = min{l, pa(u) + pg(u)},u € U.
e Bounded Difference: scp(u) = max{0, ua(u) + pup(u) — 1}, u € U.
e Algebraic Product: jiap(u) = pa(u)- pg(u),ueU.”
Definition 1.1.2 [38] “Consider the fuzzy sets A, B, C' and D over the universe of

discourse U. The triangular norm (t-norm) is real-valued function from [0, 1] x [0,1] to

[0, 1] which satisfy the following conditions:

3



(1) 1(0,0) = 0, t(pa(u), 1) = t(1, pa(u)) = palu),u € U.

(i) t(pa(u), pp(w) < tlpc(u), pp(w)) if pa(u) < po(u) and
pp(u) < pp(u),ueU.

(iii) t(pa(u), pp(u) = t(up(u), pa(u)), v e U.

(1) t(pa(u), t(up(u), pe(w))) = t@t(pa(u), pp(u)), po(u), v € U.”

Definition 1.1.3 [38] “Consider the fuzzy sets A, B, C' and D over the universe of
discourse U. The triangular conorm (t-conorm (s-norm)) is real-valued function from

[0,1] x [0,1] to [0, 1] which satisfy the following conditions:

(1) s(1,1) =1, s(pa(u),0) = 5(0, pa(u)) = pa(u),u € U.

(1) s(pa(u), pp(u)) < s(uc(w), p(u)) if pa(u) < po(u) and
pp(u) < pp(u),u e U.

(i) s(pa(u), pp(w)) = s(pp(u), pa(u)),u € U.

(1) s(pa(u), s(up(u), po(w))) = s(s(pa(u), pp(u)), pe(u)),u € U.”

Fuzzy Relation and Composition Operators

Fuzzy relation is a mapping that maps the element through the cartesian product of one
universe of discourse U with the another universe of discourse V' to the unit interval
[0, 1]. The strength of the relation in fuzzy environment between the ordered pair of the
two universes is measured with the membership function expressing the different degrees

of strength of the relation on the unit interval [0, 1].

Definition 1.1.4 [69] “A fuzzy relation R on fuzzy set U and V is a fuzzy subset of
UxV,ie.,

R = {<u17u2)7ﬂR(u17u2> | up € U7 Ug € V},

such that pgr(ui,us) € [0,1]. We denote FR(U x V') as a collection of all the fuzzy

relations on U x V.7



Definition 1.1.5 [69] “Let Ry and Ry be the fuzzy relation on U x V. Then the various

binary operations are defined as follows:

Intersection: pipns(u,v) = min{ug(u,v), ps(u,v)}, (u,v) € U x V.

Union: MRUS(U'a U) = maX{:uR(ua U)a ,US'<U> U)}a (U, U) cUxV.

Complement: pg(u,v) =1— pgr(u,v), (u,v) €U x V.

Containment: R C S = ug(u,v) < us(u,v), (u,v) € U x V.”

Definition 1.1.6 [69] “Suppose Ry € FR(U x V') and Ry € FR(V x Z) be two fuzzy
relations. Then the various composition operators for the fuzzy relations Ry and Rs

are defined as follows:

- Max-Min Composition of Fuzzy Relations: The max — min composition

relation of Ry and Ry, denoted by R1 o Ry € FR(U x Z), defined as
Ry 0o Ry = {(u,2), tryor, (U, 2) |u € U,z € Z},
where o, = max{min(ug, (s, v), iy (v,2))} v € V.

- Min-Max Composition of Fuzzy Relations:  The min — max composition

relation of Ry and Ry, denoted by R1 e Ry € FR(U x Z), defined as
Ry e Ry = {(u,2), iryer, (U, 2) |u € U,z € Z},
where iy, = min{max(us, (u,0), (0, )} 0 € V.

- Max-Average Composition of Fuzzy Relations: The max— average composi-

tion relation of Ry and Ry, denoted by Ri®PRy € FR(U x Z), defined as
Ri®Ry = {(u, 2), ir,ar,(u, 2) |u € U,z € Z},
where firyon, =  mas {jun, (u,v) + i, (v,2)} v € V.

- Min-Average Composition of Fuzzy Relations: The min— average composi-

tion relation of Ry and Ry, denoted by RiVRy € FR(U x Z), defined as
R1\DR2 = {(U, Z)nuRﬂI/Rz(uv Z) | u € U>Z € Z}a

where ppywr, = 3 min {ug, (u,v) + pgr,(v,2)} vEV.”



1.1.2 Intuitionistic Fuzzy Set

Atanassov introduced the concept of intuitionistic fuzzy set (IFS)[67], which is an exten-
sion of the Zadeh’s fuzzy set [68]. The IFS is characterized by membership function and
non-membership function, which assign a value from the interval [0, 1] to every element

in the sense of belongingness and non-belongingness respectively.

Definition 1.1.7 [67] “Let U be the universe of discourse with s : U — [0,1] and v, :
U — [0,1] being the degree of membership and degree of non-membership respectively.
The set A = {(u, puu, )| uw € U} is called intuitionistic fuzzy set if it satisfies the

condition 0 < pa(u) + va(u) < 1 with the degree of indeterminacy given by ma(u) =

”

1—pa(u) —va(u).

Definition 1.1.8 [67] “If A,B € IFS(U), then the standard binary operations can be
defined as:

(a) Complement: A = {< u,va(u),pa(u) >|uecU};
(b) Containment: A C B iff Yu e U, pa(u) < pp(u) and va(u) > vp(u);
(¢) Union: AUB = {< u,ua(u) V pp(u),va(u) ANvg(u) >|ueU};

(d) Intersection: AN B = {< u,ua(u) A\ ug(u),va(u) Vvg(u) >|ueU}.”

1.1.3 Pythagorean Fuzzy Set

Yager [106] stated that the existing structures of F'S and IFS are not capable enough to

depict the human opinion in a broader sense and presented the following definition:

Definition 1.1.9 [106] “A Pythagorean Fuzzy Set (PFS) M in U (universe of dis-
course) is given by

M = {<u, pp(u), va(u) >l ue U}

where ppy 2 U — [0,1] and vy U — [0, 1] represent the degree of membership and degree

of non-membership respectively and for each u € U satisfy the condition
0 < pui(w) + vy (u) < 1.
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The degree of indeterminacy for any Pythagorean fuzzy set M is given by my(u) =
V31—, w) — v (u)VueU”

The basic difference between PFS and IFS is the restriction corresponding to jps(u)
and vy (u), ie.,

0 < piy(u) 4+ vi(u) <1,

and

0 < par(u) + v (u) <1
for ppr(u),var(u) € [0, 1] respectively. The change in the constraint conditions is geo-
metrically shown in the Figure 1.2. In this way, PFS can handle the uncertainty, impre-
ciseness and vagueness in the information more efficiently and proves to be proficiently

capable than TFS.

A
H
1.0 -k\i e
T PFS
0.8 \\ e
Space.of PFS NE
0.6 \\ Y =
0 4 \ % \l (FS on the line)
Space of IFS \\/\//I/
0.2 ;
V\ |
0.0 T T 1 1 \4 »-

00 02 04 06 08 1.0 =

Figure 1.2: TFS vs PFS

Definition 1.1.10 /141] Binary Operations on PFSs
“Consider M = {< u, ppr(u),vp(u) >|u € U} and N = {< u, uy(u),vn(u) >|ue U}
be two Pythagorean fuzzy sets over U (universe of discourse), then the operations can be

defined as follows”:

(a) M= vy (u), urr(u)], ue U.
(b) MUN = {max(pp(u), py(w)), min(vy (u), vy(u))}, v € U.
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(¢) M NN = {min(pup(u), py(u)), max(va(u), vy(u))}, v € U.
(d) M- N = {pn(u) - py(w), var(u) + vn(u) —va(u) -vn(u)}, w e U.

(¢) M+ N = {pup(u) + pn(u) = par(u) - p (), v (u) - vn(u)}, uwe U.

(1) M &N = { () - (), /oa (@) + on()? = g ()2 (vw (@)}, w € U.

(9) M® N = { /G @2 T (a0 — Gaar (02 (@), v () - o) }, w € U

Pythagorean fuzzy sets have been utilized by various researchers in order to deal with
the various real world application fields such as decision-making problems, medical diag-
nosis, pattern recognition, etc. Based on score function, Zhang and Xu [139] presented a
method to find the Pythagorean Fuzzy positive ideal solution (PIS) & the negative ideal
solution (NIS) and also presented the extended version of TOPSIS method to determine
the difference between each alternative with respect to PIS and NIS. A fused method
between MOORA & PFSs for the selection of best/optimal alternative was stuided by
Dominguez et al. [72]. Peng and Yang [142] presented some new kind of binary op-
erations over PFSs and also studied various aggregation operators with their impor-
tant properties. In continuation to this, they also provided an algorithm to solve group
decision-making problems by using these proposed aggregation operators. Different kind
of information measures for PFSs such as distance measure, similarity measure, en-
tropy with inclusion measure, and their relations were studied by Peng et al. [141].
Further, to solve Pythagorean fuzzy MCDM problems, Zeng et al. [121] provided a
new methodology by incorporating PFOWAWAD aggregation operator along with a hy-
brid TOPSIS method. Garg [52] proposed a correlation measure along with its weighted
form in order to study the interaction between two PFSs. Wei and Wei [49] presented a
similarity measure for PFS based on the cosine function to solve the problem of medical
diagnosis and pattern recognition. Mohd and Abdullah [133] presented a new informa-
tion measure for PF'Ss by using cosine similarity measures and Euclidean distance. Peng
and Selvachandran [136] studied and presented the complete state-of-art related to the
studies carried out in the field of PFSs and its applications with future directions. Xiao
and Ding [44] provided divergence measure for PFSs for solving the medical diagnosis

problem.



1.2 Literature Review

In this section, we have briefly reviewed the important, popular and widely used MCDM

techniques under variable in the circumstances.

1.2.1 Multi-criteria Decision-Making Techniques

The objective of Multi-Criteria Decision-Making (MCDM) process is to achieve the best/optimal
alternative from the available set of alternatives under the certain predefined set of
criteria. In literature, various researchers have worked on the techniques for solving
the MCDM problems. For example, Hwang and Yoon [21] proposed the “Technique
for Order Preference by Similarity to Ideal Solutions (TOPSIS)” approach, Opricovic
[118] developed the “Visekriterijumska Optimizacija i Kompromisno Resenje (VIKOR)”
method, Brans and Mareschel [63] introduced the PROMETHEE (“Preference Ranking
Organization Method for Enrichment Evaluations”) method, Benayoun et al. [99] stud-
ied ELECTRE (“elimination et choice translating reality”) method, Gomes and Lima
[71] presented the TODIM (“TOmada deDecisao Interativa e Multicriterio”) method
and etc. Further, Opricovic and Tzeng [119] presented an extended version of VIKOR
method by stating the limitations of TOPSIS, PROMOTHEE and ELECTRE meth-
ods. Because of the important feature of compromise solution, VIKOR method is more

popular in research world than any other available method/technique.

The most decisive role in the MCDM problem is of the assignment of the crite-
ria weights. The selection of the optimal solution/alternative depends on the proper
assignment of the weights. Chen and Li [122] categorized the estimation of the criteria

weights into two categories:

e First one is subjective evaluation, where the weights are concerned with the pref-
erence expressed by decision makers. Some examples of subjective weight category
are as - Weighted least square method [12], Analytical Hierarchy Process (AHP)
[125], Delphi method [19] and many more.

e The other category is objective evaluation where we determine weight by utiliz-
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ing various techniques based on mathematical models such as - multi-objective
programming method [41], principle element analysis [148], entropy method and

etc.

Both of these two categories have their own merits and demerits. However, the entropy
method of objective evaluation is highly trusted and utilized method to determine the
criteria weights. The subjective evaluation is highly beneficial where there is no infor-
mation loss and all the weights are available. But in many real world problems, there
may be the cases where the information is not reliable due to some constraints such as
time pressure, incomplete information about alternatives/criteria, limited expertise of
the problem domain and etc. In such circumstances, the objective weights evaluation

methods become more helpful and reliable.

1.2.2 Soft Set Theory to Soft Matrices

Many theories are found in the literature which have their own limitations to deal
with the vagueness, uncertainty and impreciseness because of the involvement of pa-
rameterization tools presented in the different application fields of engineering, so-
cial /economic problems, decision-making problems etc. In order to overcome the above
stated limitations, a new kind of mathematical tool has been developed by Molodtsov
[27] (notion of soft set) to handel the vagueness, uncertainty and impreciseness in a
better way. Next, in extension with the notion of soft set theory, Maji et al. [92]
[93][94] presented the “fuzzy soft set (FSS)” & “intuitionistic fuzzy soft set (IFSS)” along
with their various standard binary operations and utilized them to solve the decision-
making problems. The notion of Pythagorean fuzzy soft set (PFSS) along with various
standard binary operators has been extended by the Peng et al. [140].

Further, Naim and Serdar [24] introduced the concept of soft matrices which are
representations of the Molodtsov’s soft sets and successfully applied the soft matrices
in decision-making problems. Yong et al. [146] and Chetia et al. [13] extended the
matrix representation of soft set to fuzzy soft set and intuitionistic fuzzy soft matrix re-

spectively and applied it to decision-making problems.
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Further, the mathematical generalization can be referred from [27], [24], [140] in the
following way:
“Let U = {uy,ug, ..., uy, } be the universe of discourse and E = {eq,es, ...,e,} be the set

of parameters.

o The pair (F, E) is called soft set over U if and only if F': E — P(U), where P(U)
is the power set of U.

o Let F(U) denotes the set of all fuzzy sets of U. A pair (F, E) is called a fuzzy soft
set over F(U), where Fg is a mapping given by Fg : E — P(F(U)).

e The pair (F,E) is called the Pythagorean Fuzzy Soft Set (PFSS) over U if Fg :
E — PFS(U) and can be represented as

(F,E) = {(e, F(e)) : e € E, F(e) € PFS(U)}.
where PFS(U) denotes the set of all Pythagorean fuzzy sets of U.

o Let (F,FE) be a soft set over U. Then the subset U x E is uniquely defined by
relation Rg = {(u,e),e € E,u € U}.

The characteristic function of Rg is x,, U x E — [0,1] given by
1 if (we)€UxE

XRE(U76>: :
0 if (u,e)¢UXE

If ai; = Xp, (wi, €;), then a matrix [a;;] = [x,, (w;,€;)] is called soft matriz of the

soft set (F, E') over U of order m x n.”

1.2.3 Dimensionality Reduction Techniques

In order to convert a higher dimensional vector to a lower dimensional vector, the dimen-
sionality reduction technique is utilized. The main objective of the dimensionality reduc-
tion techniques are to enhance the ability to handle irrelevant and redundant features,
to enhance the cost efficiency and many more etc. In view of the decision processes, it

will be difficult to visualize and work with a higher number of involved factors. Thus, the
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dimensionality reduction approach turns out to be an important study in different fields
of application which have the extreme data modality. In the field of statistical science,
many researchers have worked in the direction of dimensionality reduction by using var-
ious techniques such as “Principal Component Analysis (PCA)”, “Linear Discriminant
Analysis (LDA)” [1], “singular value decomposition” & “learning vector quantization ap-
proach” [79]. In the soft set theory, the concept of parameterization reduction has been
presented by Chen et al. [29]. Xu et al. [143] provided the sequential and simultaneous
perspectives approach for the reduction of data. Also, two new algorithms for the dimen-
sionality reduction approach by using the concept of “linear sequence discriminant analy-
sis (LSDA)” has been presented by Su et al. [15]. Further, incorporating the fuzzy trans-
form method, a technique for the reduction of data has been proposed by the Perfilieva
[57]. Konat et al. [1] presented a new technique for the reduction of the dimensionality
of the original log set of Chinese Continental Scientific Drilling Main Hole to a conve-
nient size by using the PCA and LDA. Sabitha et al. [79] used the three different
kinds of dimensional reduction techniques, i.e., PCA, “Singular Value decomposition”
& “Learning Vector Quantization” and applied these techniques to data set related to
solar irradiance which comprises of temperature, solar irradiance, and humidity data.
They also evaluate the efficiency and attain the best technique to be applicable for the
data set. Chaterjee et al. [90] presented a hybrid method for the selection and evalua-
tion of machining processes and utilized the pairwise comparison approach to estimate
the weights in multi-criteria decision-making problem. In order to examine the consis-
tency of results in the process of decision-making and to choose the optimal solution
Mukhametzyanov and Pamucar [56] presented a mathematical MCDM model. In addi-
tion to this, they also carried out the sensitivity of the proposed model by using the dif-
ferent available methods, e.g., “SAW, MOORA, VIKOR, COPRAS, CODAS, TOPSIS,
D’IDEAL, MABAC, PROMETHEE-I,II, ORESTE-II". By using the notion of fuzzy
soft set Hooda and Kumari [35] proposed a new dimensionality reduction approach to

solve decision making problem.
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1.2.4 Entropy Measures

The concept of Entropy measure firstly coined by Shannon [16] in his famous paper
“The mathematical theory of communication”. The entropy measure is also known as the
measure of information. It was introduced on the set of some finite number of probability
distribution and also provided a mathematical model for establishing the concept of
information measure. After Shannon’s work various researchers have paid their interest
in the development of information measures. This development was initiated by Renyi
[10] with the inclusion of one parameter o. Havrda and Charvat [61] presented a non-
additive entropy measure which was further generalized by Sharma and Mittal [14] by

including two parameters and this new measure is known as entropy measure of order-c,

type-f3.

The first non-probabilistic entropy measure under fuzzy setup was studied by De
Luca and Termini [3] which satisfies the four basic axioms: “sharpness, mazimality,
symmetry and resolution”. Various researchers have introduced the different kinds of

fuzzy entropy measures in order to solve various real life problems [28] [84] [60].

Definition 1.2.1 [16] Let A\, = {P = (p1,p2,.-.,0n), pi > 0, i = 1,2,3,...,n and
> pi = 1} be the set of all probability distribution association with random variable X
taking finite values x1,%s, ..., %,. For any probability distribution P = (p1,p2,...,Pn) €
A,, Shannon defined an entropy as:

n

H(P) = =30 log(p).

i=1

Definition 1.2.2 [8/ “The measure of fuzzy entropy between the fuzzy sets A and B
is defined as a set-to-point mapping H : FS(U) — RT which satisfies the following
conditions:

(i) H(A) =0, if A is a crisp set in U;

(i) H(A) has a unique mazimum value 1 if jua = 3;

(1ii) H(A) = H(A®) if A® is the complement of A;
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(iv) H(A) < H(B) if A is less fuzzy then B i.e., pa < pp when pp < 1 and pa > pp

1 »

when pip > 5.

Let A be the fuzzy set over the universe of discourse U = {uy,us,...,u,}. The
fuzzy entropy has been studied by many researchers and some of them are presented as

follows:

e Kaufman Fuzzy Entropy [8]

1 < ;i
HK(A) = _EZ(DA(U/Z) lnCI)A(ul), Where(I)A(ul) = TLIU/A#

i=1 2:2:1 /LA(Uz‘)

e De Luca and Termini Fuzzy Entropy [3]

n

Z [pea(us) I poa(ug) + (1= pra(ui)) In(1 — peaus))].

=1

1
nln?2

Hp(A) = -

e Renyi’s Fuzzy Entropy [10]

n

HiA) = == 3" i) + (L= g )]s @ # 1, 0> 0,

e Pal and Pal Fuzzy Entropy [84]

n

Hp(A) = # Z [MA(ui)elqu(ui) + (1 - MA(ui))eﬂA(ui) _ 1].

i=1

After the effective applications of the IFS in various application fields, many re-
searchers have studied and presented the entropy measures analogous to fuzzy entropy
measures. Szmidt and Kacprzyk [39] extended the set of basic axioms of entropy measure
from fuzzy set to intuitionistic fuzzy set. Based on De Luca and Termini fuzzy entropy
[3], Zhang and Jiang [98] studied the entropy measure in intuitionistic fuzzy setup. Ye
[65] proposed two entropy measures for IFSs. Verma and Sharma [110] presented an en-
tropy measure based on exponential function under IFS environment. Many researchers

have worked on the development of IFSs entropy measures [25] [86].

Definition 1.2.3 “The measure of intuitionistic fuzzy entropy between the intuitionistic
fuzzy sets A and B is defined mapping H : IFS(U) — R* which satisfies the following

conditions:
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(i) H(A) =0, if A is a crisp set in U;
(i) H(A) =1, if pa = va;
(11i) H(A) = H(A) if A® is the complement of A;

(iv) H(A) < H(B) if pa < pup and vy > va.”

Suppose A is an IFS over the universe of discourse U = {uy,us, ..., u,}. The intu-
itionistic entropy measure has been studied by many researchers in the literature and

some of them are presented as follows:

e Vlachos and Sergiadis IF Entropy Measure [53]

n

H(A) = —ﬁ > [MA(W) log pua(u;) + va(u;) log va(u;) — <(1 — ma(u;)) log(1 — WA(uz')))

i=1

— ma(u;)log 2];

e Zhang and Jiang IF Entropy Measure [98]

n

H(A) = 1 Z K“A(“i) +1- VA(Uz‘)) log (“A(Uz') +1-— VA(ui)>

n 2 2

=1

. (VA<U1‘) +1-— MA(Uz‘)) log (VA(“i) +1- ”A(ui))}.

2 2

e Wei et al. IF Entropy Measure [25]

1.2.5 Discriminant Measures

The divergence/discriminant measure is an information measure which is also known
as the relative entropy measure and gives a difference formula between the two discrete
probability distributions. Bhandari and Pal [28] studied and extended the Kullback
and Leibler’s [114] divergence measure over fuzzy environment based on the mutual in-
formation measure. Based on exponential function, Fan and Xie [60] proposed a diver-
gence measure and studied its relation with the fuzzy exponential entropy. Next, Montes

et al. [116] discussed the special classes of divergence measures in connection with fuzzy
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and probabilistic uncertainty. Further, the fuzzy divergence measure have been success-
fully implemented by Ghosh et al. [75] to study the automated leukocyte recognition.
Bhatia and Singh [95] proposed four different type of fuzzy directed divergence measures.

Analogous to Shang & Jiang [137] discriminant measure, Vlachos and Sergiadis [53]
provided the discriminant measure for intuitionistic fuzzy setup. Further, Wang et al.
[135] and Hung et al. [132] presented a set of axioms for the distance measure and for
the discriminant measure respectively. Li [31] provided the intuitionistic fuzzy discrim-
inant measure and Hung et al. [131] proposed J-divergence measure between intuition-
istic fuzzy sets with their application in pattern recognition. Montes et al. [55] estab-
lished some important relationships among divergence measures, dissimilarity measures
and distance measures. Analogous to the basic fuzzy discriminant measures, intuitionistic
fuzzy discriminant measures exhibits wider applications in various application fields such
as decision-making problems ([100], [32], [108], [109], [113]), medical diagnosis ([115],
[98], [6]), logical reasoning [144], linguistic variables [132] and pattern recognition ([4],
[131], [134], [46], [53]) etc.

Kaya and Kahraman [54] have provided comparison of fuzzy multi-criteria decision mak-
ing methods for intelligent building assessment along with detailed ranking results. Ba-
jaj et al. [104] proposed a new R-norm intuitionistic fuzzy entropy and a weighted R-
norm Intuitionistic fuzzy divergence measure with their computational applications in
pattern recognition and image thresholding. Gandotra et al. [83] studied multiple-criteria
decision making problem with the help of parametric entropy under a-cut and («, 3)-
cut based distance measures for different possible values of parameters and provided the

ranking method for the available alternatives.

Let A be the intuitionistic fuzzy set over the universe of discourse U = {uy, ug, ..., u,}.
The intuitionistic discriminant/divergence measure has been studied by many researchers

in the literature and some of them are presented as follows:

e Vlachos and Sergiadis IF Divergence Measure [53]

n

_ l u:) lo Q”A(ui) valu;) 1o 2VA(Ui)
I(A,B) = - 121 {MA< i)] gMA(ui) + up(u;) Fva(us) log va(uw;) +vp(w)]’
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e Verma and Sharma IF Divergence Measure [108]

1 n fra(us)
HAB) =12 {“ alu)log (mw» i AMB(W))

+ va(u;) log </\VA<Uz’) :/Egui) )\)VB(Ui)>

+ ma(u;) log (Mm(w) :?iui))\)WB(Ui)ﬂ '

1.3 Motivation

The way we think, process information, make our decision by particularly involving our
perception, language, human opinion, fuzziness is very inherited and such situations can
be found everywhere. The best way to deal with such situations is to deploy the theory
of fuzzy set which is characterized by a membership function. For the sake of covering
the imprecise information in a better way, Atanassov extended this notion of fuzzy set
to intuitionistic fuzzy set which was characterized by its membership function & non-
membership function. Further, R. R. Yager extended the restriction on the constraint
by introducing a new set called as Pythagorean fuzzy set. While doing literature survey,

we found that:

e Pythagorean fuzzy set seems to be the more generalized fuzzy set and have the
wider coverage of information span so that the decision-making process can be

dealt more effectively.

e No study has been carried out by utilizing the Pythagorean fuzzy setup together

with the notion of soft matrices and applications.

e No dimensionality reduction technique is available in the literature to reduce the

informational data in the Pythagorean setup.

e No study was presented regarding the Pythagorean fuzzy entropy and discriminant

information measures in the available literature.
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Chapter 2

Pythagorean Fuzzy Soft Matrices

In this chapter, the notion of Pythagorean fuzzy soft matrix (PFSM) and various appli-
cations in the field of decision-making and medical diagnosis have been presented and
studied in detail. Different types of PFSMs and several related binary operations have
been presented with important properties. By analogously incorporating the concept
of choice matrix and weighted choice matrix, an algorithm for solving decision-making
problem has been provided along with an illustrating example. Further, an algorithm to
deal with a general medical diagnosis problem has also been provided by using the defi-
nitions of score/utility matrix along with the demonstration of the numerical example.

A detailed comparative analysis has also been carried out for better understanding.

2.1 PFSMs and its Binary Operations

The notion of matrices significantly helps in various soft computing applications and in
handling the dimensionality feature of the big data problems related to various engi-
neering problems. In view of the important role of matrices, we present the notion of

PFSMs along with different binary operations.

Definition 2.1.1 Let (F, E) be a Pythagorean fuzzy soft set over X, then the subset
X X E is uniquely defined by Rp = {(z,e),e € E,x € X}. The Rg can be characterized

by its membership function and non membership function given by ug, : X x E — [0,1]
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and vg, : X X E — [0,1] respectively.
If (pij,vij) = (ppg(xise;), vry(xi,ej)), where pp,(x;,e;) is the membership of x; in
the Pythagorean fuzzy set F(ej) and vg,(x;,e;) is the non-membership of z; in the

Pythagorean fuzzy set F(e;) respectively, then we define a matriz given by

(mr, vy (mgsvigy 0 (Hin, Vin)
(n21,v21)  (po2,v22) -+ (H2n, van)
[M] = [mijlmxn = [(M%»V%)]mxn = . ) ) .
L (Mmhyml) (MmQanQ) (,U/mnvymn> |

which is called Pythagorean fuzzy soft matrix of order m x n over X.

For a proper understanding of the construction of a PFSM, let us consider a universe of

discourse X = {x1, z9, x5} with a parameter set (E = {ej, e, €3}) and

F(e1) = {(21,0.6,0.5), (z2,0.5,0.8), (x3,0.9,0.2)},
F(es) = {(21,0.8,0.5), (x2,0.9,0.3), (x3,0.6,0.6)},
F(es) = {(21,0.6,0.7), (22,0.5,0.6), (z3,0.7,0.5)}.

We take the soft set (F, E) given by F'(e1), F(ez2), F(e3) over the universe of discourse.
In this way, we can write the PFSM [M(F, E)] as

(0.6,0.5) (0.8,0.5) (0.6,0.7)
[M] = (1, ) )mxn = | (0.5,0.8) (0.9,0.3) (0.5,0.6)
(0.9,0.2) (0.6,0.6) (0.7,0.5)

Definition 2.1.2 Various kinds of Pythagorean fuzzy soft matrices: Suppose PEFS M, «n
s a collection of all Pythagorean fuzzy soft matrices over X. A Pythagorean fuzzy soft matrix

M = [(u%,VM)] € PFSMy,xyp is called:

(]
e Pythagorean fuzzy soft zero matriz if

uf‘f =0 and I/l-];-/[ = 0;Vi,j and is denoted by 0 = [0, 0].

e Pythagorean fuzzy soft square matriz if m = n.
e Pythagorean fuzzy soft row matrixz if n = 1.
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e Pythagorean fuzzy soft column matrix if m = 1.

e Pythagorean fuzzy soft diagonal matrix if all its non-diagonal elements are zero ¥
i,7.
e Pythagorean fuzzy soft u-universal matric if uf‘f =1 and VZ»]}/[ =0V and g,

denoted by P,,.

e Pythagorean fuzzy soft v-universal matriz if ,uﬁ\;»[ =0 and v™ =1V i and j,

i
denoted by P,.

e Scalar multiplication of Pythagorean fuzzy soft matrix : for any scalar k, we

define kA = [(k‘uﬁ\f, k:u%)], Vi and j.

Definition 2.1.3 Relations over Pythagorean fuzzy soft matrices:
Consider two Pythagorean fuzzy soft matrices M = [(,ug\]/-[, v and N = [(,ug, v¥)] € PFSM,xn.

Then the relations over two Pythagorean fuzzy soft matrices is called:

e Sub matrix: M C N if,uf\j/»[ gug and l/i];/‘[ > VZ-]}] Viandj.

e Super matrix: M O N if ,uf-\f > ,uf}’ and v} < vl

;= JViandj.

e Equal matrix: M = N if ,uf-\]/»[ = ug and Vi]}/[ = V,f}] Vi andj.

e Max Min Product of Pythagorean fuzzy soft matrix:
Let M = [ay;] = (i, v)] € PESMypyn & N = [bji] = [(fy, vj)] € PFSMyyxp be
two Pythagorean fuzzy soft matrices then

M x N = [cik]mxp = [{max(mjin(yf‘f,y%)),min(m?x(ylf%y%))}] Vi, j and k.

Definition 2.1.4 Operations over Pythagorean Fuzzy Soft Matrices:
Consider two Pythagorean fuzzy soft matrices A = [(uf}, V{})} and B = [(ug, 1/5)] € PFSMp,xn.
Then various standard operations over two Pythagorean fuzzy soft matrices can be defined as

follows:
o AC— [(y{?,uf})} Viandj.
150 Vig

e AUB= {max(uf},,ug),min(y-/‘ V-B)] Vi and j.

e ANB = [min(ué,ug),max(yg,yg)] Vi and j.
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e A-B= [(uf}-uf?,v{?—i—vﬁ—yg-yg)} Viandj.

e A+ B= (ué—l—yﬁ—uf}-uf?,uﬁwﬁ)] Vi and j.

e AR B = _(,uf} . ug, \/(V{;‘-)Q + (Vg)2 — (1/;;‘-)2 . (V£)2)] Vi and j.

« A0 B =|(\/(u)? + ()2 = (u)? - W2 vt -vE)| Vi and j.
A B VA- I/-B-
e AGB = [(“J;“JJ;J)] Vi and j.

wipwopl wivftwarh

w1 +wsa ’ w1 +ws2

e AQ,B = [( )] Vi and j ; where wy,wy > 0 are the weights.

o A$B = K\/ufj‘ug,\/ug-ygﬂ Vi and j.

1 1
o A$,B = [((u)r - (uB)e2) o, (v - () ) )| ¥ i and j, where wi,ws > 0

are the weights.

A pA B VAL B
e AB=|(2-4—%,2-2—5)| Viandj.
( pA b u{}—i—vi‘?) J

e Ay, B =

( w1 +wg w1 4wz )
D1 Wy Wl Wy
A B AT, B

Vi and j ; where wy,ws > 0 are the weights.
m

iJ ij ij ij

Proposition 2.1 Suppose A and B € PFSM,,x, are two Pythagorean fuzzy soft matrices
then the following results hold:

(i) AUB =BUA (vi) (ANB)° = A°U B°
(i) ANB =BnA (vii) (A°NB°)°=AUB
(iii) A+ B =B+ A (viii) ( A°UB®)°=ANB
(i) A-B =B- A (ir) (A°+B°)°=A-B
(v) (AUB )°=A°n B° () (A° B =A+B.

)

Proof : Let A= [(ug, y{;‘-)],B = [(Mg,VB)] € PESMxn.

For each values of 7 & 7,
: _ A By o0 A Byl B A\ i, B AV
(i) AUB = [max(uj, p;), min(v;, v;;)] = [max(ug;, i), min(v;;, vj5)] = BU A.

170 71 ij g
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(i) AnB = [min(pfj,ug),max(yg,ug)] = [min(ug,ué),max(ug,l/g)] =BnA.

(i) A+ B = [(ugj + pff — iy - i vy - vi))l = ] + iy — i - o vi] vl = B+ A.

(v) A-B=((uf) - puBovft + vl v vB) = (W B vl —vE v =B A

(v) (AUB)® = ([, vip)] U [(uf, vi)D© = [max(pfy, ), min(vfj, v}

= [min(v}, ), max(usk, D)) = (v, wiy)) O [V, u)] = A°n Be.

On similar lines, the proof of (vi) — (z) can be carried out.

Proposition 2.2 If A = [(,u{}, 1/{2)] € PESM,,xn then the following results can be verified in

accordance with the definition:

(i) (A9 = A (vi) AnP,=A
() (Fu) =P, (vii) ANA=A
(i) (P = P,
, (viii) ANP, = A
(iv) AUA=A

(v) AUP,=DP, (ix) ANP,=P,.

Proposition 2.3 Suppose A & B € PFSM,,«n. The results related to the weighed operations
hold:

(i) (A°@Q,B°)¢ = AQ,B
(ii) (A°$,B°)¢ = A$,,B
(iii) (A€ <, B€) = Ay, B
(iv) AQ,B = BQ,A

(v) A$,B= B$,A

(vi) A<y, B = By, A.
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Proof : Let A= [(,uf‘j, V{?)],B = [(,ug, 1/5)] € PFSMpxn.

For each value of 7, j & w1, ws > 0, we have,

c A B A B ¢
. c c\e __ A A B ,,B _ WiVt wars Wik Hwa
(i) (A*Q,Bc)" = ([(Vij’uij)@w(yijvuij)}) = <[ witwz 0 witws
| wipwepf wivftwar B | AQ. B
- witws 7 witwe - w=

(if)

(48, B°)° = ([0 i) vE. 18))" = ([(wdyer - wByesy e (i) - (uyesyortes |)

= [y - @By e (s - ()i | = 48,8,

Similar proof for (i4i).

(iv)

A B A B
AQ,B = W1k + Waply; W1Vi; + Wal;

)
w1 + Wy w1 + Wy

B A B A
Wkl + W1fy; Wl + WiV

)
wo + W1 wy + Wi

= BQ,A.

A$,B = [((u%)wl . (ug)wﬂm, ((y{;‘,)wl . (Vg)um)m}

. 1
= {((Mf?)wz (pg) ey (vh) (V{?)wl)u@“’wl] — B$,A
Similar proof for (vi).

Proposition 2.4 Suppose A, B & C € PFSMy,xyn. The important results in connection with

associativity of operations are as follows:

(i) (AUB)UC =AU(BU C)
(i) (ANB)NC =AN(BNC)
(iii)) (A+ B)+ C =A+ (B+C)
(iv) (A-B)-C =A-(B-C)

(v) (A@B)AC = A@( BQC)
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(vi) ( A$SB )$C = A$( B$C)

(vii) (A B )xC =Ax (B C).

Proof : For each and every i & j, we get

(i)
(AUB)UC = [(max{pi, pi b, min{v, v D] U [k, vi7)]
= [(max{(,uijvuij) Mzg} mln{( ;;17 5)7 5 )]
= [(max{(uj, (i3, 1))}, minfug, (v, v5)H] = AU(BUC).

(i)
(ANB)NC = [(min{pf, uj} max{vij, v} U (uG, vi))]
= [(min{(:u'ijauij) :U’zj} max{( {;17”5)7”5 )]
= [(min{ (1, (u, 1))} max{vg, (v, vl = AN (BN C).

(iii)

A A
A B C

A
= [(pij + uf}) + Mg - (:U’z'j : Hz‘j) : Mz‘ja (vij - vij) - vy
= iy + (i) + 1)) — miy - (uf - 1), viy - i - v = A+ (B+C).
On similar lines, the proof of (iv) — (vii) can be carried out.

Proposition 2.5 Let A, B and C € PFSM,,«n be three Pythagorean fuzzy soft matrices

then the following results related to distributivity of operations hold:

Proof : For each and every i & j, we have

(i)

A N(BUO) = [(ufy, vin) 0 [(max{p], p}, minf], vG )]

= [(min{pfj, max{pf}, pf}}, max{yj, min{v], vG}})].
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(i) AN(BUC)=(ANB)U(ANC) (i) AQ(BUC) = (AQB) U (AQC)

(i) (ANB)UC =(AUC)N(BUC) (zii) AQ(BNC) = (A@B)N (BaC)

(W) AVBNEY=LAUBIAVCY o) ISiBUE) = (A$BYU (AS0)

(iv) (AUB)NC =(ANC)U(BNC)
(ziv) (AU B)$C = (A$C) U (B$C)

(v) (AN B)aC = (AQC) N (BQC)
(tv) A-(BQC) = (A-B)@(A-C)
(i) (ANB)=C = (A= C)N (BxC)

(zvi) AU(B>=<C)=(AUB) =< (AUCQC)
(vii) (AUB)+C =(A+C)U(B+C)

(viii) (AUB)-C = (A-C)U(B-C) (zvii) A (BUC)=(AxB)U(AxC)
(iz) AU(BGQC) = (AU B)Q(AUC) (zviii) A$(BNC) = (A$B) N (BSC)

(z) (AUB)=C = (A=C)U(B=C) (ziz) (AN B)$C = (A$C) N (BSC).

Now,

(A NB)U(ANC) = [(min{pf, p}, max{vfj, v U [(min{pg, uf}, max{vj, v}]

. . C
= [ma‘x(mln{uijv/Lij}’mln{uijvﬂij}) mln(maX{ 1]7 z]} maX{ z]? z] )]

= [maX<MiAj> min{ﬂijv Mz]}) min(”@?: max{ygv 5 )]

= [min(uf},max{ug,ug}), max(l/l‘zl,mm{yz], vii Dl =AN(BUC).

Hence, A N(BUC) = (ANB)U(ANC) holds.

(ii)
(ANB) UC = [(min{fh, puB}, max{v, v2} U [(uG, v5)]
= [maX(mln{:U’z]nU’U} sz) mln(max{yw, z]}a z]]
Now,

(AUC) N (BUC) = [m&X{/J,”,,U,”} mln{ 1]7 z] ] [ma'x{:u’z]nu'z]} mln{ 57 'S ]

[mln(max{lu’zylu’z_y} maX{:U’z]nU’z]}) max(mln{yw, ’L]} Hllll{l/z], 1]})]
= [min(max{yj, pi}}, i} }), max(min{vj, v7}, v )]

= [max(min{uiylu’ij}’uij}) mln(max{yzg’ ’Lj}’ i )] = (Aﬂ B) uc

Hence, (A NB)UC = (A UC)N(B U(O).

Similarly, the results (iii) — (zix) can be established.
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2.2 Applications in Decision Making

Here, we present an algorithm (Figure 2.1) to solve the decision-making problem by tak-
ing the idea of PFSM into account. For this, we first proposed the revised definition of

choice matrix and its weighted form as follows:

Definition 2.2.1 Consider A = [(,u%, 1/,;;‘.)] € PFSM,,«n be a Pythagorean fuzzy soft matrix,

then the choice matriz of matriz A is

;(%)2 , 1(V{})2
C(A)= = 2 V i when weights are equal.
n n

n n

mx1

Definition 2.2.2 Consider A = [(,uf;», 1/;?)] € PFSMp,«yn be a Pythagorean fuzzy soft matrix,

then the weighted choice matrix of matriz A is given by

3wy ) 2wy

Cw( A)= —, V i where wj > 0 are weights.

mx1

Start

!

Step 1: Construct the
Pythagorean fuzzy soft

Case 2: matrlcei:it::sspondlng Casel:
Unequal weights : Equal weights

Step 2 : Compute the Step 2: Compute the choice
weighted choice matrix of matrix of membership and
membership and non- non-membership value of
membership value of PFSM. PFSM.

Step 3: Choose alternative

with highest membership
value.

Finish
Figure 2.1: Flow Chart of the Algorithm for Decision Making

Example 2.1 Consider an automobile company which produces three types of car ci,ca,cs3,
i.e., U ={c1,co,c3}. Let E = {e1,ea,e3} be a set of criteria representing, good mileage (ey),

comfort (e2), good power steering (e3) on the basis of which a customer has to decide which car
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to be purchased. Then the above problem can be model by considering the Pythagorean fuzzy
soft set (G, E) over U, where G is mapping G : E — P(U) which provides the description of

car on the basis of different criteria.

e Step 1: Construct the Pythagorean fuzzy soft matrix:

e1 ) es
¢ (0.8,0.5) (0.6,0.6) (0.8,0.2)
¢y (0.6,0.5) (0.7,0.4) (0.8,0.4)
cs (0.5,0.7) (0.7,0.6) (0.9,0.3)

A=

e Step 2:

— Case 1: Equal weights

Evaluate the choice matrix for the Pythagorean fuzzy soft matrix A as :

(0.5467,0.2167)
C(A)=| (0.4967,0.19)
(0.5167,0.3133)

— Case 2: Unequal weights
If the weights 0.2, 0.6, 0.2 are given for the parameters good mileage, comfort, good power

steering respectively then the weighted choice matrix for A is as

(0.472,0.274)
Cw( A)=| (0.494,0.178)
(0.506, 0.332)

e Step 3:

— Case 1 (Equal weights): From the matrix obtained in Step 2, it is clear that
if we give equal preference for all the parameters, we have 0.5467 as the high-
est membership value, i.e., of car ¢;. Therefore, in this case the most suitable car

for the customer would be ¢;.

— Case 2 (Unequal weights): However, it may also be observed that if the cus-
tomer gives preference for the parameter “comfort” over the other parameters, then
0.506 being the highest membership value for car c3. Therefore, in this case the most

suitable car for the customer would be cs.
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2.3 PFSM in Medical diagnosis

By reframing the definitions of score/utility matrix, an algorithm (Figure 2.2) to solve the

medical diagnosis problem has been provided in this section.

Definition 2.3.1 If A = [(uiAj,I/{;‘-)} € PFSMy,«n, then the score matriz of Pythagorean
fuzzy soft matriz A is given by S(A) = [si;] = [((,uf‘j)2 - (1/{3‘-)2)] for all i and j. In literature,
the (i, j)th entry of the score matriz is considered to be an important index for measuring the
optimized magnitude of the belongingness/non-belongingness ofith patient having a chance of

jth disease.

Definition 2.3.2 If A = [(M‘{‘j,ug)],B = [(ug, vE)] € PFSM,,xy, then the utility matriz of
Pythagorean fuzzy soft matrices A and B is given by U(A, B) = [uijlmxn = [S(A) — S(B)]
Y iand j. It may also be noted that the (i,j)th entry of the utility matrixz represents another
important index for measuring the mized magnitude of the belongingness in connection with its

non-belongingness ofith patient having a chance ofjth disease.

Start

Step 1 : Construct the Step 2 : Compute the
Pvt_hagorean fuzzy _soft complement matrices of the
matrices corresponding to Pythagorean fuzzy soft
the PFSSs. i matrices.

}

Step 3 : Determine the Max-
Min product of the
Pythagorean fuzzy matrices.

Step 5 : Determine the Step 4 : Compute the Score
Utility matrix matrix.

l

Step 6: Evaluate the best
alternative for which U is . P
—
maximum. | j FII‘IISh 4

Figure 2.2: Flow Chart of the Algorithm for Medical Diagnosis

In order to break the tie in the repeating values obtained in Step 6, we have to reassess

the characteristic values for symptoms and proceed from Step 1 to Step 6 again.
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Now, to demonstrate the process of algorithm, the methodology has been presented with

the help of numerical example as follows:

Example 2.2 [0/ “Suppose a doctor wants to make a proper diagnosis D = {d1, da,ds, dys,ds};
where dy is Viral fever, do is Malaria, ds is Typhoid, dy is Stomach problem and ds is Chest
problem, for a set of patients P = {Ted, Al, Bob, Joe} with the values of symptoms V =
{v1,v9,v3,v4,v5}; where vy is temperature, vy is headache, vs is Stomach pain, vy is cough

and vs s chest pain.”

e Step 1: To understand the problem mathematically, we consider PFSS (F, V') over P,
where F'is mapping F' : V' — P(P) which represents the description of patient’s symptoms

in the hospital.
Step 1:
F

(v1)

F(vg)

(F\V) =4 F(uv3)
(v4)

(vs)

vy Al,0.8,0.1), (Bob, 0.0,0.8), (Joe, 0.8,0.1), (Ted, 0.6,0.1)}
Al,0.6,0.1), (Bob,0.4,0.4), (Joe,0.8,0.1), (Ted, 0.5,0.4)}

{( ) ( ) ( ) ( )
{( ) ( ) ( ) ( )
{(A1,0.2,0.8), (Bob, 0.6,0.1), (Joe, 0.0,0.6), (Ted, 0.3,0.4)}
{( ) ( ) ( ) ( )
{( ) ( ) ( ) ( )

!

Al,0.6,0.1), (Bob,0.1,0.7), (Joe,0.2,0.7), (Ted, 0.7,0.2)}
Al,0.1,0.6), (Bob,0.1,0.8), (Joe, 0.0,0.5), (Ted, 0.3,0.4)}

V4

F

Us

Further, we transform the PFSS to following PFSM as follows:

U1 Vo V3 N Vs
Al (0.8,0.1) (0.6,0.1) (0.2,0.8) (0.6,0.1) (0.1,0.6)

M = Bob (0.0,0.8) (0.4,0.4) (0.6,0.1) (0.1,0.7) (0.1,0.8)
Joe (0.8,0.1) (0.8,0.1) (0.0,0.6) (0.2,0.7) (0.0,0.5)
Ted (0.6,0.1) (0.5,0.4) (0.3,0.4) (0.7,0.2) (0.3,0.4)

Now, we take the PFSS (G, D) over V', where G : D — P (V).

dy
do

(d1) = {(v1,0.4,0.0), (v2,0.3,0.5), (v3,0.1,0.7), (v4,0.4,0.3), (vs5,0.1,0.7)}
(d2) = {( ) ( ) ( ) ( ) ( )
(G,D) =14 G(ds) = {(v1,0.3,0.3), (v2,0.6,0.1), (v3,0.2,0.7), (v4,0.2,0.6), (v5,0.1,0.9)}
(ds) = {( ) ( ) ( ) ( ) ( )
(ds) = {( ) ( ) ( ) ( ) ( )

01,0.7,0.0), (v2,0.2,0.6), (v3, 0.0,0.9), (vg,0.7,0.0), (vs,0.1,0.8)}

dy 01,0.1,0.7), (v2,0.2,0.4), (vs,0.8,0.0), (v4,0.2,0.7), (vs,0.2,0.7)}
ds 01,0.1,0.8), (v2,0.0,0.8), (v3,0.2,0.8), (v4,0.2,0.8), (vs,0.8,0.1)}

Q

Next, we construct the PFSM N as follows:
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dy da ds dy ds

v; (0.4,0.0) (0.7,0.0) (0.3,0.3) (0.1,0.7) (0.1,0.8)
v 2 (03,05) (02,06) (0.6,01) (02,04) (0.0,08)
vs (0.1,0.7) (0.0,0.9) (0.2,0.7) (0.8,0.0) (0.2,0.8)
vy (0.4,0.3) (0.7,0.0) (0.2,0.6) (0.2,0.7) (0.2,0.8)
vs (0.1,0.7) (0.1,0.8) (0.1,0.9) (0.2,0.7) (0.8,0.1)

e Step 2: In this step, we evaluate the complement matrices corresponding to the PFSMs

M and N as follows:

U1 V2 U3 U4 Vs
Al (0.1,0.8) (0.1,0.6) (0.8,0.2) (0.1,0.6) (0.6,0.1)
M®= Bob (0.8,0.0) (0.4,0.4) (0.1,0.6) (0.7,0.1) (0.8,0.1)
Joe (0.1,0.8) (0.1,0.8) (0.6,0.0) (0.7,0.2) (0.5,0.0)
Ted (0.1,0.6) (0.4,0.5) (0.4,0.3) (0.2,0.7) (0.4,0.3)

dy do ds dy ds
v (0.0,0.4) (0.0,0.7) (0.3,0.3) (0.7,0.1) (0.8,0.1)
e v (05.03) (06.02) (01,06) (0.4,02) (08,0.0)
v (0.7,0.1) (0.9,0.0) (0.7,0.2) (0.0,0.8) (0.8,0.2)
v (0.3,0.4) (0.0,0.7) (0.6,0.2) (0.7,0.2) (0.8,0.2)
vs (0.7,0.1) (0.8,0.1) (0.9,0.1) (0.7,0.2) (0.1,0.8)

e Step 3: In this step, we find the max-min products of the obtained PFSMs.

dy do ds dy ds
Al (0.4,0.1) (0.7,0.1) (0.6,0.1) (0.2,0.4) (0.2,0.6)
Ri=M=xN= Bob (0.3,0.5) (0.4,0.6) (0.4,0.4) (0.6,0.1) (0.2,0.8)
Joe (0.4,0.1) (0.6,0.1) (0.7,0.1) (0.2,0.4) (0.2,0.5)
Ted (0.7,0.1) (0.7,0.1) (0.5,0.3) (0.3,0.4) (0.3,0.4)
dy do ds dy ds
Al (0.7,0.1) (0.7,0.2) (0.7,0.1) (0.6,0.2) (0.8,0.2)
Ry =M xN“= Bob (0.7,0.1) (0.8,0.1) (0.8,0.1) (0.7,0.1) (0.8,0.1)
Joe (0.6,0.1) (0.6,0.1) (0.6,0.1) (0.7,0.2) (0.7,0.2)
Ted (0.4,0.3) (0.6,0.3) (0.4,0.3) (0.4,0.3) (0.4,0.3)
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e Step 4: Next, we compute the score matrices for the PFSMs R; and R as follows:

dy do ds dy ds
Al 0.15 0.48 0.35 —0.12 —0.32
S(R1) = Bob —0.16 —0.20 0.0 0.35 —0.60
Joe 0.15 .35 0.48 —0.12 —0.21
Ted 0.48 0.48 0.16 —0.07 —0.07
dy do ds3 dy ds
Al A48 0.45 0.48 0.32 0.60

S(R2) = Bob 0.48 0.63 0.63 0.48 0.63
Joe 0.35 0.35 0.35 0.45 0.45
Ted 0.07 0.27 0.07 0.07 0.07

e Step 5: In this step, we find the utility matrix of S(R;) & S(Ra).

dy da ds3 dy ds
Al —0.33 0.03 —0.13 —0.44 —0.92
U= Bob —0.64 —0.83 —0.63 —0.13 —1.23
Joe —0.20 0.0 0.13 —0.57 —0.66
Ted 0.41 0.21 0.09 —0.14 —0.14

e Step 6: By observing the entries of the utility matrix obtained above, it probably
appears that Alis suffering from Malaria(ds), Bob is suffering from Stomach problem

(dy), Joe is suffering from Typhoid (d3) & Ted is suffering form Viral fever (d;).

Observations : In order to carry out a valid comparative study, we have compared the results
obtained by the proposed methodology with the results of various existing methodologies for

the same diagnosis problem.

Al Bob Joe Ted

sY i8] Viral fever | Stomach Problem | Typhoid | Viral fever

Szmidt & Kaeprzyk-'la] Viral fever | Stomach Problem | Typhoid Malaria
[140]

Sec Malaria | Stomach Problem | Typhoid | Malaria
Wei et al.[2¥) Malaria | Stomach Problem | Typhoid | Viral fever
p=1 sgﬂ,ﬂ Malaria | Stomach Problem | Typhoid | Viral fever

5,071 Malaria | Stomach Problem | Typhoid | Viral fever

Proposed Algorithm Malaria | Stomach Problem | Typhoid | Viral fever

Figure 2.3: Comparative study w.r.t Existing Methodologies
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2.4 Conclusion

The concept of the Pythagorean fuzzy soft matrix has been well established along with its var-
ious types and properties. Valid proofs for the proposed properties over the matrices have also
been provided. Further, the proposed algorithms for decision making by using choice matrix
and weighted choice matrix and for medical diagnosis problem by using score and utility matrix
have been successfully implemented with the help of numerical example for each. Further, the
comparative analysis shows that the results of the proposed methodology is equally consistent

with the results of various other existing methods available in literature.
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Chapter 3

Pythagorean Fuzzy Decision Making
With Dimensionality Reduction

Dimensionality reduction is a methodology that set out to broaden an arrangement of set of
high dimensional data to a lower dimensional data while acquiring the important feature in the
data. Because of the inherited disadvantage of dimensionality, the machine learning and data
mining techniques may not be successful for high dimensional data. There are two notewor-
thy techniques for dimensionality reduction - feature selection and feature extraction/feature

reduction.

The problem of dimensionality reduction by utilizing the notion of Pythagorean fuzzy soft matrix
(PFSM) has not been addressed yet. In this chapter, in order to handle the parametrization
tool in a more effective way, we have suitably extended the literature for reducing the di-
mensionality of data and compared with the existing methodologies. The definition of the
object-oriented PFSM, the parameter-oriented PFSM and the technique to find the thresh-
old element and corresponding threshold value of the PFSM have also been presented in order
to propose the algorithm for the dimensionality reduction of the informational data. The com-
parative analysis along with the advantages of the proposed algorithm has also been presented

with the help of numerical examples.
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3.1 Algorithm for Dimensionality Reduction

In this section, we propose a new algorithm for the dimensionality reduction of informational
data along with the definitions of object-oriented Pythagorean fuzzy soft matrixz and parameter-

oriented Pythagorean fuzzy soft matriz.
In general, consider X = {x1, 9, ...,z } be the universe of discourse with the set of pa-

rameters F = {ej, ea,...,e,} and M be the PFSM of the PFSS (F, E).

Definition 3.1.1 The object-oriented Pythagorean fuzzy soft matrixz with respect to the pa-

rameters is defined as:
Hij Vij
0; = — —; (3.1.1)
i R

where, t =1,2,....,m and j =1,2,...,n.

Definition 3.1.2 The parameter-oriented Pythagorean fuzzy soft matriz with respect to the

objects is defined as:

Hij Vij
P; = ; 3.1.2

where, 1 =1,2,...,mand j =1,2,...,n.

Definition 3.1.3 [6] If M = [(,uf\]/-[, v € PFSM,yxn, then the score matriz of Pythagorean

fuzzy soft matriz M is given by

S(M) = [si) = [((nl})> = W] Vi and j; (3.1.3)

v

where, t =1,2,....,m and j =1,2,...,n.

Definition 3.1.4 The threshold value of Pythagorean fuzzy soft matriz is defined as S(T) =

()2 — (M)2, where

Hij Vij
T = = N 3.1.4

andt=1,2,...,mand j=1,2,...,n.

In view of above definitions and by taking the idea of PFSM into account, an algorithm for

the dimensionality reduction of data has been provided in the Figure 3.1.
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Start

l

Find the object oriented PFSM O; &

Construct the compute its Score Values S(0;)
Pythagorean fuzzy — » and
Soft Matrix (PFSM) the parameter oriented PFSM P; &

compute its Score Values S(P;)

|

Compute the Threshold
<+— element T of the PFSM and its
Threshold Value S(T)

Suppress those objects for
which $(0;) < S(T) and
those parameters for
which S(P;) > S(T)

|

The obtained Pythagorean The object corresponding to

fuzzy soft matrix is the ——>  the highestScorevalue —>  Finish
desired dimensionality 5(0,) is the best one
reduced matrix

Figure 3.1: Flow Chart of Algorithm for Dimensionality Reduction

3.2 Application in Decision Making

For the better understanding of the proposed algorithm, the step by step implementation of

the methodology has been present with the help of numerical example.

Example 3.1 Let us assume that a person wants to buy a house from the set of houses X =
{x1, 22,23, 24,25} and the parameter under consideration are E = {e1,ea,e3,e4} where, e :
expensive house, es : modern beautiful house, es : wooden house in green surrounding, eq4 : cheap
in bad repair house. Then the attractiveness of the house is described by the Pythagorean fuzzy

soft set

(F,E) = {F(e1),F(e2),F(e3),F(es)} where F: E — PFS(X)

and

Fler) = {(1,0.7,0.2), (22,0.9,0.1), (23, 0.4,0.8), (4,0.3,0.7), (x5, 0.8,0.2)}
Fles) = {(21,0.5,0.6), (,0.2,0.6), (z3,0.6,0.5), (x4,0.5,0.5), (x5,0.9,0.1)}
Fles) = {(21,0.6,0.4), (2,0.3,0.8), (z3,0.7,0.3), (x4,0.9,0.1), (x5, 0.6,0.6)}
F(eq) = {(21,0.4,0.3), (22,0.8,0.4), (x3,0.7,0.4), (24,0.9,0.2), (z5,0.7,0.5) }
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For implementing the proposed algorithm taking the above problem into consideration, the

computational steps are as follows:

- Step 1. Construct the PFSM as follows:

el e e3 eq
21 {(0.7,02) (0.5,0.6) (0.6,0.4) (0.4,0.3)
2o | (0.9,0.1) (0.2,0.6) (0.3,0.8) (0.8,0.4)
M = 25| (0.4,0.8) (0.6,0.5) (0.7,0.3) (0.7,0.4)
24| (0.3,0.7) (0.5,0.5) (0.9,0.1) (0.9,0.2)
25 \ (0.8,0.2) (0.9,0.1) (0.6,0.6) (0.7,0.5)

- Step 2. Evaluate the object oriented PFSM O; for ¢ = 1,...,5 and parameter oriented
PEFSM P; for j =1,...,4.

el €2 €3 €4 O,
21 [ (07,02)  (05,06)  (0.6,04)  (0.4,03) (0.55,0.375)
w2 | (09,01)  (02,06) (03,08  (0.8,04) (0.55,0.475)
Lo m| 0408 (0605 (07.03)  (0.7.04)  (0.60,0.500)
za| (03,07  (0505)  (0.9,01)  (0.9,0.2) (0.65,0.375)
zs| (08,02  (09,01) (06,06  (0.7,0.5)  (0.75,0.350)

P; \ (0.62,0.40) (0.54,0.46) (0.62,0.44) (0.70,0.36)
Next, the score matrix of objected oriented matrix S(O;) and parameter oriented matrix

S(Pj) is given as:

e e €3 eq O; S(05)
1 (0.7,02)  (0.5,06) (0.6,04)  (0.4,0.3) (0.55,0.375) 0.161875
za (0.9,0.1)  (0.2,0.6)  (0.3,0.8)  (0.8.0.4) (0.55,0.475) 0.076875
T3 (0.4,0.8)  (0.6,0.5)  (0.7.0.3)  (0.7.04) (0.60,0.500)  0.11
x4 (0.3,0.7)  (0.5,05)  (0.9,0.1)  (0.9,0.2) (0.65,0.375) 0.281875
o5 (0.8,0.2)  (0.9,0.1)  (0.6,0.6)  (0.7.0.5) (0.75,0.350)  0.44
P, | (0.62,0.40) (0.54,0.46) (0.62,0.44) (0.70,0.36)
S(P;) 0.2244 0.08 0.1908 0.3604

- Step 3. In this step, we determine the threshold element and threshold value of the PFSM

obtained in Step 1 as:

T= [(0.62, 0.415)] and S(T) = 0.212175.
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- Step 4. Next, we suppress/remove those alternatives and parameters for which the condition

S(0;) < S(T) and S(P;) > S(T') holds respectively.

Hence, after suppressing the alternatives and parameters, we obtained our reduced matrix

M’ as follows:

€9 €3 S(OZ)
24 (0.5,0.5) (0.9,0.1) 0.281875
M = g (0.9,0.1) (0.6,0.6)  0.44

S(P)\ 008  0.1908

In the above reduced matrix, the score value for house x5 is greater than the score value of

the house z4. Thus, the person will choose the house x5.

3.3 Comparative Analysis and Advantages

In this section, we carry out a comparative analysis to validate the performance of the proposed
methodology in contrast with an existing approach. The detailed analysis and advantages of

using the proposed approach along with illustrative example [140] are presented below:

Example: Consider 5 stock sets with high price -earning ratio given by U = {z1, 2, 3, 4,5}
and 4 sets of evaluation criteria given by A = {e1, ea, €3, €4}, where e; : market trend, es : policy
orientation, es : annual report performance, e4 : circulation market value. The available data

in the form of PFSS presented as follows:

e €2 €3 €4

z1 (0.5,0.7) (0.6,0.6) (0.5,0.6) (0.4,0.7)
z2 (0.6,0.6) (0.6,0.4) (0.7,0.5) (0.8,0.4)
zs (0.8,0.6) (0.8,0.3) (0.9,0.2) (0.6,0.2)
ay (0:8;04) (0.4.0:8) (0:.7,06) (0:8,0.5)
Ty ADr06) (0.5:06) 06,030 (04,0:6)

The solution based on the methodology outlined by [140] is as follows:
The score value of the each stock is given by s(p1) = —0.1265, s(p2) = 0.2052, s(p3) = 0.5763,
s(ps) = 0.0375, s(ps) = 0.0945, where p; is the aggregated /integrated representative identity

corresponding to each z;.
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Obviously, s(ps

x3 for investment.

) > s(p2) > s(ps) > s(ps) > s(p1), therefore, the investor will choose stock

On the other hand, if we perform our proposed methodology on the same problem, we

find the computations as below:

- Step 1. Construct the PFSM as:

- Step 2. Evaluate the object oriented PFSM O; for i
PFSM P; for j =1,...

1
T2
x3
Ty
x5

P

M= g

€1
21 [ (0.5,0.7)
22| (0.6,0.6)
23 | (0.8,0.6)
24| (0.8,0.4)
25 \ (0.7,0.6)

4.
e1 e
(0.5,0.7) (0.6,0.6)
(0.6, 0.6) (0.6,0.4)
(0.8,0.6) (0.8,0.3)
(0.8,0.4) (0.4,0.8)
(0.7,0.6) (0.5,0.6)

(0.68,0.58) (0.58,0.54) (0.68,0.44) (0.60,0.48)

€2 €3
0.6,0.6
0.6,0.4
0.8,0.3
0.4,0.8

AA/.\,.\,.\
MRS ANTEA At R O¢ N5
. T e

0.5,0.6

€3
(0.5,0.6)
(0.7,0.5)
(0.9,0.2)
(0.7,0.6)
(0.6,0.3)

0.5,0.6
0.7,0.5
0.9,0.2
0.7,0.6
0.6,0.3

€4
0.4,0.7
0.8,0.4
0.6,0.2
0.8,0.5

Ny RSt N N O
D P S
o7 BREsy R N 2

0.4,0.6

= 1,...,5 and parameter oriented

eq O;
(0.4,0.7) (0.5,0.65)
(0.8,0.4)  (0.675,0.475)
(0.6,0.2)  (0.775,0.325)
(0.8,0.5)  (0.675,0.575)
(0.4,0.6)  (0.550,0.525)

Next, the score matrix of objected oriented matrix S(0O;) and parameter oriented matrix

S(P;j) is given as:

€1
(0.5,0.7)
(0.6, 0.6)
(0.8,0.6)
(0.8,0.4)
(0.7.0.6)
(0.68, 0.58)

)\ 0.126

(0.58,0.54)  (0.68,0.44)

0.0448

€3 €4
(0.5,0.6)  (0.4,0.7)
(0.7,0.5)  (0.8,0.4)
(0.9,0.2)  (0.6,0.2)
(0.7,0.6)  (0.8,0.5)
(0.6,0.3)  (0.4,0.6)

0.2688 0.1296
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(0.60,0.48)

0; S(0y)
(0.5,0.65)  -0.1725
(0.675,0.475)  0.23
(0.775,0.325)  0.495
(0.675,0.575)  0.125
(0 )

.550,0.525) 0.026875




- Step 3. In this step, we determine the threshold element and threshold value of the PFSM

obtained in Step 1 as:

T = [(0.635, 0.51)] and S(T) = 0.143125.

- Step 4. Next, we suppress/remove those alternatives and parameters for which the condition

S(0;) < S(T) and S(P;) > S(T) holds respectively.

Hence, after suppressing the alternatives and parameters, we obtained our reduced matrix

M as follows:

el e e3 S(0;)

- (0.6,0.6) (0.6,0.4) (0.8,0.4) 0.23

M = gz, (0.8,0.6) (0.8,0.3) (0.6,0.2) 0.495
S(Pj) 0.126 0.448 0.1296

In the above reduced matrix, the score value for stock x3 is greater than the score value for

stock x9, therefore, the investor will prefer to invest in the stock x3.

Comparative Remarks and Advantages of Proposed Work:
In the light of above investigation, the significant comparative remarks and advantages of the

proposed work are as follows:

e The methodology utilized by Peng et al.[140] to solve the problem of decision-making
doesn’t incorporate the theory of dimensional reduction, whereas the proposed method-
ology has first dimensionally reduced the undesirable data and afterward worked out to

find the optimal alternative i.e., the stock z3 is the most suitable choice for investment.

e Thus, the proposed algorithm for dimensionality reduction is found to be equally reliable,
consistent, practicable and better enough for solving decision-making problems by using

the notion of PFSM in contrast with the methodologies available in the literature.

e The proposed dimensionality reduction technique associate with the theory of matrices

and will prove to be widely applicable in other real world application problems.

e The proposed methodology can also be utilized in the case of large informational data

set under the framework of PFSMs.
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3.4 Conclusion

In this chapter, an algorithm to reduce the dimensionality of the informational data by utilizing
the notion of PFSM has been provided successfully along with the reframing of the definitions
of object and parameter oriented PFSMs. Also, a new approach to find the threshold ele-
ment and its corresponding threshold value has been presented. In order to demonstrate the
methodology of the proposed technique a numerical example has been taken into account. A
valid comparative study has been provided to show the consistency, practicability, reliability
and flexibility of the proposed algorithm in contrast with the existing methodology. The ob-
tained results also validate our contribution and advantages of the proposed algorithm which

effectively deal with the dimension reduction.
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Chapter 4

Parametric Pythagorean Fuzzy
Entropy Measure

In this chapter, we propose a new parametric Pythagorean fuzzy (R, S)-norm entropy measure
and also devise two methodologies for finding the criteria weights by incorporating the entropy
measure. Empirically, we have also studied the maximality feature and monotonicity of the pro-
posed entropy measure w.r.t. the parameters R & S. An algorithm to solve the multi-criteria
decision-making problem by utilizing the proposed entropy measure has also been presented for
two different cases- criteria weights are unknown; criteria weights are partially known. In or-
der to demonstrate the methodology of the proposed algorithm, each considered case has been

dealt separately with the help of numerical examples.

4.1 Parametric (R, S)-norm Entropy Measure

Recently, Joshi and Kumar [102] proposed and studied a real valued probability distribution

function associated with the random variable X = {z1,232,...,z,} which is given as:
n é n %
Rx S "
i~ 555 | (Sn) - ()| 4Ly
i=1 i=1

where 0 < S<land 1< R<oo,or0<S<landl< R < 0.
In particular, this measure reduces to the measure presented by Boekee and Lubbe [30] if the
value of S=1 or R=1 as well as if we consider the case R = 1 and S — 1 or vice-versa then

this entropy measure reduces to Shannon’s [16] entropy.
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In view of the definition of entropy measure given by Hung & Yang [129] under intuitionis-
tic fuzzy set, we reframe the definition of entropy measure for Pythagorean fuzzy set as follows:
Let there be a real valued function H : X —[0, 1]. Then H is a Pythagorean fuzzy entropy

measure if and only if it satisfies the following axioms:

(PFS1) Sharpness : H(M) =0 iff M is a crisp set, i.e., up(z;) =0, var(z;) = 1; or
pn(zi) =1, vag(a;) = 05 Va; € X

(PFS2) Maximality : H(M) is maximum iff

wnr(x) = var(a) = () = \}g‘v’xi e X.

(PFS3) Symmetry : H (M) = H(M°).

(PFS4) Resolution : H(M) < H(N)iff M C N,i.e., up(x;) < pn(z;) and var(x;) >
vn(z;) for pn(x;) <wn(x;) or if pas(z;) > pn(z;) and vasr(z;) < vn(x;) for pn(z;) >

I/N($i) Vo €X.

For consideration of Pythagorean fuzzy information, the following entropy measure (4.1.2) is

being proposed:

n 1 1
(RRE 2) > % [(HM ()% + v (2:)2% + mar (2)25) S — (par(20) 2R 4 vag (20) 2R + mar (20)2R) B |
i=1

where R, S > 0; either0< S<landl<R<owor0<R<land1l<S < oo,

3 1
HS(M) = n(TR—D igl {1 — (ar ()P + vag ()28 + mag (2)2F) B } , where S=1, R>0, R#1,
R

—% i (#M(%‘)Qlog (#M(%‘)Q) + var(z4)?log (VM($¢)2) + ms (24)%log (7TM (931')2)) ,

where R=1and S—1lorS=1and R—1

(4.1.2)

Theorem 4.1 The entropy measure given by equation 4.1.2 is a valid Pythagorean fuzzy in-

formation measure.
Proof : It is sufficient to prove that the axioms PFS1 to PFS4 hold.

e (PFS1) (Sharpness): If H5(M) = 0, then

I
e

1 1
(MM(-TZ')25 + VM(xi)2S + WM(xi)zs) S (MM(CUZ')QR + VM(fEi)2R + 7_(_]\/[(xi)ﬂ%) R
Since R, S >0 (R # 1 # S), therefore, only following possibility arises:
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— Either pup(x;) = 1, ie., vpr(a;) = mar () =0,
— vp(x;) = 1 e, ppr(x;) = mar(x;) =0,

— mp(xg) = 1ie., par(s) = var(x;) = 0.

Looking at the above cases we can say that M is a crisp set. Similarly, converse can be
proved.

e (PFS2) (Maximality) :
In section 4.2, we have empirically proved that H3(M) is maximum iff

1
V3
M) by calculating its hessian at the crit-
ical point, i.e —L

7 with particular values of R and S. The Hessian of Hg(M) is as
[R>1(=3)and S <1 (=0.3)]:

pnr (i) = var (@) = mar(wi) =

Analytically, we prove the concavity of the H g(

—10.4589 2.232816 2.232816

2
H}%(M):E 2.232816 —10.4589 2.232816

2.232816 2.232816 —10.4589

It may be observed that H5 (M) is a negative semi-definite matrix for different possible

values of R and S which shows that it is a cancave function. Hence, the concavity of the

function establish the maximality property.

e (PFS3) (Symmetry) : It is obvious from the definition that

H(M) = Hy(M").

o (PFS4) (Resolution) : We have
(e = G5 ) | (ot = 5|

V3
[

|
3
) () - )

because if pay(2;) < pn(as) and vag(es) < vy ()
1

and

with max {un(z;), vy (x;)} < %7

then ppas(x;) < pn(x;) < %; v (i) < vn(z;) < which

NG and mpr(x;) > 7y (a;) > %
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implies that the above result holds. Similarly, if pps(z;) > pn(z;) and vas(z;) > va(z;)
with max {par (i), var(z;)} > \1[ then also the above result holds.

Now, since H R(M ) is a concave function on the Pythagorean fuzzy set M, there-
fore, if max{uns(z;), var(zi)} < % then, pps(x;) < pn(x;) and vy (z;) < vy (x;) implies
() > v () > %

Therefore, by the above explained result, we conclude that H Ig(M ) satisfies condition of

resolution PFS4.

1

Similarly, if min{pas(z;), var(zi)} > et then pp(x;) < pn(x;) and vpr(x;) >

vn(z;). By using the above proved result, we conclude that Hg (M) satisfies the condi-
tion PFS4.

Hence, H E(M ) satisfies all the axioms of Pythagorean fuzzy entropy and therefore, H }%(M ) is

a valid measure of Pythagorean fuzzy information.

Theorem 4.2 Suppose M and N are two PFSs over X = {z1,x9,...,2,} where M =
{< @i, ppr (i), vp(x) > wp € Xyand N = {< a, un(zi), vn(x;) >| z; € X} such thatV x; €
X either M C N or N C M. Then

HE(MUN)+ Hy(MNN) = Hp(M)+ Hp(N).

Proof : First, we partition X into two sub-divisions X; & X such that
Xi={x;€e X | M C N}, ie, pp(zs) < pn(xs), vamr(z) > vn(z) Vo € Xy
Xy = {:cl eX | N C M}, i.e., /LM(J:Z) > ,uN(:ci), VM(a;,) < VN(xi) YV x; € X.

Now
o= P e
which implies
HZ(MUN) = ;3@ o (xzz - (:VNJ(FW)N( 3272( )23)%
S);i (tes (wz();l VM (:VMJ(FW)M(jZ( -



Similarly,

()25 + var (:)® + s (2 )25)

HS(M O N) = R xS 1 (par )

f (R=85)&n — (par ()" + war (20) 27+ g (a0)21) 7
RxS 1| (en(@:) +un(@)® + (e )23)
B=%m | = (uw(@)®™® + vy (@) + my(:)2)

On adding the above two terms, we get

Hi(MUN) + H(MON)=Hy(M)+ H(N).

Theorem 4.3

HE(M) = H(M¢) = H3(M U M) = Hg(M N M°).

Proof : The proof can easily be carried out.

4.2 Monotonic Nature of Proposed Entropy Mea-

sure

The study of maximality and monotonic behaviour of the proposed entropy measure has been
carried out in an empirical way. Here, we take four different Pythagorean fuzzy sets My, Mo,

M3 and My over the universe of discourse X = {1 ,z2 ,z3 }:

My = {(a1, } \/5)7(9327\}5,\}3),(%3,\}3,\}3)};
M2 = {(xl, 6 (ZL’Q, 0.7,0.7),(.7}3, 0.55,0.55)};

-6),
Ms = {(z1, 0.5,0.6), (x2, 0.2,0.9), (3, 0.9,0.3)};
)

)
My = {(z1, 0.4,0.8), (2, 0.9,0.4), (x5, 0.7,0.6)}.

Different values of parameters have been taken for detailed study and tabulated the computed
values in Table 4.1. On the basis of the tabulated data, the plots are given below in Figure 4.1.

It is quite clear that H5 (M) takes maximum value when
1
wn(x) = var(x) = () = %; Vz; € X;
and is a monotonically decreasing function of R and S.
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Table 4.1: Values of Entropy Measure

S R= 0.15 R = .25 R =04
HE(My)| Hg(Ma) HZ(Ms) HE(Ma) Hg (M) HZ(M2)| HS(Ms) Hg(Ma) HE(My)| He (M) Hg(Ms) HE(Ms)
1.2 | 86.508 | 74.420 | 62.939 | 66.134 | 8.263 7.241 6.162 6.464 2.618 2.327 1.962 2.065
1.7 | 83.052 | 71.448 | 60.420 | 63.489 | 7.727 6.773 5.753 6.038 2.385 2.122 1.771 1.868
2.5 | 80.576 | 69.319 | 58.613 | 61.592 | 7.356 6.449 5.467 5.740 2.228 1.983 1.637 1.730
5 | 78.100 | 67.190 | 56.806 | 59.692 | 6.996 6.133 5.188 5.446 2.079 1.850 1.509 1.594
7 | 77.420 | 66.604 | 56.309 | 59.170 | 6.899 6.048 5.113 5.366 2.039 1.814 1.476 1.557
10 | 76.917 | 66.172 | 55.942 | 58.784 | 6.828 5.985 5.058 5.308 2.010 1.788 1.451 1.530
20 | 76.339 | 65.674 | 55.520 | 58.340 | 6.746 5.912 4.995 5.241 1.977 1.756 1.423 1.499
40 | 76.053 | 65.427 | 55.311 | 58.120 | 6.706 5.877 4.963 5.208 1.961 1.741 1.409 1.484
50 | 75.996 | 65.378 | 55.270 | 58.076 | 6.698 5.869 4.957 5.201 1.958 1.738 1.406 1.481
70 | 75.931 | 65.322 | 55.222 | 58.026 | 6.689 5.861 4.950 5.194 1.954 1.734 1.403 1.477
100| 75.882 | 65.280 | 55.187 | 57.989 | 6.682 5.855 4.945 5.188 1.951 1.731 1.401 1.475
200| 75.826 | 65.231 | 55.145 | 57.945 | 6.675 5.848 4.939 5.182 1.948 1.728 1.398 1.472
500| 75.792 | 65.202 | 55.120 | 57.919 | 6.670 5.844 4.935 5.178 1.946 1.726 1.396 1.470
700| 75.788 | 65.198 | 55.116 | 57.914 | 6.652 5.839 4.934 5.177 2.080 1.721 1.396 1.470
S R= 0.50 = 0.70 = 0.95
HR(My)| HE(M2) HE(Ms) Hp(Mas) HE(My)| HR(Ma) HR(Ms) HE(Ms) H(Mi) Hp(Ms)| HE(Ms) HE (M)

1.2 | 1.858 1.659 1.378 1.457 1.291 1.158 0.924 0.989 1.034 0.930 0.701 0.764
1.7 | 1.674 1.496 1.220 1.296 1.149 1.031 0.792 0.856 0.912 0.821 0.579 0.641
2.5 | 1.552 1.388 1.110 1.182 1.054 0.947 0.699 0.759 0.831 0.750 0.494 0.551
5 | 1.436 1.284 1.005 1.069 0.965 0.868 0.612 0.662 0.756 0.681 0.417 0.459
7 | 1.405 1.256 0.978 1.038 0.942 0.846 0.590 0.636 0.736 0.662 0.398 0.435
10 | 1.383 1.235 0.958 1.016 0.925 0.829 0.574 0.616 0.722 0.646 0.385 0.417
20 | 1.358 1.210 0.935 0.990 0.906 0.808 0.556 0.595 0.706 0.627 0.369 0.397
40 | 1.346 1.197 0.924 0.977 0.897 0.797 0.547 0.584 0.698 0.616 0.361 0.388
50 | 1.343 1.195 0.922 0.975 0.895 0.795 0.545 0.582 0.696 0.614 0.360 0.386
70 | 1.340 1.192 0.919 0.972 0.893 0.793 0.543 0.580 0.694 0.612 0.358 0.384
100 | 1.338 1.190 0.917 0.970 0.891 0.791 0.541 0.578 0.693 0.610 0.356 0.382
200 1.336 1.187 0.915 0.968 0.889 0.789 0.539 0.576 0.691 0.608 0.355 0.380
500 1.334 1.186 0.913 0.966 0.888 0.787 0.538 0.575 0.690 0.607 0.354 0.379
700 | 1.334 1.183 0.913 0.966 0.888 0.771 0.538 0.574 0.689 0.592 0.353 0.379
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Figure 4.1: Monotonicity of the (R, S)-norm Entropy Measure
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4.3 Decision Making with (R, S)-norm Entropy Mea-

sure

The main objective of the multi-criteria decision making problem is to select the optimal /best

alternative out of the m feasible available alternatives, i.e., Z = {z1,22,...,2m} based
on certain laid down n criteria (say) O = {o1,02,...,0,}. For this, first we take the ap-
praisal values of an alternative z; (i = 1,2,3,...,m) w.r.t the criteria0; (j =1,2,3,...,n) is

given by Zij = (pij,qij),satisfyingO < Dij <1,0< Qij < 1land 0 < Dij + Qij < 1 with
1 = 1,2,...,mand 57 = 1,2,...,n. Thus, the above problem can be modeled by represent-

ing it through the following Pythagorean fuzzy decision matrix:

01 09 e On,
21 (plla Q11) (Plza Q12) co (plnv Q1n)
R = (pija(hj)mxn = (Zij) = 22 (p21¢]21) (P227Q22) (p2n7Q2n)
Zm (pm17 le) (pm27 Qm2) e (pmn7 an)
Let w = (wy,ws,... ,wn)T be the weight vector of all the criteria where 0 < w; < 1 and

n

> wj is the degree of importance of the 4t criteria. Sometimes this criteria weight is com-
j=1

pletely unknown and sometimes it is partially known because of the lack of knowledge, time,

data and the limited expertise of the problem domain.

In this section, we discuss and devise two methods to determine the weights of criteria by
using the proposed entropy (4.1.2).
Case 1 (Unknown Weights) When the criteria weights are completely unknown, then we

calculate the weights by using the proposed PFS entropy as:

1 — .
wjzine], j=1,2,---,m; (4.3.1)
n— > ¢

j=1

m
where e; = L 3 H3(z;), and
i=1
R x S (par ()5 + war(2:)®S + w2 )25)
HR(ZZJ Z

(e (502 vag (222 + g ()2

is the proposed Pythagorean fuzzy entropy for z;; = (pij, gij)-
Case 2 (Partially Known Weights ) In this case, when the weights are partially known
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for a multiple-criteria decision making problem, we use the minimum entropy principle (Wang
and Wang [64]) to determine the weight vector of the criteria by constructing the program-

ming model as follows:

The overall entropy of the alternative z; is

Elz) =) Hplz)
j=1

1
= =™ - (MM(%’)QR + var (@) + 7TM(ﬂci)m) r

where R, S>0; R>1, S<lorR<1, S>1.

_ RxS Zn: i U] (e @) + var(20)?S + 7 (2)25) 3

(R—S5)

Since there are fair competitive environment between each alternative, the weight coefficient
w.r.t the same criteria should also be equal. Further, in order to get the ideal weight, we construct

the following accompanying model:
m m n
min £ = ijE(zi) = ij ZH%(ZU) (4.3.2)
i=1 i=1 j=1

1
R x 8 y 1) (o (@) 4 var () + mag () 25)
A DS =
(R—5) P — (e (2i)? R + vag ()28 + g ()2 F) B

R, S>0;R>1, S<lor R<1, §>1, subjectto > | w;=1.

==

In view of above two methods and using the notion of PFS, we present an algorithm to solve

general MCDM problem as in Figure 4.2.
The procedural steps of the proposed methodology are as follows:
e Step 1: We construct the decision matrix R = (pij, ¢ij)mxn = 0;(2i), where the elements

0j(z) (1=1,2,...,m; j=1,2,...,n) are the appraisal of the alternative z; € Z w.r.t the

criteria o; € O.
e Step 2: Compute the criteria weights by using equation (5.1.1) and (5.1.4).

e Step 3: Determine the the most preferred solution (27) and the least preferred solu-
tion (27) as
2= (o 87) (a5, 88) o (@ B1))
where (a;r,ﬁj) = (sup pn(z), inf var(2i)), zi € Z; (j =1,2,...,n); and

2= (a1, 80) s (03,85 ) s (s 1) 5

where (a;, 8;) = (inf pa(2:), sup var(2i)), 2 € Z; (j = 1,2,...,n) respectively.
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alternatives
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A 4

( Finish |
Figure 4.2: Flowchart of the Proposed Algorithm Using PFS

Step 4: By using the Pythagorean fuzzy Hamming distance measure [139]
I(M,N) = %(KNM(Q?)) 2= (un (@) 2+ (var (@) 2= (n (@) 2+ (m (@) 2= (v (2)) 2));
we compute the distance of z/s from z* and 2z~ as follows:
He2) = 230w () 2 = (@) 2 (B) 2= (B) 2+ | (mg? = (1)
j=1
and

zi,27) = . En wi (1 (eiy)? = () |+ (Byy) 2= (B;) 2| + | (mig)? = (77)% ) -
2
j=1

Step 5: Evaluate the coefficient of degrees of closeness l/s as :

I(zi,27)

L = .
U(ziyz27) + (2, 27)

Step 6: Based on the values obtained in step (5), we determine the optimal ranking
order of the alternatives. The alternative with the maximal degree of closeness [(z;) is

supposed to be the best alternative.
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4.4 Numerical Examples

In this section, we present two numerical examples on the basis of the considered cases in the

proposed algorithm.

Example 1 (Unknown Weights): Assume an automobile company produces 4 different cars,
say, z1, 22, 23 & z4 and a customer wants to buy a car based on the 4 given criteria, say, com-
fort o1, good mileage 09, safety o3, interiors o4. Consider the appraisal values of the alternatives

w.r.t each criteria provided by the expert is represented as follows:

01 02 03 04

2 (0.9,0.3) (0.7,0.6) (0.5,0.8) 0.6,0.3
2 (0.4,0.7) (0.9,0.2) (0.8,0.1) (0.5,0.3)
2 (0.8,0.4) (0.7,0.5) (0.6,0.2) (0.7,0.4)
24 (0.7,0.2) (0.8,0.2) (0.8,0.4) (0.6,0.6)

Then, to solve the above problem the computational step are as follows:

1. Determine the criteria weight by using equation (5.1.1) :

w = (wi, wy, ws, wy)’ = (0.272107, 0.263037, 0.34878, 0.116077)".

2. The most preferred solution (z*) and the least preferred solution (z7) are given by
zt = {(0.9,0.3),(0.9,0.2),(0.8,0.1),(0.7,0.4)}

and

»~ = {(0.4,0.7),(0.7,0.6), (0.5,0.8), (0.6,0.6)}

respectively.
3. The distances measure between each of z/s from 2" and 2z~ are given by

[(z1,27) = 0.040622, [(29,27) = 0.186515, I(z3,2") = 0.0.06623, [(z4,2") = 0.048795,
I(z1,27) = 0.200804, (z2,27) = 0.13179, 1(z3,2") = 0.177491, (24, 2") = 0.116968.

4. The values of coefficient of degree of closeness are as follows:

l1 = 0.837788, Iy =0.414036, I3 = 0.728256 I4 = 0.705633.
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5. On the basis of value obtained in above step, the ranking of the alternatives is as follows:
21 7 23 7 24 - 22

and the optimal /best alternative is z; among all the available alternative.

Example 2 (Partially Known Weights): Assume there are 1000 students in a college and
on the basis of 3 laid down criteria, say, o1 (personality), oy (intelligence) and o3 (communica-
tion skills), the college administration wants to select a college representative. Let there be 3

candidates, say, 21, 2o and z3. The PFS decision matrix for the above problem is

01 09 03
z (0.8,0.5) (0.6,0.6) (0.8,0.2)
2 (0.6,0.5) (0.7,0.4) (0.8,0.4)
25 (0.5,0.7) (0.7,0.6) (0.9,0.3)

Suppose the partial information about criteria weights is available in the following form
{0.10 < w; < 0.30, 0.35 < wy < 0.60, 0.25 < w3 < 0.70}. The calculation for the

ranking procedure for the above decision-making problem is as follows:

1. We calculate the criteria weights by constructing the linear programming model by us-

ing equation (5.1.4) as follows:
min £ = 0.609037w; 4 0.641365ws + 0.590874ws

subject to wy + wy + wg = 1 with possible ranges (careful in taking extremities)

0.10 <w; £0.30,
0.35 < wq <0.60,
0.25 < ws <0.70.

Then by using mathematical software MATLAB, we obtained the criteria weight as follows:

w = (0.10, 0.35, 0.55)7.

2. The most preferred solution (27) and the least preferred solution (27) are given by
2T = {(0.8,0.5),(0.7,0.4), (0.9,0.2)}

and

2~ = {(0.5,0.7),(0.6,0.6), (0.8,0.4)}

respectively.
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3. The distances measure between each of z.s from 2™ and 2z~ are given by

I(z1,2%) = 0.013843, (22, 27) = 0.015888, [(23,2") = 0.068163,
I(z1,27) = 0.052213, [(22,27) = 0.026855, [(23,2~) = 0.049273.

4. The values of coeflicient of degree of closeness are

l1 = 0.79044, Iy =0.628297, I3 =0.419573.

5. In view of the values obtained in above step, the ranking of the alternatives is as:
21 = 29 > 23

and the z; and is the optimal/best available alternative.

Remark: It may be noted that in the above examples, for the computational procedure

we assume the value of R = 3 and S = 0.3.

4.5 Conclusion

In this chapter, we have successfully proposed a new parametric (R, S)-norm entropy measure
for Pythagorean fuzzy set along with the proof of its validity and also studied its maximal-
ity and the monotonic behavior w.r.t parameters R & S. Further, an algorithm for multi-
criteria decision-making problem has been well proposed and successfully implemented with
the help of two different kind of numerical examples- when criteria weights are unknown and

other when criteria weights are partially known.
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Chapter 5

Pythagorean Fuzzy Parametric

Discriminant Measure in Decision

Making

In this chapter, we have presented a new parametric Pythagorean fuzzy (R, S)-norm discrim-
inant measure and also discussed its applicability in various computational application fields.
Analytically, we have also studied different properties which the proposed discriminant measure
holds. We have empirically studied the monotonicity of the proposed measure w.r.t. the pa-
rameters R & S. Further, different algorithms to handle the problem of pattern recognition,
medical diagnosis and decision making have also been presented and demonstrated with the
help of numerical example for each. The comparative remarks in each considered case have
been listed depicting the important observations and advantages of the proposed discriminant

measure.

5.1 Parametric (R,5)-Norm Discriminant Measure

Recently, Joshi and Kumar [101] proposed and studied a real valued probability distribution

function associated with the random variable X = {z1,x2,...,2,} and two probability distri-
butions P = (p1,p2, ...,pn) and @ = (q1,492, ..., qn) which is given as:
R % S n é n .
S _ S 1-S R _1-8S\L .
PrlPQ) =7 (Z@ @ >> - (;@ qi >>] , (5.1.1)
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where either0 < S<landl < R<xor0<R<landl<§<oo.
Analogous to the measure in equation (5.1.1), we present the parametric discriminant measure

under the Pythagorean fuzzy environment as follows:

RxS & _ _
IF(M,N) = mz [(MM(%)QSMN(%)Q 9 4 vng (22) S v (23)7 09
=1
1

S

+ WM(-ri)QSﬂ-N(-fi)Q(l_S)) _ (MM(%‘)2R,UN($¢)2(1_R) + VM(xi)QRVN(xi)Q (1-R)
1

+ g (23) oy () (1_R)> R] (5.1.2)

where either 0 < S<landl < R<wor0< R<land1l< S < oc.

IfR =1and S— lorS =1and R— 1, then the discriminant measure given by equation
(5.1.2) reduces to

I(M,N) = Z(,uM(xi)Q log (“M(x")> + var(z:)? log <”M(”)) + 7 (24)? log (”M(xi)> ) (5.1.3)

() v () 7N (4)

It may be noted that proposed discriminant measure is not symmetric in connection with

its arguments. Hence, we present the symmetric discriminant measure as follows:
J3(M, N) = I3(M,N)+ I5(N,M). (5.1.4)

Under the intuitionistic fuzzy setup, Vlachos and Sergiadis [53] studied the notion of discrimi-
nant information measure and defined intuitionistic fuzzy cross entropy as Irps (A, B) which
satisfies two axioms:

e I1ps (A,B) >0;

[ J IIFS (A,B) :OIHA :B

Theorem 5.1 The discriminant measure given by equation (5.1.2) is a valid Pythagorean

fuzzy information measure.

Proof : First, we prove that I3(M, N) > 0 with equality if

un (i) = pn(x;) and vy (z;) = vn(z;) for alli =1,2,..., n.

n

Let Y pnr(z)? =a, Y un(z:)? =b, S var(z:)? = cand Y vy (2;)? = d, then
i=1 i=1 i=1 =1

3 (e ) ()

=1
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or

> (uar(2:)?) (v (22)°0 7)) > 05015, (5.1.5)
Similarly, we have - i )
- (cate (o)
Zn:(VM(xi)QS)(VN(%)2(1’5)) > S q5; (5.1.6)
and -
ﬁéwMuw”memY“*Dz(n—a—bﬁ(n—c—@bﬂ. (5.1.7)

i=1
From equations (5.1.5), (5.1.6) and (5.1.7), we get

n

Z <MM($i)2SHN($i)2(1—S) + VM(xi)2SVN($i)2(1—S) + WM(xi)2S7TN(33i)2(1_S)>
=1

> (aSbl_S +d 7 (n—a—b)° (n—c— d)l_s>. (5.1.8)
Casel: 0< S<landl < R < o0.

Let uM(a:i)QS,uN(:Ei)Q(l_S) + VM(ZL'i)2SVN(l‘i)2(1_S) + WM(xi)ZSTrN(xi)z(l_S) = z;. Since z; < 1

and £ > 1, therefore, z; > (ZZ)%

As B8 <0, then

n (S—R)
R xS 1 RxS <&
n@—Rhﬂ{“w}>MS_m21%) (5.1.9)
and for R > 1,
RxS & 1 RxS &
n(S — R) [(Zi)R} SWE-R & (i)- (5.1.10)

Therefore, from (5.1.9) and (5.1.10), we have I5(M,N) > 0 and if pp(z;) = pn(z;) and
v (w;) = vn(x;) in (5.1.1), we have I5(M, N) = 0. Hence, we conclude that I3(M, N) > 0.

Next we prove the convexity of 1 g(M ,N) in this case.

For 0 < S < 1, equation (5.1.8) may be written as

[

(Z (MM(%)QSMN(%)M_S) + v (22) vy () 2075 + WM($i)QSWN($i)2(1_S)>>

=1

1
< (aSbl_S+ch1_s+ (nfafb)s(nfcfd)l_s)s .
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Also, we can write the above equation as

n

Z |:(MM(372‘)2S,U/N(152')2(15) + VM(JJi)ZSl/N(l‘Z')%liS) + WM(JJZ')2S7TN($Z')2(1S)> S:|

-

i=1
1

< [Z <HM(96¢)2SMN(33¢)2(IS) + var () o ()" + WM(%)QSWN(%)Q(IS)H §

i=1

(5.1.11)

Next, for R > 1, from equation (5.1.8), we have

1
n R
(Z <uM<xi>2RuN<xi>2<l—R> T vag () oy ()20 4 WM<m>QR7rN<xi>2“_R)>>
i=1
1
R
> <aRblR +c " (n—a—b)F(n—c— d)1R> ;
and above equation can be written as
" 5
) [(”M(%)QRMN(%)Q(I_R) +var () P ()0 + 7TM(95¢)2R7TN(5’31')2(1_}2)> ]
i=1
» 4
> [Z (MM(mi)2RNN(xi)2(1R) + VM(xi)ZRVN(xi)Z(lfR) + WM(wi)QRﬂ'N(xi)z(lR))]
i=1
(5.1.12)
Since n(lgx_%) < 0, therefore, from (5.1.11) and (5.1.12), we get
RxS s
I3(M,N) > ﬁ <a5b15 +d 4 (n—a—b)%(n—c— d)15>
1
R
- (aRblR + B R (n—a—b)f(n—c— d)lR) ] . (5.1.13)

Further, if we take

o) = 55

<a5b1_5 +Ed S+ (n—a—0)%n—c— d)l_s>

- (aRbl_R + gt 4 (n—a-— b)R(n —c—- d)l_R>] ,

then

St (0G5 )
(R(Z)R_l - R(W)R_l>]7 (5.1.14)
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and

2p(a,b)  RxS

GO ==l
(GG )] e 6129

Thus, it may be noted that ¢(a,b) is a convex function in a, where the minimum value is
n
n

attained to be zero when ¢ = "=p=7.

Hence, ¢(a,b) vanishes only when a = b and ¢ = d.

Case 2: S>1and 0< R < 1.

Let uM(xi)2SuN(a;i)2(1_S) + VM($i)2SVN(CCZ‘)2(1_S) + TrM(xi)QSTrN(xi)Q(l_S) = 2z;. Since z; < 1

and 4 < 1, therefore, z; < (zz)%

As —BX5 5 0, therefore,

n(S—R)
RxS < 1 RxS &
n(S_R); (5] > n(S_R);(zi); (5.1.16)
and for 0 < R < 1,
RxS 1 RxS &
n(S’—R); [(Zi)R} > n(S_R);(Zi). (5.1.17)

Therefore, from (5.1.16) and (5.1.17), we have I5(M,N) > 0 and if up(z;) = pn(x;) and
v (w;) = vn () in (5.1.2), we have I5(M, N) = 0. Hence, we conclude that I3 (M, N) > 0.
Further, on similar lines as in case 1, we prove the convexity of I g(M ,N) in this case.
Consequently, this implies that I }Sz(M ,N) > 0, where equality holds only when pu/(z;) =
un (7)), var(zi) = vn(x;) for each i and a = b, ¢ = d i.e., M = N. Thus, I3(M, N) is a valid
discriminant measure of PFS M from PFS N.

Theorem 5.2 J3(M,N) = I3(M, N)+I3(N, M) is the valid symmetric discriminant measure.

Proof : The proof can be carried on the similar lines as the proof of Theorem 5.1.

5.1.1 Properties of Proposed Discriminant Measure

Theorem 5.3 Consider M, N, C be three Pythagorean fuzzy sets defined over universe of discourse

X.

61



(i) I5(M UN, M)+ I3(M NN, M)=I3(N, M).

(i) I5(M UN, C)+I(M NN, C)=I3(M, C)+ I3(N,C).

(iii) IZ(MUN, MNN)=I13(MNN,MUN).
() Ig(M, M) =I3(M, M).
(v) I(M, N) =I3(M, N).

(vi) 13(M, N)=I3(M, N).

(vii) I5(M, N)+15(M, N)=I3(M, N)+1I5(M, N).

Proof : First, we partition X into two sub-divisions X; and X5 such that
Xi={z; € X | M C N}, ie, pu(z:i) < pn(@i),vm(@i) = vn(@)V z; € X
Xo={x; € X | N C M}, ie., up(zi) > pn(xs), vam(zi) <vn(zi)V z; € Xo.
Now,

(i) We have to prove I5(M U N, M)+ I3(M NN, M) = I3(N, M). We consider

IZ(MUN, M)+ I5(M NN, M)

_ R>< S z”:|: (NMUN(%‘)QSMM( .)2(1—S)+VMUN( .)QS (@ _)2(1—3)+WMUN(IZ_)2SWM($_)2(1—S))L :|

_ 1
)= (aron ()2 R par (26) 2B+ vpron (@) 2 oar (@) 201 + mppon () 2Ry () 2070 7

R xS i (marnn (@) S pp (@ 209 funan ()2 var (24)20 75 + TN ()27 M(JJ')Q(I_S))E
1
n(S R) = — (paron ()2 R (20)2 =B 4 vyan (@) By (2) 20 4 wpran () 2By ()20 - F) 7

(5.1.18)

i=1

1
(maron (@) 2 Rpags (26)2AB) 4 vpron (@) oag (20) 200 + mppon (w0) 2Ry ()20~ R)) B
(aran (@) par (2:)2 =) 4 vpran ()2 var (24) 205 + N (26) 25 ()20 =9)) 5

(aean (26) 2R g (2) 2B+ vppan (23) 2 Popg (26) 2078 + mppn ()2 RWM( )2 R

RXxS
T (s - RZ

X1

U=

=

:JJH

L
l (paron ()25 par ()29 + vpron (@) v (24) 2 + 7o (20) Sy ()20 79)) S
1
(paron ()28 pag ()29 + wpron ()2 v (24) 205 + maron () 25wy (24)2=9) 5
1
L fixS ) (karun (x:) R#M( 20 fupon ()2 R ong (20) 208 + o (20) i ()20 - R 7
1
SRS+ (raron @) (20) 2079 4 a0 25 (20)2079) 4 mara (@) S (2)2079) 3
1
(aean (@) 2B g ()28 + vpgan (23)2Buag (20) 208 4wy (@) 2By (24) 2B B
(5.1.19)
1
__ExS§ s (v (i) ()20 + un (2:)25var (@) 4 oy ()2 g ()2 9)) 8
1
~ n(S-R) X |~ (en(z)? HM(CL“ 2A=R) 4y (@) 2 Buoag (20) 28 4 oy () By ()27 F) 7
1
RxS )QS )2(1 S)+VN( _)2.57,/]\/1(1.1_)2(175)_,'_7”\7(:61_)257”\/[(;B )2(1 S)),
1
n(S R) Xo (MN ;) MM(x V2A=E) 4y (24) 2 Bupg (2) 2B + oy (24) 2By ()20 B R
(5.1.20)
1
RxS i (1 (23)? ()20 4 v (26) 2 vag (20) 2 + 7wy (@) 2 g ()21 79)) 5
1
n(S R) = — (v (w4)? MM(IZ) 200=R) 4y (23)2Bupg (2) 2B oy (23) 2By ()20 B R
= IZ(N, M).
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(ii) We consider

1
_ Rx S z": (aron ()2 e ()25 + vpon (2:)25ve (2:)20=3) + maron (24) 25 mo ()20 9)) S
- 1
n(S—R) i — (uaron @) ruc ()2 B 4 varon () Pre (2:) 208 4 myon () R7T z;)20- )R
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= I§(M,C) + I5(N,0).

Similarly, one can easily prove (iii) — (vii).

5.2 Monotonic Nature of Proposed Discriminant Mea-

sure

The study of monotonic behaviour of the proposed discriminant measure has been carried
out in an empirical way. Here, we take four different pairs of Pythagorean fuzzy sets A =
(P1,P,), B = (P3,Py), C = (P5,P) and D = (Py, Pg) over the universe of discourse X =

{.%'1 , L2 , X3 }:

P = {(21,0.8,0.4), (z2,0.7,0.6), (23,0.5,0.7)};

P2 = {(2131, 07, 04), (1‘2, 06, 05), (333, 06, 04)}
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P3 = {(.731, 0.2, 0.5), (3;2, 0.5, 0.7), (1’3, 0.3, 08)},

Py = {(21,0.4,0.7), (z2,0.5,0.4), (3,0.9,0.3)}.

Ps = {(21,0.5,0.6), (22,0.2,0.9), (23,0.9,0.4)};

P6 = {(.1‘1, 0.4, 0.8), (:BQ, 0.9, 0.3), (1‘3, 0.7, 0.6)}.

Pr = {(21,0.4,0.8), (z2,0.9,0.4), (3,0.5,0.5)};

Ps = {(21,0.7,0.6), (2, 0.5,0.6), (z3,0.3,0.8)}.

Different values of parameters have been taken for detailed study and tabulated the computed
values in Table 5.1. On the basis of the tabulated data and the plots are given below in Fig-
ure 5.1, it is quite clear that the proposed discriminant measure is a monotonically increasing

function of R and S.

5.3 Computational Applications of Proposed Measure

In order to show the applicability of the proposed discriminant measure, we have consid-
ered three different fields of computational problems- pattern recognition, medical diagnosis,

and decision-making.

5.3.1 Problem of Pattern Recognition
In this section, we have considered a well posed example taken from the existing literature
([70], [51]) to exhibit the applicability of the proposed discriminant measure.

Assume 3 existing patterns Ay, Ao and As representing the classes Cq, Cy and C3 respectively

and being described by the following PFSs in X = {z1, z2,23 }:

Al = {( :15'1,0.3,0.3), (.’EQ, 04,04), (1‘3, 04,04)},
Ay = {( £1,0.5,0.5), (z, 0.1,0.1), (x3, 0.5,0.5)};

Ag = {( T, 0.5, 0.4), (xQ, 0.4, 0.5), (.%3, 0.3, 0.3)}.
Also, suppose we have an unknown pattern ()
Q = {(xz1, 04,0.4), (x2, 0.5,0.5), (z3, 0.2,0.2)};
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Table 5.1: Values of R, S-norm Discriminant Measure

R S= 0.15 S =.25 S =04

(P, P2)| (Ps, Py)| (P5,Ps)| (Pr,P8)| (P, P2)| (Ps,Ps)| (P5,Ps) (P7,P8)| (Pr, %) (Ps,Pa)| (Ps,Ps) (Pr,Ps)
1.2 | 0.0275 | 0.0909 | 0.0933 | 0.0744 | 0.0958 | 0.1585 | 0.1642 | 0.1262 | 0.0757 | 0.2705 | 0.2845 | 0.2062
1.5 | 0.0354 | 0.1217 | 0.1271 | 0.0928 | 0.1227 | 0.2105 | 0.2216 | 0.1567 | 0.0971 | 0.3548 | 0.3779 | 0.2544
2 | 0.0484 | 0.1685 | 0.1781 | 0.1190 | 0.1667 | 0.2887 | 0.3068 | 0.1998 | 0.1323 | 0.4796 | 0.5140 | 0.3217
3.5 | 0.0800 | 0.2689 | 0.2839 | 0.1692 | 0.2694 | 0.4542 | 0.4811 | 0.2815 | 0.2151 | 0.7388 | 0.7864 | 0.4469
5 0.0991 | 0.3281 | 0.3441 | 0.1963 | 0.3289 | 0.5509 | 0.5792 | 0.3250 | 0.2637 | 0.8879 | 0.9370 | 0.5126
7 0.1138 | 0.3751 | 0.3912 | 0.2178 | 0.3736 | 0.6270 | 0.6554 | 0.3595 | 0.3004 | 1.0042 | 1.0531 | 0.5645
10 0.1259 | 0.4142 | 0.4308 | 0.2368 | 0.4095 | 0.6902 | 0.7191 | 0.3899 | 0.3302 | 1.1002 | 1.1495 | 0.6103
25 | 0.1446 | 0.4751 | 0.4933 | 0.2684 | 0.4641 | 0.7878 | 0.8194 | 0.4405 | 0.3756 | 1.2473 | 1.3005 | 0.6863
40 0.1498 | 0.4914 | 0.5104 | 0.2770 | 0.4791 | 0.8140 | 0.8467 | 0.4542 | 0.3881 1.2866 | 1.3414 | 0.7068
60 0.1529 | 0.5008 | 0.5201 | 0.2819 | 0.4880 | 0.8288 | 0.8622 | 0.4619 | 0.3956 | 1.3088 | 1.3647 | 0.7185
75 0.1541 | 0.5045 | 0.5241 | 0.2838 | 0.4917 | 0.8349 | 0.8685 | 0.4651 | 0.3987 | 1.3178 | 1.3741 | 0.7231
100 | 0.1554 | 0.5083 | 0.5280 | 0.2858 | 0.4955 | 0.8409 | 0.8748 | 0.4682 | 0.4018 | 1.3269 | 1.3835 | 0.7279
150 | 0.1568 | 0.5121 | 0.5320 | 0.2878 | 0.4994 | 0.8470 | 0.8812 | 0.4714 | 0.4050 | 1.3360 | 1.3930 | 0.7326
200 | 0.1574 | 0.5141 | 0.5340 | 0.2888 | 0.5013 | 0.8501 | 0.8844 | 0.4730 | 0.4067 | 1.3406 | 1.3978 | 0.7350
250 | 0.1578 | 0.5152 | 0.5352 | 0.2894 | 0.5025 | 0.8519 | 0.8863 | 0.4740 | 0.4076 | 1.3433 | 1.4007 | 0.7364
295 | 0.1581 | 0.5159 | 0.5360 | 0.2898 | 0.5032 | 0.8530 | 0.8875 | 0.4745 | 0.4082 | 1.3450 | 1.4024 | 0.7373
R S= 0.50 = 0.70 = 0.95

(P, P2)| (Ps, Pa)| (Ps,Ps)| (Pr,P3)| (P1,P)| (Ps,Ps) (Ps5,Ps) (Pr,Pg) (P1,P)| (Ps,Ps) (Ps,Ps) (Pr,Ps)
1.2 | 0.0958 | 0.3515 | 0.3736 | 0.2603 | 0.1372 | 0.5249 | 0.5674 | 0.3679 | 0.1908 | 0.7490 | 0.8185 | 0.4966
1.5 | 0.1227 | 0.4574 | 0.4909 | 0.3198 | 0.1753 | 0.6722 | 0.7302 | 0.4486 | 0.2428 | 0.9430 | 1.0315 | 0.6003
2 0.1667 | 0.6124 | 0.6598 | 0.4023 | 0.2369 | 0.8840 | 0.9601 | 0.5588 | 0.3260 | 1.2172 | 1.3269 | 0.7397
3.5 | 0.2694 | 0.9305 | 0.9935 | 0.5540 | 0.3778 | 1.3103 | 1.4043 | 0.7569 | 0.5111 | 1.7594 | 1.8863 | 0.9844
5 0.3289 | 1.1120 | 1.1760 | 0.6328 | 0.4574 | 1.5497 | 1.6431 | 0.8582 | 0.6124 | 2.0592 | 2.1820 | 1.1075
7 0.3736 | 1.2527 | 1.3160 | 0.6950 | 0.5162 | 1.7335 | 1.8245 | 0.9380 | 0.6857 | 2.2869 | 2.4045 | 1.2046
10 0.4095 | 1.3683 | 1.4318 | 0.7499 | 0.5629 | 1.8833 | 1.9737 | 1.0087 | 0.7433 | 2.4709 | 2.5865 | 1.2912
25 | 0.4641 | 1.5447 | 1.6127 | 0.8410 | 0.6334 | 2.1101 | 2.2056 | 1.1261 | 0.8292 | 2.7471 | 2.8682 | 1.4354
40 | 0.4791 | 1.5917 | 1.6616 | 0.8656 | 0.6527 | 2.1701 | 2.2681 | 1.1576 | 0.8527 | 2.8198 | 2.9439 | 1.4740
60 0.4880 | 1.6183 | 1.6894 | 0.8794 | 0.6642 | 2.2041 | 2.3036 | 1.1754 | 0.8668 | 2.8609 | 2.9867 | 1.4957
75 0.4917 | 1.6290 | 1.7006 | 0.8850 | 0.6690 | 2.2178 | 2.3179 | 1.1826 | 0.8727 | 2.8774 | 3.0040 | 1.5044
100 | 0.4955 | 1.6399 | 1.7119 | 0.8907 | 0.6739 | 2.2316 | 2.3322 | 1.1898 | 0.8788 | 2.8941 | 3.0214 | 1.5131
150 | 0.4994 | 1.6507 | 1.7232 | 0.8963 | 0.6789 | 2.2454 | 2.3467 | 1.1970 | 0.8849 | 2.9108 | 3.0389 | 1.5219
200 | 0.5013 | 1.6562 | 1.7289 | 0.8991 | 0.6814 | 2.2524 | 2.3540 | 1.2006 | 0.8880 | 2.9192 | 3.0477 | 1.5263
250 | 0.5025 | 1.6595 | 1.7324 | 0.9008 | 0.6829 | 2.2565 | 2.3583 | 1.2028 | 0.8898 | 2.9242 | 3.0529 | 1.5290
295 | 0.5032 | 1.6615 | 1.7345 | 0.9019 | 0.6839 | 2.2591 | 2.3610 | 1.2041 | 0.8909 | 2.9273 | 3.0562 | 1.5306
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Figure 5.1: Monotonicity of the Proposed Discriminant Measure

which we have to allocate in one of the known class. For, this we have present the alloca-

tion procedure analogous to principle of minimum discriminant information[59] as:

of = moiln(Iﬁ(Ak, Q)). (5.3.1)

In view of the values tabulated in Table 5.2, it may be noted that the unknown pattern @ has
least discriminant value w.r.t the pattern As. Hence, the pattern ) must belong to the class

C3, which is perfectly consistent with the results achieved by [70] [51] [53] [49] [141].
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Table 5.2: Values of I5(P,,Q), with o € {1, 2, 3}
R S Ay Ay A3
@ 01 10 0.1618 0.1475 0.09325
Q 09 10 1.1671 1.0211 0.4706

5.3.2 Medical Diagnosis Problem

Assume that a doctor needs to diagnose a patient P under a set of diagnoses
D = {Viral fever, Malaria, Typhoid, Stomach problem,Chest problem}, with a set of symp-
toms S = {Temperature, Headache, Stomach pain, Cough, Chest pain}. The characteris-
tic symptoms for the diagnoses and the symptoms for patient are provided in Table 5.3 and
Table 5.4 respectively. Each component of the each table is being represented by the pair of
numbers corresponding to the membership and non-membership values, respectively, e.g., in
Table 5.3, (1, ) = (0.4, 0.0) describes the temperature for viral fever. In order to have a proper
diagnose, we evaluate the discriminant information measure 1 fz(P, dy) between the patient’s
symptoms and the set of symptoms that are characteristic for each diagnose d, € D, with
a = {1,2,3,4,5}. Similar to the equation (5.3.1), the proper diagnose d, for the patient P

may be based on the following analogous equation:

o = argmin(I5(P,d,). (5.3.2)

Table 5.3: Symptoms characteristic for the diagnoses considered

Viral Fever | Malaria | Typhoid | Stomach Prob. | Chest Prob.
Temperature (0.4,0.0) | (0.7,0.0) | (0.3,0.3) (0.1,0.7) (0.1,0.8)
Headache (0.3,0.5) | (0.2,0.6) | (0.6,0.1) (0.2,0.4) (0.0,0.8)
Stomach Pain | (0.1,0.7) (0.0,0.9) | (0.2,0.7) (0.8,0.0) (0.2,0.8)
Cough (0.4,0.3) (0.7,0.0) | (0.2,0.6) (0.2,0.7) (0.2,0.8)
Chest Pain (0.1,0.7) (0.1,0.8) | (0.1,0.9) (0.2,0.7) (0.8,0.1)

Table 5.4: Symptoms for the diagnose under consideration

Temperature | Headache | Stomach Pain | Cough | Chest Pain
P (0.8,0.1) (0.6,0.1) (0.2,0.8) (0.6,0.1) | (0.1,0.6)

Therefore, the patient is diagnosed with symptoms which have the least value of the
discriminant measure from patient’s symptoms. The results for the considered patient P have

been computed and presented in the Table 5.5.
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Table 5.5: Values of I5(P,d,)
Viral Fever | Malaria | Typhoid | Stomach Prob. | Chest Prob.

P 0.1641 0.1733 0.2782 1.7484 1.7837

Hence, the patient P is suffering from the viral fever. It may be observed that the results
obtained through the proposed method are perfectly consistent with the results achieved by
Wei & Wei [49] and Garg [52].

Comparative Remarks: It may be observed that the proposed method is found to be
perfectly competent to provide the desired result with an added advantage of the parameters
involvement in the proposed discriminant measure. The parameters may provide a better
variability in the selection of a discriminant measure for achieving a better specificity and

accuracy.

5.3.3 Multi-criteria Decision Making Problem

The main objective of the multi-criteria decision making problem is to select the optimal/best

alternative out of the m feasible available alternatives, i.e., Z = {Z1,%Z9,...,Zn} based
on certain laid down criteria n criteria O = {01,09,...,0,}. For this, first we take the
appraisal values of an alternative z; (i = 1,2,3,...,m) w.r.t the criteria o; (j =1,2,3,...,n)

is given by z;; = (pij, ¢ij), satisfying 0 < p;; < 1, 0 < ¢;; < 1 and 0 < p;; + ¢;; < 1 with
1 = 1,2,....mand j = 1,2,...,n.

Procedural Steps of Algorithm for MCDM Problem:

Step 1: Thus, the above problem can be modeled by representing it through the following

Pythagorean fuzzy decision matrix:

01 02 PR On
21 (p117 C]11) (plza Q12) s (p1n, C]1n)
R = (pij,Gij)mxn = (zij) = 22 (p21,q21)  (p22,q22) - (P2nsq2n)
Zm (pmh le) (pm27 QmZ) te (pmn7 an)

Step 2: In order to maintain homogeneity in the criterions, we need to transform the decision

matrix obtained in Step 1. Thus the decision matrix A = [aij]mxn is converted into a new
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decision matrix, say, B = [bi;|mxn Where b;; is given by

a;; for benefits criteria ;

bij = (pij, vij) = (5.3.3)
aj; for cost criteria ;
where B = [b;j|mxn representing the alternatives in the form of
Zi = {(0j, uij,vij)loj € O}; i=1,2,..., m and j=1,2, ...,n. (5.3.4)
Step 3: Compute the best preferred solution as
zt = {sup(uij(Z;)), inf(v;j(Z;))} i=1,2, ...,mand j=1,2,...,n. (5.3.5)

Step 4: Evaluate the value of the discriminant measure of alternatives Z; s from Z* using

equation (5.1.2).

Step 5. Based on the values obtained in Step 4, we can determine the optimal ranking order

of the alternatives. The alternative with the least value of discriminant measure is supposed

to be the best alternative.

Example 5.1 Assume a real estate company needs to procure the material for its upcoming

project. The company advertises for receiving the tenders for purchasing the required material.

Let us suppose that there are 5 suppliers in the market, say, Z1, Zo, Zs, Z4 and Zs and

sixz criterions for supplier selection which company has fized, say, o1 (quality of material), 0y

(price), o3 (services), oy (delivery), os (technical support) and og (behavior).

Then for the above MCDM problem, the Pythagorean fuzzy decision matrizc A = [aijlmxn may

be given by the following Table 5.6.

Table 5.6: Pythagorean Fuzzy Decision Matrix

01 09 03 04 05 06

Zy | (0.4,0.5) | (0.8,0.1) | (0.7,0.3) | (0.6,0.2) | (0.5,0.4) | (0.3,0.4)
Zy | (0.7,0.2) | (0.5,0.3) | (0.3,0.4) | (0.8,0.1) | (0.2,0.4) | (0.4,0.5)
Zs | (0.6,0.1) | (0.7,0.3) | (0.6,0.2) | (0.4,0.1) | (0.3,0.4) | (0.8,0.2)
Zy | (0.5,0.4) | (0.3,0.4) | (0.8,0.1) | (0.7,0.2) | (0.6,0.1) | (0.7,0.1)
Zs | (0.4,0.3) | (0.7,0.1) | (0.5,0.2) | (0.9,0.1) | (0.8,0.1) | (0.6,0.4)

The computational steps for the above stated Example 5.1 are as follows:
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Table 5.7: Transformed Pythagorean Fuzzy Decision Matrix

01 09 03 04 05 06
Zy | (0.4,0.5) | (0.1,0.8) | (0.7,0.3) | (0.6,0.2) | (0.5,0.4) | (0.3,0.4)
Zy | (0.7,0.2) | (0.3,0.5) | (0.3,0.4) | (0.8,0.1) | (0.2,0.4) | (0.4,0.5)
Zs | (0.6,0.1) | (0.3,0.7) | (0.6,0.2) | (0.4,0.1) | (0.3,0.4) | (0.8,0.2)
Zy | (0.5,0.4) | (0.4,0.3) | (0.8,0.1) | (0.7,0.2) | (0.6,0.1) | (0.7,0.1)
Zs | (0.4,0.3) | (0.1,0.7) | (0.5,0.2) | (0.9,0.1) | (0.8,0.1) | (0.6,0.4)

1. We find the transformed matrix by using equation (5.3.3) and the transformed Pythagorean

fuzzy decision matrix is given in the following Table 5.7.

2. In this step, we dtermine the best preferred solution by using equation (5.3.5) as follows:

Zt = {(0.7, 0.1),(0.4,0.3), (0.8, 0.1),(0.9,0.1), (0.8, 0.1), (0.8, 0.1)}.

3. We compute the discriminant measures between Z; s (i=1,...,5) and ZT using equation

(5.1.2) and the values are tabulated in the following Table 5.8.

Table 5.8: Evaluated values of Discriminant Measure between Z;s and Z+

4. In view of the values obtained in above step, the ranking of the alternatives is as:

I3(Z,,Z7) 0.7791
I3(Z, Z7) 0.6438
I3(Z3,27) 0.3395
I%(Z4, Z7F) 0.2042
13(Z5,27) 0.3319

Z4>Z5>Z3>Z2>Zl§

and Zj is the optimal/best available alternative.

5.4 Comparative Analysis

We compare the performance of the proposed method for decision making with the existing

TOPSIS [21] [139] and the MOORA method [130].
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5.4.1 Comparison of Proposed Method with TOPSIS Technique

Incorporating the proposed discriminant measure in the TOPSIS technique, the procedural
steps may be given as follows:
Step 1. Construct the matrix A = [a;j]mxn called Pythagorean fuzzy decision matrix, where
a;j = (1ij, vij) representing the degree of membership and non-membership respectively.

Step 2. Normalize the Pythagorean fuzzy decision matrix constructed in Step 1 as follows:

M;j = % and u;j = % (5.4.1)
> (pij)? > (vij)?
=1 =1

Let us take B = [bjj]mxn, where b;; = (,u;j, V;j).

Step 3. Formulate the weighted normalized Pythagorean fuzzy decision matrix as: W =
[Wijlmxn, Where wyj = uby; ;4 = 1,2,...,m and j = 1,2,...,n. In this MCDM problem
under consideration, we have taken u; = 1 Ve = 1,2,...,m. It may be noted that u;’s are
components of the weight vector.

Step 4. Evaluate the best preferred solution, i.e., Z* and the worst solution, i.e., Z~ as:

Zt ={af,a5,...,a;, }; (5.4.2)

no

Zm ={aj,05,...,00, };

where Oé;r = (Sup /sz(Zz), inf VZ](Zz)) and Oé; = (mf ,uij(Zi),sup ,LLU(Zl))

Step 5. Determine the discriminant measures of Z;’s V (i = 1,2,...,m) from Z* and Z~
respectively by taking the proposed measure (5.1.2) into account.
Step 6. Compute the coefficient of relative closeness, i.e, C;’s , (i =1,2,...m) as:

_ I}%(Zivz_)
O I3(Zi, 2N+ I3(Z, Z)

(5.4.3)

i

Step 7. Rank the alternatives Z; (i = 1,2,...m) with respect to the coefficient of relative
closeness.
The computational values using the above steps for the MCDM problem by TOPSIS technique

are as:

1. First, we consider the transformed Pythagorean fuzzy decision matrix as given in Table 5.7.

2. Normalizing the above matrix using (5.4.1), we have the following Pythagorean fuzzy nor-

malized decision matrix as given in Figure 5.2.
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Figure 5.2: Pythagorean Fuzzy Normalized Decision Matrix

01 02 03 04 05 06

Z1 | (0.3357,0.6742) | (0.1667,0.5714) | (0.5175,0.5145) | (0.3825,0.6030) | (0.4256,0.4815) | (0.2274,0.5080)
Zs | (0.5874,0.2697) | (0.5000,0.3571) | (0.2218,0.6860) | (0.5101,0.3015) | (0.1703,0.7223) | (0.3032,0.6350)
Zs | (0.5035,0.1348) | (0.5000,0.5000) | (0.4435,0.3430) | (0.43530,0.3015) | (0.2554,0.4815) | (0.6065,0.2540)
Zs | (0.4196,0.5394) | (0.6667,0.2143) | (0.5914,0.1715) | (0.4463,0.6030) | (0.5108,0.1204) | (0.5307,0.1270)
Zs | (0.3357,0.4045) | (0.1667,0.5000) | (0.3696,0.3430) | (0.5738,0.3015) | (0.6810,0.4781) | (0.4549,0.5080)

3. Evaluate the best preferred solution Z* and the worst solution Z~ using equation (5.4.2):

Z+ = {(0.5874,0.1348), (0.6667, 0.2143), (0.5914, 0.1715),
(0.5738,0.3015), (0.6810, 0.1204), (0.6065, 0.1270) };
7~ = {(0.3357,0.6742), (0.1667, 0.5714), (0.2218, 0.6860),

(0.2550, 0.6030), (0.1703, 0.7223), (0.2274,0.6350) }.

4. The computed values of the discriminant measure 1 }% of Zi’s from ZT and Z~ is given in

Table 5.9.

Table 5.9: Computed values of I3(Z;, Z+) and 13(Z;, Z7)

I5(Zi, Z7F) I3(Zi, Z7)
Z 0.8181 0.1308
Zs 0.8908 0.1686
Z3 0.2931 0.2578
Z4 0.2151 0.4545
Zs 0.5068 0.3033

5. Determine the values of coefficients of relative closeness by using equation (5.4.3) as follows:

C1 = 0.1378; Cy =0.1591; C3 = 0.468;

Cy =0.6788; C5 = 0.3744.

6. Finally, the ranking of the alternatives according to the values of the coefficients of relative
closeness, i.e., C’;s 1=1,2,...,5 can be performed. The sequence of alternatives so obtained

is given by

Z4>Zg>Z5>ZQ>Zl.
Therefore, Z4 is the best alternative among all Z;s (i=1,2,...,5).
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5.4.2 Comparison of Proposed Method with MOORA

Incorporating the proposed discriminant measure in the MOORA technique, the procedural
steps may be given as follows:
Step 1. First three computational steps are same as of the TOPSIS technique.
Step 2. Compute the best preferred solution, i.e., Z* and the worst solution, i.e., Z~ from

the Table 5.2 given by

Zt = {O‘Tva;_7 s 705:5} = (m?x(#ij)7miin(yij));

Z7 ={oj,05,... (5.4.4)

0, = (miin(ﬂij),m?X(Vij));

foralli=1,2,...,mand j=1,2,...,n.

Step 3. Evaluate the value of overall performance VZ; , (i = 1,2, ...m) by using equation(5.1.2)
as I3(Z2%,27).

Step 4. Finally, the ranking of the alternatives with respect to the computed values of the
overall performance and the best alternative is the one which has the least value of the overall
performance among all the alternatives.

The computational values using the above steps for the MCDM problem by MOORA technique

are as:

1. Determine the values of ZT and Z~ from equations (5.4.4), which are provided in the Table

5.10.

Table 5.10: Computed values of Z* and Z~

zZ* zZ~
A (0.5175,0.4815) (0.1667,0.6742
Zy (0.5874,0.2697) (0.1703,0.7223)
Z3 (0.6065,0.1348) (0.2550,0.4815)
Zy (0.6667,0.1204) (0.4196, 0.6030)
Zs (0.6810,0.3015) (0.1667,0.5080)

2. Compute the values of the proposed discriminant measure [ E(Z *,Z7), which are given in

Table 5.11.

3. Finally, the ranking of the alternatives according to the computed values of I }%(Z‘*, Z7).

The sequence of alternatives so obtained is given by

Z4>Zg>Z2>Z1>Z5.
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Table 5.11: Evaluated values of I5(Z*, Z7)

I5(Z*,27) Ranking
Z 0.6013 4
Zs 0.7963 3
Zs 0.3738 2
Zy 0.1683 1
Zs 1.1173 5

Thus, Z, is the best alternative among all Z;s (i=1,2,...,5).

Table 5.12: Ranking of the alternatives with Different Techniques

Proposed Technique | TOPSIS | MOORA
A ) ) 4
Zy 4 4 3
Zs 3 2 2
Zy 1 1 1
Zs 2 3 5

In view of above discussions, we find that the Z, is the best alternative in all the discussed techniques.
It may also be observed that mutual fluctuation is present in the final ranking of the other alternatives
while using different techniques (TOPSIS, MOORA) reflecting in Table 5.12. This is because
of the fact that the different algorithms have their different perspectives and techniques as

an ideal /universal ranking is totally a dependent concept on various influencing factors.

5.4.3 Observations and Advantages of the Proposed Method

On the basis of comparative analysis carried above, some important observations and remarks are

being stated as follows:

e In TOPSIS technique, the alternatives used are to be arranged based on the coefficient of
relative closeness whose values are lying between 0 and 1. However, in MOORA tech-

nique, the alternatives are ranked based on their overall performance.

e While in the method which is proposed in this chapter, each alternative is evaluated in

reference with each laid down criterion individually before declaring the best/optimal alternative.
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e It may be observed that the proposed method recommends the specific input as well as a
specific procedure at the same time while this isn’t the situation with different techniques. Also,
the proposed method is straightforward to apply and amounts to have less calculations than
other well known MCDM methods which have a little imprecise procedure to fetch a con-

clusion.

5.5 Conclusion

In this chapter, we have successfully proposed a new parametric (R, S)-norm discriminant
measure for Pythagorean fuzzy set along with the proof of its validity and also studied its
monotonic behavior w.r.t parameters R & S. The applicability of the proposed discrimi-
nant measure has also been worked out and illustrated through a numerical example in the com-
putational application fields of pattern recognition, medical diagnosis. Also, an algorithm for
multi-criteria decision-making problem has been well proposed and successfully implemented

with the help of numerical example.
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Chapter 6

Modified VIKOR and TOPSIS
Method with Pythagorean Fuzzy

Information Measures

6.1 Introduction

The fundamental natural resources such as renewable energy and fossil fuel plays a signifi-
cant role in the socio-economic growth of a country. It has no exception that throughout
the world, the demand of energy is increasing significantly with time. The stock of natural
resources exhaust rapidly because of the major dependency on the fossil fuels which also leads
to the emission of carbon dioxide and harm the environment. The introduction of electrifi-
cation technique has significantly reduced the pollution component, but eventually could not
be considered as a promising solution. Despite of this, the sustainable energy sources such as
hydrogen energy, solar energy, wind energy, bio-fuel, geothermal, biomass energy, etc. can also

be utilized in practical purposes.

In view of the present scenario, the existing technology, financial implications and eco-
friendly prospects, the utilization of hydrogen energy is considered to be one of the best al-
ternative source of energy. The major advantage of using hydrogen as a source of energy
is mainly two fold - first, it is an extreme heat-burning gas; and second it does not release

any toxic gas (e.g. CO2, SOz and NO2) on combustion. Since the hydrogen can be obtained
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from water (electrolysis) and solar energy (solar hydrogen), therefore, we can have an ample
and endless source of hydrogen energy for the society and its need. Hence, the consideration of
hydrogen energy is supposed to be a kind of clean renewable energy having perfectly zero emis-
sions for the future prospects and it has received due attention of the researchers in recent past
[87]. Various researchers dealt with issues of felicitating the hydrogen energy for the energy balance
[91]. For the sake of electricity production, alternative energy sources - hydrogenated fuels
have also been utilized [128]. Juste [48] experimented with hydrogen injection as an aug-

mented fuel and investigated the gas turbine combustion chambers.

In the area of electromobility, the hydrogen energy has been potentially recognized as
fuel cell. The fuel cell electrical vehicles (FCEVs)/battery vehicles uses a fuel cell (where
the hydrogen is used) instead of a battery. Though the FCEV’s cost is not practical and
repressive in current time but the people are somewhat prepared/in-transit for taking the joint
responsibility so that the ecological damage could be controlled [89] [111] [112] [85]. In addition
to the cost limitation of FCEVs, there is another inter-correlated issue of hydrogen refuelling
stations (HRSs). It is certainly easy to understand that the utilization of hydrogen energy in
electro-mobility sector is a kind of wise investment for a significantly long time. Therefore,
many decision makers [11] [88] [26] [45] have emphasized on the synchronized development of

FCEVs and HRSs because of its advantageous features in all respects.

From few decades, various researchers and decision makers have put down their signifi-
cant focus on the selection issues of renewable energy sources/technologies, specially on hydro-
gen energy, which has always been a major task. The task of choosing the right and most ap-
propriate site for such sustainable energy comprises of demographic view point, socio-economic
factor and infrastructure. The decision makers also need to focus on all the inter-related quan-
titative and qualitative factors. Therefore, the process of multi-criteria decision-making plays
a critical role to model the structure of the available resources and criteria for such kinds of
complex real life problem. A formal process of site selection can be well understood through

Figure 6.1.

The decision-making algorithms certainly enhance the capabilities of the decision makers to mod-
erate the content of decisions in terms of their rationality and efficiency in a better sense. The
process of site selection for hydrogen power plant can be modeled as a multiple-criteria decision-
making (MCDM) problem where various available inter-conflicting attributes can be explored.

In general, the indicators affecting the available alternatives and their criteria/weights should

78



Identifying the criterion/attributes
for Site Selection

Evaluate Project Sites

Decision Maker Opinion

Phase IV Approve Project Site

"

Figure 6.1: Phases of Site Selection Process

be quantitative for each available option. In human sense, there is always a constraint of inac-
curacy and ambiguity which certainly limits to obtain an exact and precise value for evaluating
the outcomes of the alternatives. In order to deal such incompleteness in the information, lin-
guistic assessment by the experts in terms of fuzzy numbers (FNs) [82] have been found to be

useful, effective and convenient approach for better handling.

In recent years, various researchers have extensively studied different information measures
(similarity measures, entropy, distance measures, discriminant measures etc.) because of their
wider applicability in the field of decision-making problems, pattern recognition, sales analysis,
financial services, medical diagnosis etc. The theory of fuzzy sets/intuitionistic fuzzy [68][67]
have been applied to model uncertainties and hesitancy inherent in many practical circumstances.
Yager [106] proposed the Pythagorean fuzzy set (PFS) which is a useful generalization of IF'S,
characterized by degree of membership/non-membership fulfilling the inequality that the sum

of squares of these values < 1.

6.2 Literature Survey

A brief literature survey in connection with multi-criteria decision-making model for various
types of renewable energy resources has been presented in this section. Wang et al.[20] pre-
sented a MCDM approach using fuzzy analytic network process (FANP) along with TOPSIS
for the selection of nuclear power plant site in Vietnam. Recently, Sedady et al. [43] proposed
the MCDM model for constructing renewable power plants by defining the actual priority

of technology, socio-economic aspect, political and ecological aspects. A review paper [127]
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considering the above stated aspects in the estimated power-to-gas conversion along with an

extended version to nuclear-assisted renewable hydrogen has also been reported.

For the installation of wind energy plants, Biswal and Shukla [47] proposed new method-
ologies for the selection of most suitable sites. Also, Pamucar [34] jointly utilized the concept
of Geographical Information Systems (GIS), MCDM approach of Best-Worst Method (BWM)
& multiple attribute decision making approach of ideal-real comparative analysis for the selec-
tion of wind turbine sites. Keeping the classical aspects of technology, ecology, economy and
geographical point of view, Noorollahi [145] presented a MCDM support system for wind en-
ergy location selection with the help of GIS. Also, using GIS and fuzzy logic, Borah et al. [66]
presented a framework for the site selection of wind turbines to achieve the optimum energy

output.

A MCDM model for the selection of a solar plant site in Vietnam has been presented
by Wang et al. [22] where “fuzzy analytic hierarchy process (FAHP)” and “data envelop-
ment analysis (DEA)” have been utilized to find the best appropriate and suitable site con-
sidering both the qualitative and quantitative aspects. Wang et al.[23] developed the MCDM
approach for solid wastes to energy plant sites in Vietnam using FANP and TOPSIS. Aktas
et al. [2] developed a hybrid MCDM method using the notion of hesitant fuzzy sets for the

selection of solar power plant site.

He et al. [17] proposed a hydrogen station optimization model for the setup of hydrogen-
energy expressway in order to reduce the production cost. Lewandowska-Smierzchalska et al.
[62] presented a decision-making model based on the popularly used AHP method to obtain
the potential hydrogen storage sites in Poland. Deveci [73] proposed a MCDM approach for
the selection of hydrogen storage sites based on the information provided in the interval type-2
hesitant fuzzy setup and carried out the sensitivity analysis to show the effectiveness of the
proposed methodology. Narayanamoorthy et al. [117] proposed normal wiggly dual hesitant
fuzzy set (NWDHFS) along with its score function and used in the MCDM method to find out
the best hydrogen storage sites. Messaoudi [33] proposed an integrated framework with the
combination of MCDM and GIS to evaluate the best location for the solar hydrogen production
installation system. Karatas [76] provided a new methodology by integrating the FAHP and
weighted fuzzy axiomatic design to select the hydrogen energy storage site in Turkey and
carried out the sensitivity analysis in order to validate the robustness of proposed method.

Tian et al. [81] utilized the AHP and TOPSIS method to explore the optimal region for
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developing the hydrogen energy applications and presented a case study for its functioning
in terms of industrial and cultural prospects. Lin et al. [103] studied the different hydrogen
station location models available in the literature and compared their strengths & weaknesses

in a comprehensive manner.

Due to the growing complexity in the decision-making processes and variability in the
human’s perceptions, the notion of Pythagorean fuzzy sets have received significant attention
of various researchers. Yager and Abbasov [105] established the connection of Pythagorean
fuzzy numbers (PFNs) with the complex numbers and studied its utility in the decision-making
process. Thereafter, Zhang and Xu [139] presented the modified TOPSIS method for solving
the decision-making problems by incorporating the information in the form of PFN. Also,
Yager [107] studied various aggregation operators and presented its utility for solving decision-
making problem in Pythagorean fuzzy setup. Further, Ma and Xu [147] introduced some
Pythagorean fuzzy symmetric operators and applied in solving decision-making problems. Con-
sidering the concept of similarity measures for Pythagorean fuzzy sets, Zhang [138] presented
a novel approach to solve the MCDM problems. In order to understand the perception of
the decision makers in solving the problems, Ren et al. [97] provided the Pythagorean fuzzy-
Portuguese for interactive multi-criteria decision making approach. In order to demonstrate
the eco-friendly energy methodologies with negative identical individual and infeasible crite-
ria, the VIKOR method was given by Rani et al. [96] under Pythagorean fuzzy setup. Here
the joint utility of every alternative is computed in terms of the developed discriminant mea-
sure for the Pythagorean fuzzy sets for selecting the renewable energy methodologies. Also,
the applicability and dependability issues of the proposed approach have been duly discussed.
Various other researchers have utilized the notion of Pythagorean fuzzy information in different

capacities in the available literature.

From the above discussions, we note that all the intuitionistic fuzzy degrees are the spe-
cial case of the Pythagorean fuzzy degrees, which indicates that the PF'S proves to be more effi-
cient to deal with vagueness, impreciseness and incompleteness present in the information than
IFS. Certainly, the notion of PFS is in a more general frame work than IFS because the wider
value of the degree of membership enables to have broader utility. In the present manuscript,
Pythagorean fuzzy information measures ((R,S)-Norm entropy and discriminant measures)
based MCDM techniques have been proposed and utilized for hydrogen energy plant site se-
lection problem under a wider sense of fuzzy information. It may be noted that notions of

parametric Pythagorean fuzzy entropy and Pythagorean fuzzy discriminant measures have not
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been utilized in the available literature and no study is available in connection with the hy-
drogen energy resources. In the present work, we have implemented the Pythagorean fuzzy
information measures in bi-parametric form in the decision-making process format for renew-

able energy site selection problem with contrast.

The organizational structure of the present chapter is as follows: In Section 6.3, we have
proposed a novel MCDM approach based on (R, S)-Norm Pythagorean fuzzy information mea-
sures implemented with VIKOR and TOPSIS methods. The problem of hydrogen power plant
site selection has been appropriately dealt with the proposed methodologies in Section 6.4.
In Section 6.5, we have provided the comparative analysis of the proposed methodologies with
the existing literature in detail along with important remarks. Finally, Section 6.6 presents

the concluding remarks of proposed research with some possible scope for future work.

6.3 Pythagorean Fuzzy Based MCDM Approach Uti-

lizing (R, S)-Norm Information Measures

In this section, we propose two modified multi-criteria decision-making approaches based on
VIKOR and TOPSIS method by incorporating the notion of (R, S)-Norm Pythagorean fuzzy
entropy and respective (R, S)-Norm Pythagorean fuzzy discriminant measure. For the sake of
clarity and better understanding, we present the basic structure of Pythagorean fuzzy infor-

mation measures as follows:

Recently, Guleria and Bajaj [5] [7] proposed the following (R, S)-Norm Pythagorean fuzzy
entropy for a Pythagorean fuzzy set M € PFS(U):

A0 = 55 L a5 o 1 ma®) -
=1

(e (0)*" + war ()" + moar (20)*F) ® ] ; (6.3.1)

and subsequently, for two Pythagorean fuzzy sets M and N € PFS(U), proposed (R, S)-
Norm Pythagorean fuzzy discriminant measure as follows:

R xS _ _ _
IZ(M,N) = W(S—R) > [(wa(ivi)2sl~tzv(wi)2(l S b var (@) v () 2075 4w () ()¢ S))
i=1

wnl=

1
- (MM(xi)QRMN(JJi)Q(l_R) + VM(afi)QRVN(-Ti)2(1_R) + 7T1v1(37i)2R7TN($i)2(1_R)) " ] ;

(6.3.2)
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where R, S > 0; either 0 < S<landl < R<xor0<R<land1l< S < .

MCDM Approach Based on (R, S)-Norm Pythagorean Fuzzy Information:

Consider a multi-criteria decision-making problem, where A = {A;, Ay, ..., A} be the
set of available alternatives and C = Cy, Cs, ..., C, be the set of criteria. Suppose there is a
group of decision makers D = {Dy, Da,...,D;} who give their opinions and decisions on each
alternative with respect to each criterion in the form of linguistic variables. Let Ry = (hfj),
1=1,2, ..., mand j =1, 2, ..., n be the linguistic matrix provided by the each decision
maker, say k" decision maker, where hfj presents the assessment of an alternative, say A;,

w.r.t. the criterion, say Cj, in terms of linguistic variables.

In order to select the optimal and the best alternative out of the m available alterna-
tives, we devise a modified algorithm based on VIKOR and TOPSIS method by utilizing the
Pythagorean fuzzy information measures. For the sake of illustrating the proposed algorithm,

we present all the steps through a flow chart given in Figure 6.2 which consists of two stages.

The essential procedural steps for a better understating of the proposed algorithm based
on the (R,S)-Norm Pythagorean fuzzy information measures in the VIKOR and TOPSIS

methods are listed as follows:

e Step 1: Assessment of the Criteria by Decision Makers

Based upon the experiences, the decision maker gives their individual opinion regarding
each criterion utilizing the defined set of linguistic terms connected with the Pythagorean

fuzzy number.

e Step 2: Evaluation of the Decision Maker’s Weights

It is believed that determining the decision maker’s weights is an important concern in
a decision-making problem. We assume that the major degree of the decision maker’s
is obtained by the defined set of linguistic variables and is then written in the form of
Pythagorean fuzzy numbers. The weight of k" expert is computed by the following formula

[42]:

; (6.3.3)

l
where Y~ A =1and A > 0.
k=1
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Figure 6.2: Flow Chart of the Proposed Methods
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e Step 3: Determining Aggregated Pythagorean Fuzzy Decision Matrix

For combining all the individual decision matrices into one group based on decision
maker’s opinion, we use an averaging aggregation operator to construct the aggre-
gated decision matrix. The following Pythagorean fuzzy weighted averaging operator

has been utilized (developed by Yager [107]):

R = [(fij)]mxm where fij is

l l
~ l
7ij = PEWAN(Y 0. n)) = < 1= JTa -2, H(yij)kk> (6.3.4)
k=1 k=1

e Step 4: Normalization of Pythagorean Fuzzy Decision Matrix

Sometimes, it has been observed that there is a kind of heterogeneity present in the crite-
rions. For resolving this issue, it is required to make them homogeneous before applying
them for any methodology. In a broader sense, the criteria may be categorized into two
types: benefit criteria and cost criteria. We transform the decision matrix by transforming the
cost criteria into the benefit criteria. Thus the decision matrix R = [Fijlmxn is con-

verted into a new decision matrix, say, R = [ri;|mxn Where 7;; is given by

745, for benefits criteria ;
rij = (hijsvig) =4 (6:35)
i

i for cost criteria.

e Step 5: Determining the Criteria’s Weights

It may be noted that considering different criteria weights will put an impact in the
ranking order of the alternatives. Hence, in the proposed approach we determine the

criteria weights by using the (R, S)-Norm Pythagorean fuzzy information entropy as

follows:
1 _ .
wj=——9 =12, (6.3.6)
n—3.¢
j=1
where e; = L 3 H3(z;;), and
i=1
R x S (e (@) + var (@) + 7o (@0)25) 5
HR(ZU Z

— (uar (@) 4 var () 4 g (i)2R) B

e Step 6: Identification of the Best and the Worst Solution

It is essential to determine the best and the worst solution for all the criteria. In the pro-

posed approach, the best and the worst ratings are determined in the form of Pythagorean
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fuzzy positive ideal solution r;r and Pythagorean fuzzy negative ideal solution T which are

computed as follows:

max [;, for benefit criterion C;,
4 : j J
rt = i (6.3.7)
min v;;, for cost criterion Cj;
1
and
min 15, for benefit criterion Cj,
ro— i (6.3.8)
J
max v;;, for cost criterion Cj.
1

Remarks: The above stated six steps are the common steps in the stage 1. Further, in
stage 2, we may either go for Pythagorean Fuzzy VIKOR method or Pythagorean Fuzzy
TOPSIS method depending on the choice of the competent authority. Their respective

steps have been listed in two parts as follows:

— Pythagorean Fuzzy VIKOR Method

The VIKOR is one of the important methodology of MCDM introduced by Opricovic
[118] to solve decision problems with conflicting criteria with assumption that compro-
mise is acceptable. In literature, this method is one of the widely used MCDM methods
for obtaining the compromise solution(s) of the satisfying all the incompatible criteria at
the same time. In continuation with the calculations of the six steps stated above, we

carry out further calculations to accomplish the decision-making task as follows:

e Step 7: Evaluation of the Essential Measures for all the alternatives

In this step we calculate, the essential measures - group utility .S;, individual regret U;
& compromise measure ; of every alternative A; by using the notion of (R, S)-Norm

Pythagorean fuzzy discriminant measure. In order to determine the values of these mea-

sures of the alternatives A; (i =1,2,...,m), we use the following formula:
n Ig (TJF,TU>
S; = i i - (6.3.9)
=1 IR (T‘j o7 )
I}g (Tj,?“w)
L I ('rj )T )
and
<SZ- — min Sz-) <U¢ — min Ui)
' +(1 ‘ ; (6.3.11)
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where v and 1 — « denote the weights of the strategy of maximum group utility and the

weight of the individual regret respectively.

e Step 8: Ranking of the Alternatives

We rank the alternatives based on the decreasing order values of S;, U;, Q;, i.e., the

minimum value of the compromise measure @); gives the best alternative.

e Step 9: Determining the Compromise Solution

For the uniqueness of the best solution, the alternatives must hold following conditions:

— Condition C}

QUA®) QA > L, (63.12)

given A is the best ranked alternative and A® is the second best ranked alter-

native by the measure of Q).

— Condition (5
AWM must be the best ranked by S; or/and U;. The compromise solution is sta-
ble with in a decision-making process, which could be the strategy of maximum

group utility (when v > 0.5) or by consensus (v > 0.5) or with veto ( v < 0.5).

In case, if the condition Cy is not satisfied, then the utmost value of M must be exam-

ined and given by the following relation:

QAU — @Ay < 1

m—1’
where M is the arbitrary ranking position of the alternatives other than the best one. As
a consequence, the alternative A® is the compromise solution for some i = 1,2, ..., m.

— Pythagorean Fuzzy TOPSIS Method

Hwang and Yoon [21] developed the “Technique for Order of Preference by Similarity
to Ideal Solution (TOPSIS)” for multi-criteria decision analysis which has been widely
used in the literature. The schematic concept behind this method is to choose an alter-
native which has the shortest geometric distance from the positive ideal solution (PIS)

and the longest geometric distance from the negative ideal solution (NIS).

In continuation with the six steps stated above in the stage 1, we carry out further

calculations to accomplish the decision-making task as follows:
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e Step 7: Computation of the (R, S)-Norm Discriminant Measure

In this step, we determine the value of the discriminant measures of A;’sVi=1,2,...,m

from rj and r; respectively by taking the discriminant measure (6.3.2) into account.

e Step 8: Evaluation of the Coefficient of Relative Closeness

Evaluate the coefficient of relative closeness, i.e, RCC;’s , (i =1,2,...m) as

I]g(Au 7’]_)
IR(As, ) + I5(Ai )

RCC; =

(6.3.13)

e Step 9. Ranking of the Alternatives

Finally, we rank the alternatives by ordering the values of the coefficient of relative close-

ness. The highest value is the best alternative.

Hence, we completely presented the proposed work of solving the decision-making problem
in a modified format of VIKOR and TOPSIS by utilizing the (R, S)-Norm Pythagorean fuzzy

information measures.

6.4 Hydrogen Power Plant Site Selection Process

In this section, we implement (R, S)-Norm Pythagorean fuzzy information measures in the
VIKOR and TOPSIS MCDM methods to obtain the modified form for the hydrogen power
plant site selection. The sites under consideration must have been chosen through profes-
sional communication by the competent experts. All the criteria affecting the site selection
have been determined on the basis of the expert/decision maker’s opinion and the avail-
able literature. For the sake of selecting the best site/location, the decision makers must take
the social aspects, environment aspects, technology aspects, financial implications and also
some major characteristic aspects. Consider a selection problem in a conventional frame in
which we have four available sites, say, L1, Lo, L3 & L4, which are under consideration in solv-
ing the problem. These sites have been systematically examined w.r.t. the five main criteria

and 14 sub-criteria (Refer Table 6.1).

It is quite probable that if we increase the number of criteria then we would get a better
solution. The problem of site selection may be handled in a more critical way by the experts

in a Pythagorean fuzzy set up of VIKOR and TOPSIS technique.

Procedural Steps of Solving the Selection Problem:
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Table 6.1: Criteria Affecting the Hydrogen Power Plant Site Selection

Main Criteria

Sub-criteria

Literature Review

Public acceptance (F}) (58]

Social Aspect Protection law (F3) [22]
Legal and Regulation compliance (F3) [22][58]

Availability of Water (Fy) [126]

Environment Aspect Water Storage (F5) [126]

Environment Affect (Fg) [126]

Technology Aspect

Distance from Major Road (F%)

Distance from Power Network (Fg)

[120] [123] [80] [77]
[23] [120] [123] [80] [77] [74]

Potential Demand (Fy) [22] [120]
Construction Cost (Fio) [22] [80]
Economical Aspect | Operation and Management Cost (Fi1) [22] [58] [123]
New Feeder Cost (Fi2) [123]
Site Characteristics Land Use (F13) [22] [37]
Ecology (F14) [22]

Table 6.2: Values of Linguistic Terms

Linguistic Term PFNs
Extremely Qualified (EQ) 0.97, 0.20)
Very Qualified (VQ) 0.85, 0.35)

(
(
Qualified (Q) (0.55, 0.50)
(
(

Less Qualified (LQ) 0.30, 0.80)
Very Less Qualified (VLQ) 0.15, 0.90)

e Step 1. The linguistic evaluations for the 14 criteria under consideration are qualita-
tively stated by the decision makers (Ref Table 6.5) and have been transformed into
Pythagorean fuzzy information using their quantitative rating in PFNs scale given in
Table 6.2. Also, the decision makers provide the qualitative information for four hydro-
gen power plant sites L1, Lo, L3 & Ly w.r.t. the 14 criteria (Refer Table 6.4) which have
been transformed into Pythagorean fuzzy information by using the defined quantitative

rating in PFNs scale given in Table 6.3.

e Step 2. In this step, we first present the importance of the decision makers using the
linguistic terms which are being transformed into Pythagorean fuzzy information with
the defined quantitative rating in PFNs scale given in Table 6.2. Next, we calculate the

decision maker’s weights using equation (6.3.3) which are being tabulated in Table 6.6.

e Step 3. By utilizing the Pythagorean fuzzy weighted averaging aggregation operator
given in equation (6.3.4), we aggregate all the decision matrices obtained from the dif-

ferent decision makers to form a single decision matrix. The aggregated matrix hence

89



Table 6.3:

Table 6.4: Linguistic Evaluation of the Alternatives

Linguistic Terms for Rating Alternative
Linguistic Term PFNs
Excellently Good (EG) | (0.97, 0.20)
Very Very Good (VVG) | (0.88, 0.30)

Very Good (VG) (0.80, 0.40)
Good (Q) (0.70, 0.45)
Moderately Good (MG) | (0.65, 0.50)
Fair (F) (0.55, 0.55)
Moderately Bad (MB) | (0.50,0.65)
Bad (B) (0.35, 0.80)

Very Bad (VB) (0.25, 0.88)
Very Very Bad (VVB) (0.15,0.95)

Fy Fy F3 Fy Fs Fg F7 Fg Fy Fio Fi1 Fia Fi3 Fiq
Ly EG EG MG EG EG EG VG G VG VG VG VG EG  VVG
DM1 | Lo v@& vé MG VG G fe! MG G MG MG fe! fe! va  va
Ls VG VG  EG MG MG MG MG MG G F F G F F
Ly VG VG G VG G vG G G MG EG \e VG VVG VG
Ly EG EG MG VVG VVG VVG G VVG  VVG VVG EG MG VVG  VVG
DM2 | Lo MG G MG G a fe! el e G a fe! va va  va
Ls VG  VVG VG MG F MG F MB MG VB MB VG MB MG
Ly VG VG G G VG VG G MG MG EG \e G VG VG
Ly EG EG MG EG VVG EG G VG EG VG VVG MG VG VVG
DM3 | Lo el va MG VG G MG F MG va MG el fe! va  va
Ls VG MB VVG MB F MG F MB MG VB MB VG MB MG
Ly MG MG VG VG G G F MG VG MG G G G VG
Ly VVG VVG F VVG VG VG MG G VG G VG G VG VG
DM4 | Ly MG G F G MG F F F G F MG G G G
Ls G F VG B F F F B F VVB B G B F
Ly F F G G MG MG F F G F MG G MG G
Table 6.5: Linguistic Evaluation for Rating Criteria
Fy Fy Fs Fy Fs Fg Fr Fg Fy Fio 1 Fio Fi3 Fiy4
DM1| VQ vQ Q EQ EQ vQ Q Q vQ EQ vQ vQ EQ EQ
DM2| VQ EQ EQ vQ EQ EQ LQ vQ Q vVQ LQ vQ EQ Q
DM3| EQ | Q vaQ EQ LQ VaQ VaQ vaQ EQ Q vaQ VaQ Q EQ
DM4| EQ | LQ Q EQ Q Q vaQ Q EQ LQ Q Q Q vQ
Table 6.6: Decision Maker’s Weights
DM1 DM2 DM3 DM4
Linguistic Term vQ Q EQ vQ
‘Weight 0.265802 | 0.170204 | 0.298192 | 0.265802
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Table 6.7: Aggregated Pythagorean Fuzzy Decision Matrix

Ly Lo L3 Ly
Fy (0.957, 0.223) | (0.714, 0.457) | (0.778, 0.413) | (0.711, 0.465)
Fy | (0.957,0.223) | (0.762, 0.421) | (0.712, 0.479) | (0.711, 0.465)
Fs | (0.627,0.513) | (0.627, 0.513) | (0.898, 0.305) | (0.735, 0.434)
Fy | (0.946,0.239) | (0.762, 0.421) | (0.550, 0.613) | (0.762, 0.421)
Fy (0.906, 0.291) | (0.688, 0.463) | (0.598, 0.528) | (0.709, 0.454)
Fs | (0.938,0.258) | (0.652, 0.490) | (0.611, 0.521) | (0.740, 0.440)
Fr | (0.449, 0.721) | (0.518, 0.609) | (0.518, 0.609) | (0.504, 0.626)
Fs | (0.405,0.775) | (0.490, 0.652) | (0.613, 0.550) | (0.499, 0.642)
Fy | (0.310,0.898) | (0.447, 0.724) | (0.507, 0.627) | (0.455, 0.717)
Fio | (0.393,0.797) | (0.504, 0.637) | (0.720, 0.439) | (0.344, 0.880)
Fii | (0.326, 0.877) | (0.463, 0.688) | (0.639, 0.492) | (0.440, 0.740)
Fip | (0712, 0.458) | (0.721, 0.441) | (0.775, 0.405) | (0.732, 0.436)
Fis | (0.891, 0.317) | (0.778, 0.413) | (0.516, 0.628) | (0.775, 0.407)
Fia | (0.863,0.324) | (0.778, 0.413) | (0.601, 0.526) | (0.769, 0.424)

obtained is presented in Table 6.7.

e Step 4. In this step, we normalize the obtained aggregated Pythagorean fuzzy decision
matrix using the equation (6.3.5) and the computed normalized Pythagorean matrix is

presented in Table 6.8.

e Step 5. In this step, the weights of all the criteria have been evaluated using the (R, S)-
Norm Pythagorean fuzzy entropy measure given by equation (6.3.1) and the computed

values of criteria’s weights are tabulated in Table 6.9.

The computed values of Pythagorean fuzzy positive ideal solution

e Step 6. J

and

; are as follows:

Pythagorean fuzzy negative ideal solution r

rf = {(0.957,0.223), (0.957, 0.223), (0.898,0.305), (0.946, 0.239), (0.906,0.291), (0.938, 0.258),
(0.449,0.721), (0.405,0.775), (0.310, 0.898), (0.344, 0.880), (0.326, 0.877), (0.712, 0.458),

(0.891,0.317), (0.863,0.324) }; (6.4.1)

and

r7 = {(0.711,0.465), (0.711, 0.479), (0.627,0.513), (0.550,0.613), (0.598, 0.528), (0.611,0.521),
(0.518,0.609), (0.613,0.550), (0.507, 0.627), (0.720, 0.439), (0.639, 0.492), (0.775,0.405),

(0.516, 0.628), (0.601, 0.526)}. (6.4.2)

Remark: The above stated steps comprise of all the six common steps of the proposed
methodology. Next, we first carry the steps in connection with the Pythagorean fuzzy

VIKOR method and then with the Pythagorean fuzzy TOPSIS method.
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Table 6.8: Normalized Aggregated Pythagorean Fuzzy Decision Matrix

L1 Lo L3 Ly
| (0957,0223) | (0.714, 0457) | (0.778,0.413) | (0.711, 0.465)
R | (0.957,0223) | (0.762, 0.421) | (0.712,0.479) | (0.711, 0.465)
Fy | (0.627,0.513) | (0.627,0.513) | (0.898,0.305) | (0.735, 0.434)
Fy | (0.946,0.239) | (0.762,0.421) | (0.550,0.613) | (0.762, 0.421)
Fs | (0.906,0.291) | (0.688,0.463) | (0.598,0.528) | (0.709, 0.454)
Fo | (0.938,0.258) | (0.652, 0.490) | (0.611,0.521) | (0.740, 0.440)
Fr | (0.721, 0.449) | (0.609, 0.518,) | (0.609, 0.518) | ( 0.626, 0.504)
Fs | (0.775,0.405) | (0.652,0.490) | (0.550,0.613) | (0.642, 0.499)
Fy ( 0.898, 0.310) (10.724, 0.447) (10.627, 0.507) (10.717, 0.455)
Fio | (0.797,0.393) | (0.637,0.504,) | (0.439,0.720) | ( 0.880, 0.344,)
Fi1 | (0.877,0.326) | (0.688, 0.463) | (0.492, 0.639) | ( 0.740, 0.440)
Fio | (0.458,0.712) | (0.441,0.721) | (0.405, 0.775) | ( 0.436, 0.732)
Fis | (0.891,0.317) | (0.778,0.413) | (0.516,0.628) | (0.775, 0.407)
Fia (0.863, 0.324) (0.778, 0.413) (0.601, 0.526) (0.769, 0.424)

Table 6.9: Evaluation of Criteria’s Weights

Criteria | Weights (w;)
1 0.1070
F3 0.0514
Fy 0.1339
Fs 0.0900
Fg 0.0657
7 0.0361
Fy 0.0244
Fy 0.0926
Fio 0.0900
F1p 0.0361
Fi2 0.0387
Fi3 0.0783
Fa 0.0926
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Table 6.10: Computation Outcomes and Compromise Measure of Each Site

S; U; Qi
Ly 0.129 0.073 0.000
Lo 1.069 0.295 0.8589
L3 1.437 0.233 0.8596
Ly 0.952 0.293 0.8091
Ranking Order | S1 >S4 >52>53 | Uy >Us>Us>Uz | Q1 > Qa > Q2> Q3

— Pythagorean Fuzzy VIKOR Method

Step 7. Using equations (6.3.9), (6.3.10) and (6.3.11), we determine the values of S;,
U; and Q); respectively. For calculating the values of the compromise measure, we take

v = 0.5. The computed values are tabulated in the Table 6.10.

Step 8. On the basis of the computed values of S;, U; and @; in the step 7, the ranking

results have been obtained as follows:

S1> 84> 52> 83; Uy > Uz > Uy > Us; Q1> Qs> Q2> Q3.

Step 9. Based on the descending order of the obtained values of the );’s, the site L1 is

supposed to be the best appropriate site. Since

1
QA®) — Q(AM) = 0.8001 > —— = 0.333,

therefore, the site L1 also fulfill the condition C; & C5. Thus, we jointly conclude that

the site L; is the most suitable location to setup a hydrogen power plant.

Sensitivity Analysis of the Obtained Solution:

In order to observe the changes in the ranking order for different suppositions of the
weights (v (0 < v < 1)) of the strategy of maximum group utility, we carry out a
sensitivity analysis for the compromise solution as shown in Table 6.11, Figure 6.3 and
Figure 6.4. In view of the obtained values in the Table 6.11, we conclude that the site
L is the most suitable location for setting up the hydrogen power plant which can also

be viewed in Figure 6.5.
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Table 6.11: Sensitivity Analysis for Different Values of ~
L Lo Ly La
Si 0.129 1.069 1.437 0.952
Ui 0.073 0.295 0.233 0.293

Qi (v=00) | 00 1.0 0.719293091 | 0.989211567

Qi (y=01) | 0.0 | 097179769 | 0.747363782 | 0.953178618

Qi (y=02) | 0.0 | 094359538 | 0.775434472 | 0.917145668

Qi (y=03) | 0.0 | 091539307 | 0.803505163 | 0.881112718

Qi (y=04) | 0.0 | 088719076 | 0.831575854 | 0.845079768

Qi (y=05) | 0.0 | 0.85898845 | 0.859646545 | 0.809046819

Qi (y=06) | 0.0 | 0.83078614 | 0.887717236 | 0.773013869

Qi (y=07) | 0.0 | 080258383 | 0.915787927 | 0.736980919

Qi (y=08) | 0.0 | 0.77438152 | 0.943858618 | 0.700947969

Qi (y=09) | 0.0 | 074617921 | 0.971929309 | 0.66491502

Qi (y=1.0) | 00 | 07179769 1.0 0.62888207

Si
Qi(y=0.9) Qi(y=0.0)
Qi(y=0.8) Qi(y=0.1) ==t
i) 2
e ]
L4
Qi(y=0.7) Qi(y=0.2)

Qi(y=0.6) Qi(y=0.3)

Qi(y=0.5)

Qi(y=0.4)

Figure 6.3: Sensitivity Study of Alternatives w.r.t. Measures
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= Qi(y=0.0)
® Qi(y=0.1)
¥ Qi(y=0.2)
® Qi(y=0.3)
u Qi(y=0.4)
H Qi(y=0.5)
® Qi(y=0.6)
B Qi(y=0.7)
H Qi(y=0.8)
H Qi(y=0.9)

= Qi(=1.0)

Figure 6.4: Sensitivity Study of Compromise Measure

RANKING ORDER
N

y=0.0 y=01 y=0.2 y=03 y=04 y=05 y=06 y=07 y=0.8 y=09 y=1.0

STABILITY WEIGHTS
—L1 —12 —1L3

L4

Figure 6.5: Ranking Order w.r.t. Stability Weights ()
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— Pythagorean Fuzzy TOPSIS Method

e Step 7. In this step, we evaluate the values of the discriminant measures of L;’s V
1 = 1,2,3,4 from rj and T respectively with the help of the equation (6.3.2) and

presented in Table 6.12.

Table 6.12: Discriminant Measure for L;s w.r.t. rj i

I3(Liyr)) | I3(Lisry)
L1 0.3349 0.495
Lo 0.5398 0.358
L3 0.6342 0.324
La 0.5036 0.389

e Step 8. We compute the values of the coefficient of relative closeness by using the

equation (6.3.13) and put in Table 6.13.

Table 6.13: Coefficient of Relative Closeness

Sites | Closeness Index
Ly 0.5967
Lo 0.3986
L3 0.3381
Ly 0.4360

e Step 9. On the basis of the computed values of the coefficient of relative closeness, the

ranking results have been obtained as follows:
L1>L4>L2>L3.
Hence, based on the coefficient of closeness, the site L1 is the most suitable location to

setup a hydrogen power plant.

Remark: It may be observed that the ranking results obtained through both the methodolo-
gies, i.e., Pythagorean Fuzzy VIKOR and TOPSIS MCDM methods, are completely consistent

and acceptable.

6.5 Comparative Analysis and Advantages

In this section, a comparative analysis by taking the results of the proposed methodologies and

various other existing methods into account has been carried out to illustrate the advantages
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of the proposed methodologies - modified Pythagorean fuzzy VIKOR and TOPSIS MCDM

techniques. The following are the important comparative remarks and advantages:

e The risk information loss has been significantly minimized in the proposed methods as
the computations consider the (R, S)-Norm Pythagorean entropy measure and discrim-
inant measure which spans a wider information in the fulfilment of the criteria. The
incorporation of the parameters enables us to have the flexibility in the calculations

along with the family of information measures.

e The proposed modified VIKOR and TOPSIS method incorporate the notion of Pythagorean
fuzzy sets while various researchers have implemented FSs/IFSs which are the special
case of Pythagorean fuzzy sets. As discussed in the introduction, Pythagorean fuzzy
sets are more generalized and have a wider coverage for the imprecise and incomplete

information.

e We have appropriately assigned the weights to the expert’s/decision maker’s opinion
in developing the proposed methodologies which provide the more precise decisions for
the MCDM problems under consideration while Boran et al. [42] utilized intuitionistic
approach in solving the group decision-making supplier selection problem with TOP-

SIS method in a straight way.

e One of the major advantage of the Pythagorean fuzzy VIKOR approach is that it yields
the compromise solution which takes the maximum group utility along with the mini-
mum individual regret. The compromise solution obtained though the modified VIKOR

method is the best solution with respect to the ideal solution.

e The notion of Pythagorean fuzzy numbers have the capability to deal with the impre-
cise and incomplete information which arise in a MCDM problem. Since the input pa-
rameters - assessment of alternatives, decision maker’s weights and the criteria’s weights
may have uncertainty in the content, therefore, the implementation of the notion of

Pythagorean fuzzy number is found to be more appropriate.

e It may be noted that a MCDM method broadly consists of different essential charac-
teristics, viz., weights of criteria, expert’s/decision maker’s weights and evaluation of
available alternatives with the laid down criteria. Therefore, any novel approach in the

field of MCDM focuses on these stated characteristics. Here, we present the comparison
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Table 6.14: Comparison with the Various Existing Methods

Authors & Researchers | Expert Criteria Linguistic] Entropy and Dis- | Alternative As-
‘Weight ‘Weight terms criminant Mea- | sessment Infor-
sure mation
Kaya & Kahraman [124] Consider Partially Yes NO FS
Known
Kahraman & Kaya [18] Consider Partially Yes NO FS
Known
Mousavi et al. [78] Computed Completely | Yes NO HFS
Unknown
Mishra et al. [9] Consider Partially Yes Discriminant Mea- | IFS
Known sure
Schitea et al. [36] Computed Completely | Yes NO IFS
Unknown
Proposed Work Computed Completely | Yes Both PFS
Unknown

Table 6.15: Comparison with the Various Existing Methods

WASPAS [36] | COPRAS [36] | EDAS [36] | Proposed VIKOR | Proposed TPOSIS
Ly 1 1 1 1 1
Lo 3 3 3 3 3
Ls 4 4 4 4 4
Ly 2 2 2 2 2

of our proposed research based on these features with various existing approaches in

literature along with its advantages as shown in Table 6.14.

The final ranking for the available hydrogen power plant site alternatives studied by
various researchers in recent past is summarized and tabulated in Table 6.15 which
shows a clear and crisp consistency of the proposed methodologies. It may be observed
that the results obtained are statistically similar but the proposed methods are different

from the other methods available in literature.

The utilization of the method is supposed to coordinate with the requirement of decision-
making environment. VIKOR can maximize the group utility and minimize the individual
regret while TOPSIS is a compensatory method which allows the trade-off between cri-
teria. With respect to our proposed methods, it can consider the advantage aspects of
both VIKOR and TOPSIS. In general, our proposed methods make full use of more in-
formation during the decision-making procedure, which are more suitable for a complex

environment.
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6.6 Conclusion

In this chapter, a new parametric (R, S)-Norm Pythagorean fuzzy entropy measure and re-
spective Pythagorean fuzzy discriminant measure have been successfully incorporated in the
VIKOR and TOPSIS MCDM methods to propose the modified MCDM methodologies which
is more generalized in its own sense. The utilized Pythagorean fuzzy information measures
have been found to be significantly efficient to handle the uncertainty where the weights of the
criteria are completely unknown. In addition, the respective sensitivity analysis has also been
done for the sake of better understanding and readability. The literature review clearly shows
the novelty of the proposed approach. The 14 criteria used for the hydrogen power plant site
selection give a comprehensive coverage for the experts/decision makers. The detailed compar-
ative study clearly shows that we have obtained a completely feasible and equally consistent

ranking which are in a more general frame work of Pythagorean fuzzy information.
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Chapter 7

Conclusions

In the present thesis, we have studied and proposed some new decision making approaches
along with various results for different problems under Pythagorean fuzzy setup. For the sake
of presenting the concluding remarks of the thesis, we are listing the findings of the work

carried out in various chapters as follows:

e The notion of Pythagorean fuzzy soft matrix (PFSM) has been successfully introduced

with different categories, properties & various standard binary operations.

e The general structured decision making problem has been illustrated and solved with

the help of revised definition of choice/weighted choice matrix.

e A new approach, by taking Pythagorean fuzzy soft matrix into consideration, for solv-
ing a general medical diagnosis problem has been well presented by incorporating the

score/utility matrix.

e A comparison analysis is also carried to show the practicability and consistency of the

proposed algorithms with the help of numerical examples and the existing literature.

e In continuation, a new technique for the dimensionality reduction of the informational

data has been presented in the Pythagorean fuzzy setup.

e A new methodology for the dimensionality reduction based on the reframed object-
oriented /parameter-oriented PFSMs has been successfully presented with comparative
analysis. Consequently, the consistency and viability of the proposed algorithm in con-

trast with methodologies available in literature have been duly discussed.
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Further, a new kind of parametric information measure, termed as (R, S)-norm Pythagorean
fuzzy entropy measure has been presented with proper validation. Some important prop-
erties, monotonicity and maximality of proposed entropy measure have also been studied

with due consideration.

A new approach to determine the weight of criteria for two different cases (weights par-
tially known or weights completely unknown) has been proposed to present a method-
ology for solving the general structured multi-criteria decision making problem. A nu-

merical example has also been solved for better understanding.

Next, a bi-parametric (R, S)-norm Pythagorean fuzzy discriminant measure has been
successfully presented with different important properties. The monotonic nature of the

discriminant measure has also been studied empirically for necessary validation.

Some new approaches based on the proposed parametric discriminant measure for solving
different types of soft computing problem have been discussed and each computational

application has also been illustrated with the help of an illustrative example.

Upon utilizing the Pythagorean fuzzy (R,S)-norm entropy measure and the (R,S)-
norm divergence measure, the standard VIKOR and TOPSIS approaches for solving the
MCDM problem have been accordingly presented and modified.

The problem of site selection of hydrogen power plant has been remodeled in Pythagorean
fuzzy setup and solved with the help of the proposed modified VIKOR and TOPSIS
methods. Finally, the practicability and consistency of the proposed method have been

studied.

The various methodologies presented in the thesis can further be applied on the real
survey data of the real world decision making problems and results may be derived

based on the necessary modeling and simulation.

The proposed dimensionality reduction technique may further be applied in enhancing

the performance of large scale image retrieval.

In future, the proposed modified VIKOR and TOPSIS MCDM approach can also be
used for location selection of different types of renewable energy resources or any other

selection problem.
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