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Abstract

The objective of this thesis entitled, “Some New Approaches to Solve Decision Mak-

ing Problems Under Pythagorean Fuzzy Set Environment”, is to study new notions of

PythagoreaniFuzzy soft matrices and information measures with their applications in

decisionimaking processes. The way we think, we process information, we make our

decision and particularly in our language, fuzziness can be found everywhere. In real

world scenario, decision making is the biggest challenge now a days due to its significance

and importance everywhere such as in companies, in industries, in institutions and many

more. Thus it is the need of the hour to handle uncertainty, vagueness and impreciseness

involved in the decision making problems by developing some new techniques.

The reported work in the thesis is classified into two categories: one is related to the

notion of soft matrices and other is related to the information measures. The main

goal of the thesis is to deal with the uncertainty,ivagueness andiimpreciseness available

in the informational data and solve the multi-criteria decisionimaking problems. For

handling such circumstances, we have utilized the several extensions of fuzzy set theory

as Pythagorean fuzzy set. The work related to the thesis is described as:

In Chapter 1, we have presented the preliminaries related to the proposed work, which

covers all the basicidefinitions related to the extensions of fuzzy set theory to Pythagorean

fuzzy set along with the literature reviewed on the soft matrices and information measure

such as entropy, divergence.

In Chapter 2, we have developed the new kind of soft matrix called Pythagorean

fuzzyisoft matrix with its different possibleitypes and also presented binary operations

satisfying various properties with the proof of their validity. Some new kinds of matrices

such as choice matrix, weighted choice/score matrix, & utilityimatrix have also been

proposed in a modified format. Further, we have utilized these matrices to solve the

multi-criteria decision makingiproblem, medical diagnosis problem and presented some

observed comparative remarks in contrast with the other existing methods.

The dimensionality reduction plays an effective role in downsizing the data having

irregular factors and acquires an arrangement of important factors in the information.

Sometimes, most of the attributes in the information are found to be correlated and

hence redundant. The process of dimensionality reduction has a wider applicability in

dealing with the decision making problems where a large number of factors are involved.

In Chapter 3, we have presented an algorithm for the dimensional reduction of the infor-

mational data under Pythagorean fuzzy setup by using the proposed definitions of the

viii



object-orientedimatrix, the parameter-orientediPythagorean fuzzy soft matrix and the

threshold value. We have illustrated the methodology of the proposed technique to solve

the multi-criteria decision makingiproblem and also provided the comparative remarks

& additional advantages of the technique in view of some existing recent methodologies.

In Chapter 4 & 5, we have developed a parametricientropy measure and also a

divergence measure for the Pythagoreanifuzzy set along with their proof of validity re-

spectively. The monotonic property of these information measures in relation with their

parameters have also been studied and presented in these chapters. Further, we have

implemented these measures in providing different algorithms for solving multi-criteria

decision making and other soft computing applications. The comparative analysis has

also been presented for clearly depicting the important observations and advantages of

the proposed methodologies in these chapters.

In Chapter 6, we proposed the modified VIKOR and modified TOPSIS multi-criteria

decision making technique by incorporating (R, S)-Norm Pythagorean fuzzy entropy and

respective discriminant measure in two different stages. Further, the proposed techniques

have been implemented and illustrated by solving the hydrogen power plant site selection

problem with proper matching of the laid down essential criteria under a wider sense

of Pythagorean fuzzy information. A detailed comparative analysis and the sensitivity

analysis have been carried out for a better understanding and clarity of the proposed

methodologies. Finally, the worksireported in thisithesis have been concluded in Chapter

7.
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Chapter 1

Introduction

Decision making is a very significant area and its omnipresence in business, manufac-

turing, services etc. are quite enough to understand its importance. It is a cognitive

process/method to choose the best/optimal alternative among the available alternatives.

There are several decisions in our daily routine which have the immediate or long-term

effect on us or others whether it may be related to our personal life or professional life.

As far as the significance of decision-making is concerned, we all know that the survival

of people, growth in business, promotion in jobs etc. are totally dependent on the po-

tential of decision making tasks.iThe process to selectithe best/optimal option among

available ones with multiple, usually conflicting criteria under the presence of one/many

decision makers is applied in multi-criteria decision making problems.

In different practical and real-lifezsituations, the way towards making a decision

iszstrongly roused by the advantages out of it and it also depends on ourzperception

and priorzinformation. In view of the deficiency in the information and possibility of

humanzerrors, it is probably expected to have inheritedzcomplexity in the environment

and having incompletezknowledge of the systems. In this way, it appears to be tough to

get an optimal decision in a stipulatedztime. As the complexities are increasing day by

day, decision makers come across many problems to decide within a reasonable time by

using the information which is vague/uncertain/imprecise in nature. Pythagorean fuzzy

set theory [106], an extension of novel concept of Zadeh’s fuzzy set [68] is one of the

most acceptable theory to deal with theiuncertainties, vagueness and incompleteness in

1



the information.

Figure 1.1: Extensions of Fuzzy Set

1.1 Basic Notions and Preliminaries

In this section, we have presentedisome basic notionsirelated to the Pythagorean fuzzy

set.

1.1.1 Fuzzy Set

The crisp or classical set is a well defined collection of elements/objects from the universe

of discourse or universal set (u ∈ U), that can be finite/countable/uncountable. Every

individual member of the crisp set A ⊂ U , either belong to A (u ∈ A) or does not

belong to A (u ̸∈ A). A classical/crisp set can be represented in two ways: one can

either present the set analytically or enumerate the elements which belong to the set.

An ordinary or crisp set A in a universal set U can be described by listing all

its members or by defining the conditions to classify the elements u ∈ A, i.e., A =

{u|u meets some condition}. The characteristic function χ associated with A, is a map-

2



ping χA : U → {0, 1} such that for any element u ∈ U , χA(u) = 1, if u ∈ A and

χA(u) = 0, if u ̸∈ A.

”Fuzzy set (FS) [68] is an extension of crisp set. Any fuzzy set A over a set U

(universe of discourse) can be characterized by its membership function, i.e., µA : U →

[0, 1] and the output value given by this function represents the grade of degree to which

an element of the set U belongs to the set A. Thus, an element in the fuzzy set may

belong to a greater or lesser degree as represented by a larger or smaller membership

grade.”

Remark: Fuzziness is often confused with probability. An event is probabilistic if

it has a degree of actual occurrence or it has the results of well identified but random

occurrence, i.e., probability measures the likelihood of a future event based on something

known now. On the other hand, fuzziness depicts the lack of distinction of an event,

whereas the probability describes theiuncertainty in theioccurrence of the event. In other

words, probability relates to randomness and is not an efficient concept to counter the

issue of uncertainty and impreciseness resulting due to incompleteness in the informaton.

Definition 1.1.1 [68] “Consider two fuzzy sets A and B over the universe of discourse

set U . The binary operations defined over the fuzzy sets are as:

• Intersection: µA∩B(u) = min{µA(u), µB(u)}, u ∈ U .

• Union: µA∪B(u) = max{µA(u), µB(u)}, u ∈ U .

• Complement: µĀ(u) = 1− µA(u), u ∈ U .

• Probabilistic Sum: µA+B(u) = µA(u) + µB(u)− µA(u) · µB(u), u ∈ U .

• Bounded Sum: µA⊕B(u) = min{1, µA(u) + µB(u)}, u ∈ U .

• Bounded Difference: µA⊖B(u) = max{0, µA(u) + µB(u)− 1}, u ∈ U .

• Algebraic Product: µA·B(u) = µA(u) · µB(u), u ∈ U .”

Definition 1.1.2 [38] “Consider the fuzzy sets A, B, C and D over the universe of

discourse U . The triangular norm (t-norm) is real-valued function from [0, 1]× [0, 1] to

[0, 1] which satisfy the following conditions:

3



(i) t(0, 0) = 0, t(µA(u), 1) = t(1, µA(u)) = µA(u), u ∈ U .

(ii) t(µA(u), µB(u)) ≤ t(µC(u), µD(u)) if µA(u) ≤ µC(u) and

µB(u) ≤ µD(u), u ∈ U .

(iii) t(µA(u), µB(u)) = t(µB(u), µA(u)), u ∈ U .

(iv) t(µA(u), t(µB(u), µC(u))) = t(t(µA(u), µB(u)), µC(u)), u ∈ U .”

Definition 1.1.3 [38] “Consider the fuzzy sets A, B, C and D over the universe of

discourse U . The triangular conorm (t-conorm (s-norm)) is real-valued function from

[0, 1]× [0, 1] to [0, 1] which satisfy the following conditions:

(i) s(1, 1) = 1, s(µA(u), 0) = s(0, µA(u)) = µA(u), u ∈ U .

(ii) s(µA(u), µB(u)) ≤ s(µC(u), µB(u)) if µA(u) ≤ µC(u) and

µB(u) ≤ µD(u), u ∈ U .

(iii) s(µA(u), µB(u)) = s(µB(u), µA(u)), u ∈ U .

(iv) s(µA(u), s(µB(u), µC(u))) = s(s(µA(u), µB(u)), µC(u)), u ∈ U .”

Fuzzy Relation and Composition Operators

Fuzzyirelation is a mapping that maps the element through the cartesianiproduct of one

universe of discourse U with the another universe of discourse V to the unit interval

[0, 1].iThe strength of theirelation in fuzzy environment between the ordered pair of the

twoiuniverses is measured with the membershipifunction expressing the different degrees

ofistrength of the relationion the unitiinterval [0, 1].

Definition 1.1.4 [69] “A fuzzy relation R on fuzzy set U and V is a fuzzy subset of

U × V , i.e.,

R = {(u1, u2), µR(u1, u2) | u1 ∈ U, u2 ∈ V },

such that µR(u1, u2) ∈ [0, 1]. We denote FR(U × V ) as a collection of all the fuzzy

relations on U × V .”
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Definition 1.1.5 [69] “Let R1 and R2 be the fuzzy relation on U×V . Then the various

binary operations are defined as follows:

• Intersection: µR∩S(u, v) = min{µR(u, v), µS(u, v)}, (u, v) ∈ U × V .

• Union: µR∪S(u, v) = max{µR(u, v), µS(u, v)}, (u, v) ∈ U × V .

• Complement: µR̄(u, v) = 1− µR(u, v), (u, v) ∈ U × V .

• Containment: R ⊂ S ⇒ µR(u, v) ≤ µS(u, v), (u, v) ∈ U × V .”

Definition 1.1.6 [69] “Suppose R1 ∈ FR(U × V ) and R2 ∈ FR(V × Z) be two fuzzy

relations. Then the various composition operators for the fuzzy relations R1 and R2

are defined as follows:

- Max-Min Composition of Fuzzy Relations: The max − min composition

relation of R1 and R2, denoted by R1 ◦R2 ∈ FR(U × Z), defined as

R1 ◦R2 = {(u, z), µR1◦R2(u, z) | u ∈ U, z ∈ Z},

where µR1◦R2 = max{min(µR1(u, v), µR2(v, z))} v ∈ V .

- Min-Max Composition of Fuzzy Relations: The min − max composition

relation of R1 and R2, denoted by R1 •R2 ∈ FR(U × Z), defined as

R1 •R2 = {(u, z), µR1•R2(u, z) | u ∈ U, z ∈ Z},

where µR1•R2 = min{max(µR1(u, v), µR2(v, z))} v ∈ V .

- Max-Average Composition of Fuzzy Relations: The max− average composi-

tion relation of R1 and R2, denoted by R1ΦR2 ∈ FR(U × Z), defined as

R1ΦR2 = {(u, z), µR1ΦR2(u, z) | u ∈ U, z ∈ Z},

where µR1ΦR2 =
1
2
max {µR1(u, v) + µR2(v, z)} v ∈ V .

- Min-Average Composition of Fuzzy Relations: The min− average composi-

tion relation of R1 and R2, denoted by R1ΨR2 ∈ FR(U × Z), defined as

R1ΨR2 = {(u, z), µR1ΨR2(u, z) | u ∈ U, z ∈ Z},

where µR1ΨR2 =
1
2
min {µR1(u, v) + µR2(v, z)} v ∈ V .”

5



1.1.2 Intuitionistic Fuzzy Set

Atanassov introduced the concept of intuitionisticifuzzy seti(IFS)[67], which is an exten-

sion of the Zadeh’s fuzzyiset [68]. The IFS is characterized by membershipifunction and

non-membershipifunction, which assign a value from the intervali[0, 1]ito every element

in the sense of belongingness and non-belongingness respectively.

Definition 1.1.7 [67] “Let U be the universe of discourse with µA : U → [0, 1] and νA :

U → [0, 1] being the degree of membership and degree of non-membership respectively.

The set A = {(u, µu, νu)| u ∈ U} is called intuitionistic fuzzy set if it satisfies the

condition 0 ≤ µA(u) + νA(u) ≤ 1 with the degree of indeterminacy given by πA(u) =

1− µA(u)− νA(u).”

Definition 1.1.8 [67] “If A,B ∈ IFS(U), then the standard binary operations can be

defined as:

(a) Complement: A = {< u, νA(u), µA(u) > | u ∈ U};

(b) Containment: A ⊂ B iff ∀u ∈ U, µA(u) ≤ µB(u) and νA(u) ≥ νB(u);

(c) Union: A ∪B = {< u, µA(u) ∨ µB(u), νA(u) ∧ νB(u) > | u ∈ U};

(d) Intersection: A ∩B = {< u, µA(u) ∧ µB(u), νA(u) ∨ νB(u) > | u ∈ U}.”

1.1.3 Pythagorean Fuzzy Set

Yager [106] stated that the existingistructures of FS and IFS are not capableienough to

depict the humaniopinion in a broader sense and presented the following definition:

Definition 1.1.9 [106] “A Pythagorean Fuzzy Set (PFS) M in U (universe of dis-

course) is given by

M = {< u, µM(u), νM(u) >| u ∈ U} ;

where µM : U → [0, 1] and νM : U → [0, 1] represent the degree of membership and degree

of non-membership respectively and for each u ∈ U satisfy the condition

0 ≤ µ2
M(u) + ν2

M(u) ≤ 1.
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The degree of indeterminacy for any Pythagorean fuzzy set M is given by πM(u) =√
1− µ2

M(u)− ν2
M(u) ∀ u ∈ U.”

The basic difference between PFS and IFS is the restrictionicorresponding to µM(u)

and νM(u), i.e.,

0 ≤ µ2
M(u) + ν2

M(u) ≤ 1,

and

0 ≤ µM(u) + νM(u) ≤ 1

for µM(u), νM(u) ∈ [0, 1] respectively. The change in the constraint conditions is geo-

metrically shown in the Figure 1.2. In this way, PFS can handle theiuncertainty, impre-

ciseness andivagueness in the information more efficiently and proves to be proficiently

capable than IFS.

Figure 1.2: IFS vs PFS

Definition 1.1.10 [141] Binary Operations on PFSs

“Consider M = {< u, µM(u), νM(u) >| u ∈ U} and N = {< u, µN(u), νN(u) >| u ∈ U}

be two Pythagorean fuzzy sets over U (universe of discourse), then the operations can be

defined as follows”:

(a) M c = [νM(u), µM(u)], u ∈ U .

(b) M ∪N = {max(µM(u), µN(u)),min(νM(u), νN(u))}, u ∈ U .
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(c) M ∩N = {min(µM(u), µN(u)),max(νM(u), νN(u))}, u ∈ U .

(d) M ·N = {µM(u) · µN(u), νM(u) + νN(u)− νM(u) · νN(u)}, u ∈ U .

(e) M +N = {µM(u) + µN(u)− µM(u) · µN(u), νM(u) · νN(u)}, u ∈ U .

(f) M ⊗N =
{
µM(u) · µN(u),

√
(νM(u))2 + (νN(u))2 − (νM(u))2 · (νN(u))2

}
, u ∈ U .

(g) M ⊕N =
{√

(µM(u))2 + (µN(u))2 − (µM(u))2 · (µN(u))2, νM(u) · νN(u)
}
, u ∈ U .

Pythagorean fuzzyisets have been utilized by various researchers in order to deal with

the various real world application fieldsisuch as decision-makingiproblems, medical diag-

nosis, patternirecognition, etc. Based on score function, Zhang and Xu [139] presented a

method to find the PythagoreaniFuzzy positiveiideal solutioni(PIS) & the negativeiideal

solutioni(NIS) and also presented the extended version of TOPSIS method to determine

the difference betweenieach alternativeiwith respect to PIS and NIS. A fusedimethod

betweeniMOORA & PFSs for the selection of best/optimal alternative was stuided by

Dominguez et al. [72]. Peng and Yang [142] presented some new kind of binary op-

erations over PFSs and also studied various aggregation operators with their impor-

tantiproperties. Inicontinuation to this, they also provided an algorithmito solveigroup

decision-makingiproblems by using these proposed aggregation operators. Different kind

of information measures for PFSs such as distanceimeasure, similarityimeasure, en-

tropy with inclusionimeasure, and their relations were studied by Peng et al. [141].

Further, to solve Pythagorean fuzzy MCDM problems, Zeng et al. [121] provided a

newimethodology by incorporating PFOWAWAD aggregation operator along with a hy-

brid TOPSIS method. Garg [52] proposed a correlation measure along with its weighted

form in order to study the interaction between two PFSs. Wei and Wei [49] presented a

similarity measure for PFS based on the cosine function to solve the problem of medical

diagnosis and pattern recognition. Mohd and Abdullah [133] presented a new informa-

tion measure for PFSs by using cosine similarity measures and Euclidean distance. Peng

and Selvachandran [136] studied and presented the completeistate-of-art related to the

studies carriediout in theifield of PFSs and itsiapplications with futureidirections. Xiao

and Ding [44] provided divergence measure for PFSs for solving the medical diagnosis

problem.
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1.2 Literature Review

In this section, we have briefly reviewed the important, popular and widely used MCDM

techniques under variable in the circumstances.

1.2.1 Multi-criteriaiDecision-Making Techniques

The objective of Multi-CriteriaiDecision-Making (MCDM) process isito achieve the best/optimal

alternativeifrom the availableiset of alternatives under the certain predefined set of

criteria. In literature, various researchers have worked on the techniques for solving

the MCDM problems. For example, Hwang and Yoon [21] proposed the “Technique

for Order Preference by Similarity to Ideal Solutions (TOPSIS)” approach, Opricovic

[118] developed the “Vlsekriterijumska Optimizacija i Kompromisno Resenje (VIKOR)”

method, Brans and Mareschel [63] introduced the PROMETHEE (“Preference Ranking

Organization Method for Enrichment Evaluations”) method, Benayoun et al. [99] stud-

ied ELECTRE (“elimination et choice translating reality”) method, Gomes and Lima

[71] presented the TODIM (“TOmada deDecisao Interativa e Multicriterio”) method

and etc. Further, Opricovic and Tzeng [119] presented an extended version of VIKOR

method by stating the limitations of TOPSIS, PROMOTHEE and ELECTRE meth-

ods. Because of the important feature of compromise solution, VIKOR method is more

popular in research world than any other available method/technique.

The most decisive role in the MCDM problem is of the assignmentiof the crite-

riaiweights. The selection of the optimal solution/alternative depends on the proper

assignment of the weights. Chen and Li [122] categorized the estimation of the criteria

weights into two categories:

• First one is subjective evaluation, where the weights are concerned with the pref-

erence expressed by decision makers. Some examples of subjective weight category

are as - Weighted least square method [12], Analytical Hierarchy Process (AHP)

[125], Delphi method [19] and many more.

• The other category is objective evaluation where we determine weight by utiliz-
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ing various techniques based on mathematical models such as - multi-objective

programming method [41], principle element analysis [148], entropy method and

etc.

Both of these two categories have their own merits and demerits. However, the entropy

method of objective evaluation is highly trusted and utilized method to determine the

criteria weights. The subjective evaluation is highly beneficial where there is no infor-

mation loss and all the weights are available. But in many real world problems, there

may be the cases where the information is not reliable due to some constraints such as

time pressure, incomplete information about alternatives/criteria, limited expertise of

the problem domain and etc. In such circumstances, the objective weights evaluation

methods become more helpful and reliable.

1.2.2 Soft Set Theory to Soft Matrices

Many theories are found in the literature which have their own limitations to deal

with the vagueness, uncertainty and impreciseness because of the involvement of pa-

rameterization tools presented in the different application fields of engineering, so-

cial/economiciproblems, decision-makingiproblems etc. In order to overcome the above

stated limitations, a new kind of mathematical tool has been developed by Molodtsov

[27] (notion of soft set) to handel the vagueness, uncertainty and impreciseness in a

better way. Next, in extension with the notioniof softiset theory, Maji et al. [92]

[93][94] presented the “fuzzy soft set (FSS)” & “intuitionistic fuzzy soft set (IFSS)” along

with their various standard binaryioperations and utilizedithem to solve the decision-

makingiproblems. The notion of Pythagoreanifuzzy soft seti(PFSS) along with various

standard binary operators has been extended by the Peng et al. [140].

Further, Naim and Serdar [24] introducedithe conceptiof soft matricesiwhich are

representationsiof the Molodtsov’sisoft sets andisuccessfully applied the softimatrices

in decision-makingiproblems. Yong et al. [146] and Chetia et al. [13] extended the

matrixirepresentation of softiset to fuzzy softiset and intuitionisticifuzzy softimatrix re-

spectively and appliediit to decision-makingiproblems.
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Further, the mathematical generalization can be referred from [27], [24], [140] in the

following way:

“Let U = {u1, u2, ..., um} be the universe of discourse and E = {e1, e2, ..., en} be the set

of parameters.

• The pair (F,E) is called soft set over U if and only if F : E → P(U), where P(U)

is the power set of U .

• Let F (U) denotes the set of all fuzzy sets of U . A pair (F,E) is called a fuzzy soft

set over F (U), where FE is a mapping given by FE : E → P(F (U)).

• The pair (F,E) is called the Pythagorean Fuzzy Soft Set (PFSS) over U if FE :

E → PFS(U) and can be represented as

(F,E) = {(e, F (e)) : e ∈ E,F (e) ∈ PFS(U)},

where PFS(U) denotes the set of all Pythagorean fuzzy sets of U .

• Let (F,E) be a soft set over U. Then the subset U × E is uniquely defined by

relation RE = {(u, e), e ∈ E, u ∈ U}.

The characteristic function of RE is χ
RE

: U × E → [0, 1] given by

χ
RE

(u, e) =

 1

0

if (u, e) ∈ U × E

if (u, e) /∈ U × E

.

If aij = χ
RE

(ui, ej), then a matrix [aij] = [χ
RE

(ui, ej)] is called soft matrix of the

soft set (F,E) over U of order m× n.”

1.2.3 Dimensionality Reduction Techniques

In order to convert a higher dimensional vector to a lower dimensional vector, the dimen-

sionality reduction technique is utilized. The main objective of the dimensionality reduc-

tionitechniques are to enhanceithe abilityito handle irrelevantiand redundantifeatures,

to enhance the costiefficiency and many more etc. In view of the decision processes, it

will be difficult to visualize and work with a higher number of involved factors. Thus, the
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dimensionality reduction approach turns out to be an important study in different fields

of application which have the extreme data modality. In the field of statistical science,

many researchers have worked in the direction of dimensionality reduction by using var-

ious techniques such as “Principal Component Analysis (PCA)”, “Linear Discriminant

Analysis (LDA)” [1], “singular value decomposition” & “learning vector quantization ap-

proach” [79]. In the soft set theory, the concept of parameterization reduction has been

presented by Chen et al. [29]. Xu et al. [143] provided the sequential and simultaneous

perspectives approach for the reduction of data. Also, two new algorithms for the dimen-

sionality reduction approach by using the concept of “linear sequence discriminant analy-

sis (LSDA)” has been presented by Su et al. [15]. Further, incorporating the fuzzy trans-

form method, a technique for the reduction of data has been proposed by the Perfilieva

[57]. Konat et al. [1] presentedia new techniqueifor theireduction of theidimensionality

of theioriginal logiset of ChineseiContinental ScientificiDrilling Main Hole to a conve-

nient size by using the PCA and LDA. Sabitha et al. [79] used the three different

kinds of dimensional reductionitechniques, i.e., PCA, “Singular Value decomposition”

& “Learning Vector Quantization” and appliedithese techniquesito data setirelated to

solar irradianceiwhich comprises of temperature, solar irradiance, and humidity data.

They also evaluate theiefficiencyiand attain theibestitechniqueito beiapplicable forithe

dataiset. Chaterjee et al. [90] presented a hybrid method for the selection and evalua-

tion of machining processes and utilized the pairwise comparison approach to estimate

the weights in multi-criteria decision-makingiproblem. In order to examine the consis-

tency of results in the processiof decision-making and to choose the optimal solution

Mukhametzyanov and Pamucar [56] presented a mathematical MCDM model. In addi-

tion to this, they also carried out the sensitivity of the proposed model by using the dif-

ferent available methods, e.g., “SAW, MOORA, VIKOR, COPRAS, CODAS, TOPSIS,

D’IDEAL, MABAC, PROMETHEE-I,II, ORESTE-II ”. By using the notion of fuzzy

soft set Hooda and Kumari [35] proposed a new dimensionality reduction approach to

solve decision making problem.
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1.2.4 Entropy Measures

The concept of Entropy measure firstly coined by Shannon [16] in his famous paper

“The mathematical theory of communication”. The entropyimeasure is also known as the

measure of information. It was introduced on the set of some finite number of probability

distribution and also provided a mathematical model for establishing the concept of

information measure. After Shannon’s work various researchers have paid their interest

in the development of information measures. This development was initiated by Renyi

[10] with the inclusion of one parameter α. Havrda and Charvat [61] presented a non-

additive entropy measure which was further generalized by Sharma and Mittal [14] by

including two parameters and this new measure is known as entropy measure of order-α,

type-β.

The first non-probabilistic entropy measure under fuzzy setup was studied by De

Luca and Termini [3] which satisfies the four basic axioms: “sharpness, maximality,

symmetry and resolution”. Various researchers have introduced the different kinds of

fuzzy entropy measures in order to solve various real life problems [28] [84] [60].

Definition 1.2.1 [16] Let △n = {P = (p1, p2, . . . , pn), pi ≥ 0, i = 1, 2, 3, . . . , n and∑
pi = 1} be the set of all probability distribution association with random variable X

taking finite values x1, x2,, . . . , xn. For any probability distribution P = (p1, p2, . . . , pn) ∈

△n, Shannon defined an entropy as:

H(P ) = −
n∑

i=1

(pi) log(pi).

Definition 1.2.2 [3] “The measure of fuzzy entropy between the fuzzy sets A and B

is defined as a set-to-point mapping H : FS(U) −→ R+ which satisfies the following

conditions:

(i) H(A) = 0, if A is a crisp set in U ;

(ii) H(A) has a unique maximum value 1 if µA = 1
2
;

(iii) H(A) = H(Ac) if Ac is the complement of A;
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(iv) H(A) ≤ H(B) if A is less fuzzy then B i.e., µA ≤ µB when µB ≤ 1
2
and µA ≥ µB

when µB ≥ 1
2
.”

Let A be the fuzzyiset over the universeiof discourse U = {u1, u2, . . . , un}. The

fuzzy entropy has been studiediby manyiresearchers and some of them are presented as

follows:

• Kaufman Fuzzy Entropy [8]

HK(A) = − 1

lnn

n∑
i=1

ΦA(ui) lnΦA(ui); whereΦA(ui) =
µA(ui)
n∑

i=1

µA(ui)
.

• De Luca and Termini Fuzzy Entropy [3]

HD(A) = − 1

n ln 2

n∑
i=1

[
µA(ui) lnµA(ui) + (1− µA(ui)) ln(1− µA(ui))

]
.

• Renyi’s Fuzzy Entropy [10]

HR(A) =
1

1− α

n∑
i=1

[
µα
A(ui) + (1− µα

A(ui))
]
; α ̸= 1, α > 0.

• Pal and Pal Fuzzy Entropy [84]

HP (A) =
1

n
√
e− 1

n∑
i=1

[
µA(ui)e

1−µA(ui) + (1− µA(ui))e
µA(ui) − 1

]
.

After the effective applications of the IFS in various application fields, many re-

searchers have studied and presented the entropy measures analogous to fuzzy entropy

measures. Szmidt and Kacprzyk [39] extended the set of basic axioms of entropy measure

from fuzzy set to intuitionistic fuzzy set. Based on De Luca and Termini fuzzy entropy

[3], Zhang and Jiang [98] studied the entropy measure in intuitionistic fuzzy setup. Ye

[65] proposed two entropy measures for IFSs. Verma and Sharma [110] presented an en-

tropyimeasure based on exponential function under IFS environment. Many researchers

have worked on the development of IFSs entropy measures [25] [86].

Definition 1.2.3 “The measure of intuitionistic fuzzy entropy between the intuitionistic

fuzzy sets A and B is defined mapping H : IFS(U) −→ R+ which satisfies the following

conditions:
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(i) H(A) = 0, if A is a crisp set in U ;

(ii) H(A) = 1, if µA = νA;

(iii) H(A) = H(Ac) if Ac is the complement of A;

(iv) H(A) ≤ H(B) if µA ≤ µB and νA ≥ νA.”

Suppose A is an IFS over the universeiof discourse U = {u1, u2, . . . , un}. The intu-

itionistic entropy measure has been studied by many researchers in the literature and

some of them are presented as follows:

• Vlachos and Sergiadis IF Entropy Measure [53]

H(A) = − 1

ln 2

n∑
i=1

[
µA(ui) logµA(ui) + νA(ui) log νA(ui)−

(
(1− πA(ui)) log(1− πA(ui))

)
− πA(ui) log 2

]
;

• Zhang and Jiang IF Entropy Measure [98]

H(A) = − 1

n

n∑
i=1

[(
µA(ui) + 1− νA(ui)

2

)
log

(
µA(ui) + 1− νA(ui)

2

)
+
(νA(ui) + 1− µA(ui)

2

)
log

(
νA(ui) + 1− µA(ui)

2

)]
.

• Wei et al. IF Entropy Measure [25]

H(A) =
1

n

n∑
i=1

[ √
2√

2− 1

(
cosπ

(
µA(ui)− νA(ui)

4

)
− 1

)]
.

1.2.5 Discriminant Measures

The divergence/discriminant measure is an information measure which is also known

as the relative entropy measure and gives a difference formula between the two discrete

probability distributions. Bhandari and Pal [28] studied and extended the Kullback

and Leibler’s [114] divergence measure over fuzzy environment based on the mutual in-

formation measure. Based on exponential function, Fan and Xie [60] proposed a diver-

genceimeasure and studied its relationiwith the fuzzyiexponential entropy. Next, Montes

et al. [116] discussed the specialiclasses of divergence measures in connectioniwith fuzzy
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andiprobabilistic uncertainty. Further, the fuzzy divergence measure have been success-

fully implemented by Ghosh et al. [75] to study the automated leukocyte recognition.

Bhatia and Singh [95] proposed four different type of fuzzyidirected divergenceimeasures.

Analogousito Shang & Jiang [137] discriminant measure, Vlachos and Sergiadis [53]

provided the discriminant measure for intuitionistic fuzzy setup. Further, Wang et al.

[135] and Hung et al. [132] presented a set ofiaxioms for the distanceimeasure and for

the discriminantimeasure respectively. Li [31] provideditheiintuitionistic fuzzy discrim-

inantimeasure and Hung et al. [131]iproposed J-divergenceimeasureibetween intuition-

isticifuzzy sets with theiriapplicationiin pattern recognition. Montes et al. [55] estab-

lishedisomeiimportant relationshipsiamong divergenceimeasures, dissimilarity measures

and distanceimeasures. Analogousito the basic fuzzyidiscriminant measures,iintuitionistic

fuzzy discriminant measures exhibits wider applications in various applicationifields such

asidecision-making problems ([100], [32], [108], [109], [113]), medical diagnosis ([115],

[98], [6]),ilogical reasoning [144], linguisticivariables [132] and pattern recognition ([4],

[131], [134], [46], [53]) etc.

Kaya andiKahraman [54] have providedicomparison of fuzzyimulti-criteria decision mak-

ingimethods for intelligentibuilding assessment alongiwith detailedirankingiresults. Ba-

jaj et al. [104] proposedia new R-normiintuitionistic fuzzyientropy and a weighted R-

normiIntuitionistic fuzzy divergenceimeasure withitheir computational applicationsiin

patternirecognition and image thresholding.iGandotra et al. [83] studiedimultiple-criteria

decision makingiproblemiwith the help of parametricientropy under α-cut and (α, β)-

cutibased distanceimeasures foridifferent possible valuesiof parameters andiprovided the

rankingimethod for the availableialternatives.

Let A be the intuitionistic fuzzy set over the universeiof discourse U = {u1, u2, . . . , un}.

The intuitionistic discriminant/divergence measure has been studied by many researchers

in the literature and some of them are presented as follows:

• Vlachos and Sergiadis IF Divergence Measure [53]

I(A,B) =
1

n

n∑
i=1

[
µA(ui) log

2µA(ui)

µA(ui) + µB(ui)
+ νA(ui) log

2νA(ui)

νA(ui) + νB(ui)

]
;
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• Verma and Sharma IF Divergence Measure [108]

H(A,B) =
1

n

n∑
i=1

[
µA(ui) log

(
µA(ui)

λµA(ui) + (1− λ)µB(ui)

)
+ νA(ui) log

(
νA(ui)

λνA(ui) + (1− λ)νB(ui)

)
+ πA(ui) log

(
πA(ui)

λπA(ui) + (1− λ)πB(ui)

)]
.

1.3 Motivation

The way we think, process information, make our decision by particularly involving our

perception, language, human opinion, fuzziness is very inherited and such situations can

be found everywhere. The best wayito dealiwith such situations isi to deploy the theory

ofifuzzy set which is characterizediby a membershipifunction. For the sake of covering

the imprecise information in a better way, Atanassov extended this notion of fuzzy set

to intuitionisticifuzzy set which was characterized by its membershipifunction & non-

membershipifunction. Further, R. R. Yager extended the restriction on the constraint

by introducing a new set called as Pythagorean fuzzy set. While doing literature survey,

we found that:

• Pythagorean fuzzy set seems to be the more generalized fuzzy set and have the

wider coverage of information span so that the decision-making process can be

dealt more effectively.

• No study has been carried out by utilizing the Pythagorean fuzzy setup together

with the notion of soft matrices and applications.

• No dimensionality reduction technique is available in the literature to reduce the

informational data in the Pythagorean setup.

• No study was presented regarding the Pythagoreanifuzzyientropy and discriminant

information measures in the available literature.
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Chapter 2

Pythagorean FuzzyiSoftiMatrices

In this chapter, the notion ofiPythagorean fuzzyisoft matrix (PFSM) and various appli-

cations in the fieldiof decision-making andimedicalidiagnosis have been presented and

studied in detail. Different types of PFSMs and several related binary operations have

been presented with important properties. By analogously incorporating the concept

of choice matrixiandiweighted choiceimatrix, an algorithmiforisolving decision-making

problem has been provided along with an illustrating example. Further, an algorithm to

deal with a general medical diagnosis problem has also been provided by using the defi-

nitions of score/utility matrix along with the demonstration of the numerical example.

A detailed comparative analysis has also been carried out for better understanding.

2.1 PFSMs and its Binary Operations

The notion of matrices significantly helps in various soft computing applications and in

handling the dimensionality feature of the big data problems related to various engi-

neering problems. In view of the important role of matrices, we present the notion of

PFSMs along with different binary operations.

Definition 2.1.1 ”Let (F,E) be a Pythagorean fuzzy soft set over X, then the subset

X ×E is uniquely defined by RE = {(x, e), e ∈ E, x ∈ X}. The RE can be characterized

by its membership function and non membership function given by µRE
: X ×E → [0, 1]
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and νRE
: X × E → [0, 1] respectively.

If (µij, νij) = (µRE
(xi, ej), νRE

(xi, ej)), where µRE
(xi, ej) is the membership of xi in

the Pythagorean fuzzy set F (ej) and νRE
(xi, ej) is the non-membership of xi in the

Pythagorean fuzzy set F (ej) respectively, then we define a matrix given by

[M ] = [mij ]m×n = [(µM
ij , ν

M
ij )]m×n =


(µ11, ν11) (µ12, ν12) · · · (µ1n, ν1n)

(µ21, ν21) (µ22, ν22) · · · (µ2n, ν2n)
...

...
...

...

(µm1, νm1) (µm2, νm2) · · · (µmn, νmn)


which is called Pythagorean fuzzy soft matrix of order m× n over X.”

For a proper understanding of the construction of a PFSM, let us consider a universe of

discourse X = {x1, x2, x3} with a parameteriset (E = {e1, e2, e3}) and

F (e1) = {(x1, 0.6, 0.5), (x2, 0.5, 0.8), (x3, 0.9, 0.2)},

F (e2) = {(x1, 0.8, 0.5), (x2, 0.9, 0.3), (x3, 0.6, 0.6)},

F (e3) = {(x1, 0.6, 0.7), (x2, 0.5, 0.6), (x3, 0.7, 0.5)}.

We take the soft set (F,E) given by F (e1), F (e2), F (e3) over the universe of discourse.

In this way, we can write the PFSM [M(F,E)] as

[M ] = [(µM
ij , ν

M
ij )]m×n =


(0.6, 0.5) (0.8, 0.5) (0.6, 0.7)

(0.5, 0.8) (0.9, 0.3) (0.5, 0.6)

(0.9, 0.2) (0.6, 0.6) (0.7, 0.5)

 .

Definition 2.1.2 ”Various kinds of Pythagorean fuzzy soft matrices: Suppose PFSMm×n

is a collection of all Pythagorean fuzzy soft matrices over X. A Pythagorean fuzzy soft matrix

M = [(µM
ij , ν

M
ij )] ∈ PFSMm×n is called:

• Pythagorean fuzzy soft zero matrix if

µM
ij = 0 and νMij = 0;∀i, j and is denoted by 0 = [0, 0].

• Pythagorean fuzzy soft square matrix if m = n.

• Pythagorean fuzzy soft row matrix if n = 1.
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• Pythagorean fuzzy soft column matrix if m = 1.

• Pythagorean fuzzy soft diagonal matrix if all its non-diagonal elements are zero ∀

i, j.

• Pythagorean fuzzy soft µ-universal matrix if µM
ij = 1 and νMij = 0 ∀ i and j,

denoted by Pµ.

• Pythagorean fuzzy soft ν-universal matrix if µM
ij = 0 and νMij = 1 ∀ i and j,

denoted by Pν .

• Scalar multiplication of Pythagorean fuzzy soft matrix : for any scalar k, we

define kA = [(kµM
ij , kν

M
ij )], ∀ i and j.”

Definition 2.1.3 ”Relations over Pythagorean fuzzy soft matrices:

Consider two Pythagorean fuzzy soft matrices M = [(µM
ij , ν

M
ij )] and N = [(µN

ij , ν
N
ij )] ∈ PFSMm×n.

Then the relations over two Pythagorean fuzzy soft matrices is called:

• Sub matrix: M ⊆ N if µM
ij ≤ µN

ij and νMij ≥ νNij ∀ i and j.

• Super matrix: M ⊇ N if µM
ij ≥ µN

ij and νMij ≤ νNij ∀ i and j.

• Equal matrix: M = N if µM
ij = µN

ij and νMij = νNij ∀ i and j.

• Max Min Product of Pythagorean fuzzy soft matrix:

Let M = [aij ] = [(µM
ij , ν

M
ij )] ∈ PFSMm×n & N = [bjk] = [(µN

jk, ν
N
jk)] ∈ PFSMn×p be

two Pythagorean fuzzy soft matrices then

M ∗N = [cik]m×p =

[{
max(min

j
(µM

ij , µ
N
jk)),min(max

j
(νMij , ν

N
jk))

}]
∀ i, j and k.”

Definition 2.1.4 ”Operations over Pythagorean Fuzzy Soft Matrices:

Consider two Pythagorean fuzzy soft matrices A = [(µA
ij , ν

A
ij)] and B = [(µB

ij , ν
B
ij )] ∈ PFSMm×n.

Then various standard operations over two Pythagorean fuzzy soft matrices can be defined as

follows:

• Ac =
[
(νAij , µ

A
ij)
]
∀ i and j.

• A ∪B =
[
max(µA

ij , µ
B
ij),min(νAij , ν

B
ij )
]
∀ i and j.

• A ∩B =
[
min(µA

ij , µ
B
ij),max(νAij , ν

B
ij )
]
∀ i and j.
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• A ·B =
[
(µA

ij · µB
ij , ν

A
ij + νBij − νAij · νBij )

]
∀ i and j.

• A+B =
[
(µA

ij + µB
ij − µA

ij · µB
ij , ν

A
ij · νBij )

]
∀ i and j.

• A⊗B =
[
(µA

ij · µB
ij ,
√

(νAij)
2 + (νBij )

2 − (νAij)
2 · (νBij )2)

]
∀ i and j.

• A⊕B =
[
(
√

(µA
ij)

2 + (µB
ij)

2 − (µA
ij)

2 · (µB
ij)

2, νAij · νBij )
]
∀ i and j.

• A@B =

[
(
µA
ij+µB

ij

2 ,
νAij+νBij

2 )

]
∀ i and j.

• A@wB =

[
(
w1µA

ij+w2µB
ij

w1+w2
,
w1νAij+w2νBij

w1+w2
)

]
∀ i and j ; where w1, w2 > 0 are the weights.

• A$B =
[(√

µA
ij · µB

ij ,
√

νAij · νBij
)]

∀ i and j.

• A$wB =
[
((µA

ij)
w1 · (µB

ij)
w2)

1
w1+w2 , ((νAij)

w1 · (νBij )w2)
1

w1+w2 )
]
∀ i and j, where w1, w2 > 0

are the weights.

• A ◃▹ B =

[
(2 · µA

ij ·µB
ij

µA
ij+µB

ij
, 2 · νAij ·νBij

νAij+νBij
)

]
∀ i and j.

• A ◃▹w B =

[
( w1+w2

w1
µA
ij

+
w2
µB
ij

, w1+w2
w1
νA
ij

+
w2
νB
ij

)

]
∀ i and j ; where w1, w2 > 0 are the weights.”

Proposition 2.1 Suppose Aiand”B ∈ PFSMm×n are twoiPythagorean fuzzy softimatrices

then the followingiresults hold:

(i) A ∪Bi = B ∪A

(ii) A ∩Bi = B ∩A

(iii) A+Bi = B +A

(iv) A ·Bi = B ·A

(v) (A ∪Bi)c = Ac ∩ iBc

(vi) (A ∩Bi)c = Ac ∪ iBc

(vii) (iAc ∩Bc)c = A ∪Bi

(viii) (iAc ∪Bc)c = A ∩Bi

(ix) (iAc +Bc)c = A ·Bi

(x) (iAc ·Bc)c = A+Bi.

Proof : Let A = [(µA
ij , ν

A
ij)], B = [(µB

ij , ν
B
ij )] ∈ PFSMm×n.

For each values of i & j,

(i) iA ∪Bi = i[max(µA
ij , µ

B
ij),min(νAij , ν

B
ij )] = [max(µB

ij , µ
A
ij),min(νBij , ν

A
ij)] = iB ∪ iA.
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(ii) iA ∩Bi = [min(µA
ij , µ

B
ij),max(νAij , ν

B
ij )] = [min(µB

ij , µ
A
ij),max(νBij , ν

A
ij)] = B ∩A.

(iii) iA+Bi = [(µA
ij + µB

ij − µA
ij · µB

ij , ν
A
ij · νBij )] = [(µB

ij + µA
ij − µB

ij · µA
ij , ν

B
ij · νAij)] = B +A.

(iv) A ·B = [(µA
ij · µB

ij , ν
A
ij + νBij − νAij · νBij )] = [(µB

ij · µA
ij , ν

B
ij + νAij − νBij · νAij)] = B ·A.

(v) (A ∪B)c = ([(µA
ij , ν

A
ij)] ∪ [(µB

ij , ν
B
ij )])

c = [max(µA
ij , µ

B
ij),min(νAij , ν

B
ij )]

c

= [min(νAij , ν
B
ij ),max(µA

ij , µ
B
ij)] = [(νAij , µ

A
ij)] ∩ [(νBij , µ

B
ij)] = Ac ∩Bc.

On similar lines, the proof of (vi)− (x) can be carried out.

Proposition 2.2 If A = [(µA
ij , ν

A
ij)] ∈ PFSMm×n then the following results can be verified in

accordance with the definition:

(i) (Ac)c = iA

(ii) (Pµ)
c = Pν

(iii) (Pν)
c = Pµ

(iv) iA ∪A = A

(v) iA ∪ Pµ = Pµ

(vi) iA ∩ Pν = Ai

(vii) iA ∩A = Ai

(viii) iA ∩ Pµ = Ai

(ix) iA ∩ Pν = Pν .

Proposition 2.3 Suppose A & B ∈ PFSMm×n. The resultsirelated to the weighedioperations

hold:

(i) (Ac@wB
c)c = A@wB

(ii) (Ac$wB
c)c = A$wB

(iii) (Ac ◃▹w Bc)c = iA ◃▹w B

(iv) iA@wB = iB@wA

(v) iA$wB = iB$wA

(vi) A ◃▹w B = B ◃▹w A.”
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Proof : Leti iA = [(µA
ij , ν

A
ij)], B = [(µB

ij , ν
B
ij )] ∈ PFSMm×n.

For each value of i, j & w1, w2 > 0, we have,

(i) (Ac@wB
c)c =

([
(νAij , µ

A
ij)@w(ν

B
ij , µ

B
ij)
])c

=

([
w1νAij+w2νBij

w1+w2
,
w1µA

ij+w2µB
ij

w1+w2

])c

=

[
w1µA

ij+w2µB
ij

w1+w2
,
w1νAij+w2νBij

w1+w2

]
= A@wB.

(ii)

(Ac$wB
c)c =

([
(νAij , µ

A
ij)$w(ν

B
ij , µ

B
ij)
])c

=
([

((νAij)
w1 · (νBij )w2)

1
w1+w2 , ((µA

ij)
w1 · (µB

ij)
w2)

1
w1+w2

])c
=
[
((µA

ij)
w1 · (µB

ij)
w2)

1
w1+w2 , ((νAij)

w1 · (νBij )w2)
1

w1+w2

]
= A$wB.

Similar proof for (iii).

(iv)

A@wB =

[
w1µ

A
ij + w2µ

B
ij

w1 + w2
,
w1ν

A
ij + w2ν

B
ij

w1 + w2

]

=

[
w2µ

B
ij + w1µ

A
ij

w2 + w1
,
w2ν

B
ij + w1ν

A
ij

w2 + w1

]
= B@wA.

(v)

A$wB =
[
((µA

ij)
w1 · (µB

ij)
w2)

1
w1+w2 , ((νAij)

w1 · (νBij )w2)
1

w1+w2

]
=
[
((µB

ij)
w2 · (µA

ij)
w1)

1
w2+w1 , ((νBij )

w2 · (νAij)w1)
1

w2+w1

]
= B$wA

Similar proof for (vi).

Proposition 2.4 Suppose A,iB & C ∈ PFSMm×n. The important results in connection with

associativity of operations are as follows:

(i) (iA ∪Bi) ∪ Ci = A ∪ (B ∪ iC)

(ii) (iA ∩Bi) ∩ Ci = A ∩ (B ∩ C)

(iii) (iA+ iBi) + iCi = A+ (B + C)

(iv) (iA ·Bi) · Ci = A · (iB · C)

(v) (iA@Bi)@Ci = A@(iB@C)
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(vi) (iA$Bi)$Ci = A$(iB$C)

(vii) (iA ◃▹ Bi) ◃▹ Ci = A ◃▹ (B ◃▹ iC).

Proofi: For each and every i & j, we get

(i)

(A ∪B) ∪ Ci = [(max{µA
ij , µ

B
ij},min{νAij , νBij })] ∪ [(µC

ij , ν
C
ij )]

= [(max{(µA
ij , µ

B
ij), µ

C
ij},min{(νAij , νBij ), νCij})]

= [(max{(µA
ij , (µ

B
ij , µ

C
ij))},min{νAij , (νBij , νCij )})] = A ∪ (B ∪ Ci).

(ii)

(A ∩B) ∩ Ci = [(min{µA
ij , µ

B
ij},max{νAij , νBij }] ∪ (µC

ij , ν
C
ij )]

= [(min{(µA
ij , µ

B
ij), µ

C
ij},max{(νAij , νBij ), νCij})]

= [(min{(µA
ij , (µ

B
ij , µ

C
ij))},max{νAij , (νBij , νCij )})] = A ∩ (B ∩ Ci).

(iii)

(A+B) + C = [(µA
ij + µB

ij − µA
ij · µB

ij , ν
A
ij · νBij )] + [(µC

ij , ν
C
ij )]

= [(µA
ij + µB

ij) + µC
ij − (µA

ij · µB
ij) · µC

ij , (ν
A
ij · νBij ) · νCij ]

= [µA
ij + (µB

ij + µC
ij)− µA

ij · (µB
ij · µC

ij), ν
A
ij · (νBij · νCij )] = A+ (B + C).

On similar lines, the proof of (iv)− (vii) can be carried out.

Proposition 2.5 Let A,iB and C ∈ PFSMm×n be three Pythagoreani fuzzy softimatrices

then the followingiresults related to distributivityiof operations hold:

Proofi: For each and every i & j, we have

(i)

Ai ∩ (B ∪ C) = [(µA
ij , ν

A
ij)] ∩ [(max{µB

ij , µ
C
ij},min{νBij , νCij})]

= [(min{µA
ij ,max{µB

ij , µ
C
ij}},max{νAij ,min{νBij , νCij}})].
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Now,

(Ai ∩B) ∪ (A ∩ C) = [(min{µA
ij , µ

B
ij},max{νAij , νBij }] ∪ [(min{µA

ij , µ
C
ij},max{νAij , νCij}]

= [max(min{µA
ij , µ

B
ij},min{µA

ij , µ
C
ij}),min(max{νAij , νBij },max{νAij , νCij})]

= [max(µA
ij ,min{µB

ij , µ
C
ij}),min(νAij ,max{νBij , νCij})]

= [min(µA
ij ,max{µB

ij , µ
C
ij}),max(νAij ,min{νBij , νCij})] = A ∩ (B ∪ C).

Hence, Ai ∩ (B ∪ C)i = i(A ∩B) ∪ (A ∩ C) iholds.

(ii)

(A ∩B)i ∪ C = [(min{µA
ij , µ

B
ij},max{νAij , νBij }] ∪ [(µC

ij , ν
C
ij )]

= [max(min{µA
ij , µ

B
ij}, µC

ij),min(max{νAij , νBij }, νCij ].

Now,

(A ∪ C)i ∩ (B ∪ C) = [max{µA
ij , µ

C
ij},min{νAij , νCij}] ∩ [max{µB

ij , µ
C
ij},min{νBij , νCij}]

= [min(max{µA
ij , µ

C
ij},max{µB

ij , µ
C
ij}),max(min{νAij , νCij},min{νBij , νCij})]

= [min(max{µA
ij , µ

B
ij}, µC

ij}),max(min{νAij , νBij }, νCij})]

= [max(min{µA
ij , µ

B
ij}, µC

ij}),min(max{νAij , νBij }, νCij})] = (A ∩ iB) ∪ iC

Hence, (Ai ∩B) ∪ Ci = i(Ai ∪ C) ∩ (Bi ∪ C).

Similarly, the results (iii)− (xix) can be established.
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2.2 Applications in Decision Making

Here, we present an algorithm (Figure 2.1) to solveithe decision-makingiproblem by tak-

ing theiidea of PFSM into account. For this, we first proposed theirevised definition of

choiceimatrix and its weightediform as follows:

Definition 2.2.1 Consider A = [(µA
ij , ν

A
ij)] ∈ PFSMm×n be a Pythagoreanifuzzy softimatrix,

then the choiceimatrix of matrixiA is

C(iAi) =




n∑
j=1

(µA
ij)

2

n
,

n∑
j=1

(νAij)
2

n



m×1

∀ i when weights are equal.

Definition 2.2.2 Consider A = [(µA
ij , ν

A
ij)] ∈ PFSMm×n be a Pythagoreanifuzzy softimatrix,

then the weightedichoice matrix ofimatrix A is given by

Cw(iAi) =




n∑
j=1

wj(µ
A
ij)

2∑
wj

,

n∑
j=1

wj(ν
A
ij)

2∑
wj



m×1

∀ i where wj > 0 are weights.

Start

Finish

Step 1: Construct the 

Pythagorean fuzzy soft 

matrices corresponding 

to PFSS.

Step 2 : Compute the 

weighted choice matrix of 

membership and non-

membership value of PFSM.

Step 2: Compute the choice 

matrix of membership and 

non-membership value of 

PFSM.

Case 1 : 

Equal weights

Case 2:

Unequal weights

Step 3: Choose alternative 

with highest membership 

value.

Figure 2.1: Flow Chart of the Algorithm for Decision Making

Example 2.1 Consider an automobileicompany which producesithree typesiof car c1, c2, c3,

i.e., U = {c1, c2, c3}. Let E = {e1, e2, e3} be a setiof criteria representing, goodimileage (e1),

comfort (e2), good poweristeering (e3) on the basis of which a customerihas to decide whichicar
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to beipurchased. Then the above problem can be model by consideringithe Pythagoreanifuzzy

softiset (G,E) overiU , where G isimapping G : E → P(U) which providesithe descriptioniof

car onithe basis ofidifferent criteria.

• Step 1: Construct the Pythagoreanifuzzy softimatrix:

A =

e1 e2 e3

c1 (0.8, 0.5) (0.6, 0.6) (0.8, 0.2)

c2 (0.6, 0.5) (0.7, 0.4) (0.8, 0.4)

c3 (0.5, 0.7) (0.7, 0.6) (0.9, 0.3)

• Stepi2:

– Case 1: Equaliweights

Evaluate the choiceimatrix for the Pythagoreanifuzzy softimatrix A asi:

C(iAi) =


(0.5467, 0.2167)

(0.4967, 0.19)

(0.5167, 0.3133)


– Case 2: Unequaliweights

If theiweights 0.2, 0.6, 0.2 areigiven for theiparameters goodimileage, comfort, goodipower

steeringirespectively then the weightedichoice matrixifor A isias

Cw(iAi) =


(0.472, 0.274)

(0.494, 0.178)

(0.506, 0.332)


• Stepi3:

– Casei1 (Equaliweights): From the matrixiobtained in Step 2, it is clear that

if weigive equalipreference for all theiparameters, we have 0.5467 as the high-

estimembership value, i.e., of car c1. Therefore, inithis caseithe mostisuitable car

for theicustomer wouldibe c1.

– Case 2 (Unequal weights):iHowever, it mayialso beiobserved that if the cus-

tomerigives preferenceifor theiparameter “comfort” over the otheriparameters, then

0.506 beingithe highestimembership valueifor car c3. Therefore, inithis case theimost

suitableicar for the customeriwould be c3.
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2.3 PFSM in Medical diagnosis

By reframing the definitions of score/utility matrix, an algorithm (Figure 2.2) to solve the

medical diagnosis problem has been provided in this section.

Definition 2.3.1 ”If A = [(µA
ij , ν

A
ij)] ∈ PFSMm×n, then the score matrix of Pythagorean

fuzzy soft matrix A is given by S(A) = [sij ] = [((µA
ij)

2 − (νAij)
2)] for all i and j. In literature,

the (i, j)th entry of the score matrix is considered to be an important index for measuring the

optimized magnitude of the belongingness/non-belongingness of ith patient having a chance of

jth disease.”

Definition 2.3.2 ”If A = [(µA
ij , ν

A
ij)], B = [(µB

ij , ν
B
ij )] ∈ PFSMm×n then the utility matrix of

Pythagorean fuzzy soft matrices A and B is given by U(A,B) = [uij ]m×n = [S(A) − S(B)]

∀ iand j. It may also be noted that the (i, j)th entry of the utility matrix represents another

important index for measuring the mixed magnitude of the belongingness in connection with its

non-belongingness of ith patient having a chance of jth disease.”

Figure 2.2: Flow Chart of the Algorithmifor MedicaliDiagnosis

In order to break the tie in the repeating values obtained in Step 6, we have to reassess

the characteristic values for symptoms and proceed from Step 1 to Step 6 again.
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Now, to demonstrateithe processiof algorithm, the methodology has been presented with

the help of numericaliexample as follows:

Example 2.2 [40]“Suppose a doctor wants to make a proper diagnosis D = {d1, d2, d3, d4, d5};

where d1 is Viral fever, d2 is Malaria, d3 is Typhoid, d4 is Stomach problem and d5 is Chest

problem, for a set of patients P = {Ted,Al,Bob, Joe} with the values of symptoms V =

{v1, v2, v3, v4, v5}; where v1 is temperature, v2 is headache, v3 is Stomach pain, v4 is cough

and v5 is chest pain.”

• Step 1: To understand the problem mathematically, we consider PFSS (F, V )iover P ,

whereiF is mappingiF : V → P(P ) which representsithe descriptioniof patient’sisymptoms

in theihospital.

Step 1:

(F, V ) =



F (v1) = {(Al, 0.8, 0.1), (Bob, 0.0, 0.8), (Joe, 0.8, 0.1), (Ted, 0.6, 0.1)}

F (v2) = {(Al, 0.6, 0.1), (Bob, 0.4, 0.4), (Joe, 0.8, 0.1), (Ted, 0.5, 0.4)}

F (v3) = {(Al, 0.2, 0.8), (Bob, 0.6, 0.1), (Joe, 0.0, 0.6), (Ted, 0.3, 0.4)}

F (v4) = {(Al, 0.6, 0.1), (Bob, 0.1, 0.7), (Joe, 0.2, 0.7), (Ted, 0.7, 0.2)}

F (v5) = {(Al, 0.1, 0.6), (Bob, 0.1, 0.8), (Joe, 0.0, 0.5), (Ted, 0.3, 0.4)}


Further, we transform the PFSS to following PFSM as follows:

M =

v1 v2 v3 v4 v5

Al (0.8, 0.1) (0.6, 0.1) (0.2, 0.8) (0.6, 0.1) (0.1, 0.6)

Bob (0.0, 0.8) (0.4, 0.4) (0.6, 0.1) (0.1, 0.7) (0.1, 0.8)

Joe (0.8, 0.1) (0.8, 0.1) (0.0, 0.6) (0.2, 0.7) (0.0, 0.5)

Ted (0.6, 0.1) (0.5, 0.4) (0.3, 0.4) (0.7, 0.2) (0.3, 0.4)

Now, we take the PFSS (G,D) overiV , whereiG : D → P(V ).

(G,D) =



G(d1) = {(v1, 0.4, 0.0), (v2, 0.3, 0.5), (v3, 0.1, 0.7), (v4, 0.4, 0.3), (v5, 0.1, 0.7)}

G(d2) = {(v1, 0.7, 0.0), (v2, 0.2, 0.6), (v3, 0.0, 0.9), (v4, 0.7, 0.0), (v5, 0.1, 0.8)}

G(d3) = {(v1, 0.3, 0.3), (v2, 0.6, 0.1), (v3, 0.2, 0.7), (v4, 0.2, 0.6), (v5, 0.1, 0.9)}

G(d4) = {(v1, 0.1, 0.7), (v2, 0.2, 0.4), (v3, 0.8, 0.0), (v4, 0.2, 0.7), (v5, 0.2, 0.7)}

G(d5) = {(v1, 0.1, 0.8), (v2, 0.0, 0.8), (v3, 0.2, 0.8), (v4, 0.2, 0.8), (v5, 0.8, 0.1)}


Next, we construct the PFSM N as follows:
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N =

d1 d2 d3 d4 d5

v1 (0.4, 0.0) (0.7, 0.0) (0.3, 0.3) (0.1, 0.7) (0.1, 0.8)

v2 (0.3, 0.5) (0.2, 0.6) (0.6, 0.1) (0.2, 0.4) (0.0, 0.8)

v3 (0.1, 0.7) (0.0, 0.9) (0.2, 0.7) (0.8, 0.0) (0.2, 0.8)

v4 (0.4, 0.3) (0.7, 0.0) (0.2, 0.6) (0.2, 0.7) (0.2, 0.8)

v5 (0.1, 0.7) (0.1, 0.8) (0.1, 0.9) (0.2, 0.7) (0.8, 0.1)

• Step 2: In this step, we evaluate the complement matrices corresponding to the PFSMs

M and N as follows:

M c =

v1 v2 v3 v4 v5

Al (0.1, 0.8) (0.1, 0.6) (0.8, 0.2) (0.1, 0.6) (0.6, 0.1)

Bob (0.8, 0.0) (0.4, 0.4) (0.1, 0.6) (0.7, 0.1) (0.8, 0.1)

Joe (0.1, 0.8) (0.1, 0.8) (0.6, 0.0) (0.7, 0.2) (0.5, 0.0)

Ted (0.1, 0.6) (0.4, 0.5) (0.4, 0.3) (0.2, 0.7) (0.4, 0.3)

N c =

d1 d2 d3 d4 d5

v1 (0.0, 0.4) (0.0, 0.7) (0.3, 0.3) (0.7, 0.1) (0.8, 0.1)

v2 (0.5, 0.3) (0.6, 0.2) (0.1, 0.6) (0.4, 0.2) (0.8, 0.0)

v3 (0.7, 0.1) (0.9, 0.0) (0.7, 0.2) (0.0, 0.8) (0.8, 0.2)

v4 (0.3, 0.4) (0.0, 0.7) (0.6, 0.2) (0.7, 0.2) (0.8, 0.2)

v5 (0.7, 0.1) (0.8, 0.1) (0.9, 0.1) (0.7, 0.2) (0.1, 0.8)

• Step 3: In this step, we find the max-min products of the obtained PFSMs.

R1 = M ∗N =

d1 d2 d3 d4 d5

Al (0.4, 0.1) (0.7, 0.1) (0.6, 0.1) (0.2, 0.4) (0.2, 0.6)

Bob (0.3, 0.5) (0.4, 0.6) (0.4, 0.4) (0.6, 0.1) (0.2, 0.8)

Joe (0.4, 0.1) (0.6, 0.1) (0.7, 0.1) (0.2, 0.4) (0.2, 0.5)

Ted (0.7, 0.1) (0.7, 0.1) (0.5, 0.3) (0.3, 0.4) (0.3, 0.4)

R2 = M c ∗N c =

d1 d2 d3 d4 d5

Al (0.7, 0.1) (0.7, 0.2) (0.7, 0.1) (0.6, 0.2) (0.8, 0.2)

Bob (0.7, 0.1) (0.8, 0.1) (0.8, 0.1) (0.7, 0.1) (0.8, 0.1)

Joe (0.6, 0.1) (0.6, 0.1) (0.6, 0.1) (0.7, 0.2) (0.7, 0.2)

Ted (0.4, 0.3) (0.6, 0.3) (0.4, 0.3) (0.4, 0.3) (0.4, 0.3)
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• Step 4: Next, we compute the score matrices for the PFSMs R1 and R2 as follows:

S(R1) =

d1 d2 d3 d4 d5

Al 0.15 0.48 0.35 −0.12 −0.32

Bob −0.16 −0.20 0.0 0.35 −0.60

Joe 0.15 .35 0.48 −0.12 −0.21

Ted 0.48 0.48 0.16 −0.07 −0.07

S(R2) =

d1 d2 d3 d4 d5

Al .48 0.45 0.48 0.32 0.60

Bob 0.48 0.63 0.63 0.48 0.63

Joe 0.35 0.35 0.35 0.45 0.45

Ted 0.07 0.27 0.07 0.07 0.07

• Step 5: In this step, we find the utility matrix of S(R1) & S(R2).

U =

d1 d2 d3 d4 d5

Al −0.33 0.03 −0.13 −0.44 −0.92

Bob −0.64 −0.83 −0.63 −0.13 −1.23

Joe −0.20 0.0 0.13 −0.57 −0.66

Ted 0.41 0.21 0.09 −0.14 −0.14

• Step 6: By observing the entries of the utility matrix obtained above, it probably

appears that Aliis sufferingifrom Malaria(d2), Bobiis sufferingifrom Stomachiproblem

(d4), Joeiis sufferingifrom Typhoidi(d3) & Tediis sufferingiform Viralifever (d1).

Observationsi: In order to carry out a valid comparative study, we have compared the results

obtained by the proposed methodology with theiresults of variousiexisting methodologies for

the same diagnosis problem.

Figure 2.3: Comparative study w.r.t Existing Methodologies

32



2.4 Conclusion

Theiconcept of theiPythagoreanifuzzy softimatrix has beeniwell establishedialong withiits var-

iousitypes andiproperties. Valid proofsifor theiproposed propertiesiover theimatrices haveialso

been provided.iFurther, theiproposedialgorithms for decisionimaking byiusing choiceimatrix

andiweighted choiceimatrix andifor medical diagnosisiproblem byiusing score and utilityimatrix

haveibeen successfullyiimplemented withithe helpiof numericaliexample forieach. Further,ithe

comparativeianalysis showsithat theiresults of theiproposed methodology is equallyiconsistent

withithe resultsiof various otheriexisting methodsiavailable in literature.
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Chapter 3

Pythagorean Fuzzy Decision Making

With Dimensionality Reduction

Dimensionality reduction is a methodology that set out to broaden aniarrangement of set of

highidimensional data to a lower dimensional data while acquiring the important feature in the

data. Because of the inherited disadvantage of dimensionality, the machine learning and data

mining techniques may not be successful for highidimensional data. There are two notewor-

thy techniques for dimensionalityireduction - featureiselection and featureiextraction/feature

reduction.

The problem of dimensionalityireduction by utilizing the notion of Pythagoreanifuzzy softimatrix

(PFSM) has not been addressed yet. In this chapter, in orderito handle the parametrization

tooliin a moreieffective way, we have suitably extended the literature for reducing the di-

mensionality of data and compared with the existing methodologies. The definition of the

object-oriented PFSM, the parameter-oriented PFSM and the technique to find the thresh-

oldielement and corresponding thresholdivalue of the PFSM have also been presented in order

to propose the algorithm for the dimensionality reduction of the informational data. The com-

parative analysis along with the advantages of the proposed algorithm has also been presented

with the help of numerical examples.

35



3.1 Algorithmifor DimensionalityiReduction

In this section, weipropose a new algorithm for the dimensionality reduction of informational

data along with the definitions of ”object-oriented Pythagorean fuzzy soft matrix and parameter-

oriented Pythagorean fuzzy soft matrix.”

In general, consider X = {x1, x2, ..., xm} be theiuniverse ofidiscourse with the set of pa-

rameters E = {e1, e2, . . . , en} and M be the PFSM of the PFSS (F,E).

Definition 3.1.1 ”The object-oriented Pythagorean fuzzy soft matrix with respect to the pa-

rameters is defined as:

Oi =

∑
j

µij

|E|
,
∑
j

νij
|E|

 ; (3.1.1)

where, i = 1, 2, . . . ,m and j = 1, 2, . . . , n.”

Definition 3.1.2 ”The parameter-oriented Pythagorean fuzzy soft matrix with respect to the

objects is defined as:

Pj =

∑
j

µij

|X|
,
∑
j

νij
|X|

 ; (3.1.2)

where, i = 1, 2, . . . ,m and j = 1, 2, . . . , n.”

Definition 3.1.3 [6] ”If M = [(µM
ij , ν

M
ij )] ∈ PFSMm×n, then the score matrix of Pythagorean

fuzzy soft matrix M is given by

S(M) = [sij ] = [((µM
ij )

2 − (νMij )
2)] ∀ i and j; (3.1.3)

where, i = 1, 2, . . . ,m and j = 1, 2, . . . , n.”

Definition 3.1.4 ”The threshold value of Pythagorean fuzzy soft matrix is defined as S(T ) =

(µM
ij )

2 − (νMij )
2, where

T = (µT , νT ) =

∑
i,j

µij

|X × E|
,
∑
i,j

νij
|X × E|

 ; (3.1.4)

and i = 1, 2, . . . ,m and j = 1, 2, . . . , n.”

In view of above definitions and by taking the idea of PFSM into account, an algorithm for

the dimensionality reduction of data has been provided in the Figure 3.1.
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Finish

Suppress those objects for 

which  and 

those parameters for 

which

Compute the Threshold 

element T of the PFSM and its 

Threshold Value 

Find the object oriented PFSM &  

compute its Score Values 

and 

the parameter oriented PFSM &  

compute its Score Values 

Construct the 

Pythagorean fuzzy 

Soft Matrix (PFSM)

The obtained Pythagorean

fuzzy soft matrix is the 

desired dimensionality 

reduced matrix

The object corresponding  to 

the highest Score value 

is the best one

Figure 3.1: Flow Chart of Algorithm for Dimensionality Reduction

3.2 Application in Decision Making

For the better understanding of the proposed algorithm, the step by step implementation of

the methodology has been present with the help of numericaliexample.

Example 3.1 Let us assume that a person wants to buy a house from the set of houses X =

{x1, x2, x3, x4, x5} and the parameter under consideration are E = {e1, e2, e3, e4} where, e1 :

expensive house, e2 : modern beautiful house, e3 : wooden house in green surrounding, e4 : cheap

in bad repair house. Then the attractiveness of the house is described by the Pythagorean fuzzy

soft set

(F,E)i = i{F (e1), F (e2), F (e3), F (e4)} where F : E → PFS(X)

and

F (e1) = {(x1, 0.7, 0.2), (x2, 0.9, 0.1), (x3, 0.4, 0.8), (x4, 0.3, 0.7), (x5, 0.8, 0.2)}

F (e2) = {(x1, 0.5, 0.6), (x2, 0.2, 0.6), (x3, 0.6, 0.5), (x4, 0.5, 0.5), (x5, 0.9, 0.1)}

F (e3) = {(x1, 0.6, 0.4), (x2, 0.3, 0.8), (x3, 0.7, 0.3), (x4, 0.9, 0.1), (x5, 0.6, 0.6)}

F (e4) = {(x1, 0.4, 0.3), (x2, 0.8, 0.4), (x3, 0.7, 0.4), (x4, 0.9, 0.2), (x5, 0.7, 0.5)}
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For implementing the proposed algorithm taking the above problem into consideration, the

computational steps are as follows:

- Step 1.iConstruct the PFSM as follows:

M =



e1 e2 e3 e4

x1 (0.7, 0.2) (0.5, 0.6) (0.6, 0.4) (0.4, 0.3)

x2 (0.9, 0.1) (0.2, 0.6) (0.3, 0.8) (0.8, 0.4)

x3 (0.4, 0.8) (0.6, 0.5) (0.7, 0.3) (0.7, 0.4)

x4 (0.3, 0.7) (0.5, 0.5) (0.9, 0.1) (0.9, 0.2)

x5 (0.8, 0.2) (0.9, 0.1) (0.6, 0.6) (0.7, 0.5)


- Step 2. Evaluate the objectioriented PFSM Oi for i = 1, . . . , 5 and parameter oriented

PFSM Pj for j = 1, . . . , 4.

M =



e1 e2 e3 e4 Oi

x1 (0.7, 0.2) (0.5, 0.6) (0.6, 0.4) (0.4, 0.3) (0.55,0.375)

x2 (0.9, 0.1) (0.2, 0.6) (0.3, 0.8) (0.8, 0.4) (0.55,0.475)

x3 (0.4, 0.8) (0.6, 0.5) (0.7, 0.3) (0.7, 0.4) (0.60,0.500)

x4 (0.3, 0.7) (0.5, 0.5) (0.9, 0.1) (0.9, 0.2) (0.65,0.375)

x5 (0.8, 0.2) (0.9, 0.1) (0.6, 0.6) (0.7, 0.5) (0.75,0.350)

Pj (0.62,0.40) (0.54,0.46) (0.62,0.44) (0.70,0.36)


Next, the score matrix of objected oriented matrix S(Oi) and parameter oriented matrix

S(Pj) is given as:

- Step 3. In this step, we determine the threshold element and threshold value of the PFSM

obtained in Step 1 as:

T =
[
(0.62, 0.415)

]
and S(T ) = 0.212175.
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- Stepi4.iNext, we suppress/remove thoseialternatives and parameters for which the condition

S(Oi) < S(T ) and S(Pj) > S(T ) holds respectively.

Hence, after suppressing the alternatives and parameters, we obtained our reduced matrix

M
′
as follows:

M
′
=


e2 e3 S(Oi)

x4 (0.5, 0.5) (0.9, 0.1) 0.281875

x5 (0.9, 0.1) (0.6, 0.6) 0.44

S(Pj) 0.08 0.1908


In the above reduced matrix, the scoreivalue for house x5 is greater than the scoreivalue of

the house x4. Thus, the person will choose the house x5.

3.3 Comparative Analysis and Advantages

In this section, we carry out a comparativeianalysis to validate theiperformance of the proposed

methodology in contrast with an existing approach. The detailed analysis and advantagesiof

using the proposediapproach along with illustrative example [140] are presented below:

Example: Consider 5 stock sets with high price -earning ratio given by U = {x1, x2, x3, x4, x5}

and 4 sets of evaluation criteria given by A = {e1, e2, e3, e4}, where e1 : market trend, e2 : policy

orientation, e3 : annual report performance, e4 : circulation market value. The available data

in the form of PFSS presented as follows:

The solution based on the methodology outlined by [140] is as follows:

The score value of the each stock is given by s(p1) = −0.1265, s(p2) = 0.2052, s(p3) = 0.5763,

s(p4) = 0.0375, s(p5) = 0.0945, where pi is the aggregated/integrated representative identity

corresponding to each xi.
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Obviously, s(p3) > s(p2) > s(p5) > s(p4) > s(p1), therefore, the investor will choose stock

x3 for investment.

On the other hand, if we perform our proposed methodology on the same problem, we

find the computations as below:

- Step 1.iConstruct the PFSM as:

- Step 2.iEvaluate the objectioriented PFSM Oi for i = 1, . . . , 5 and parameter oriented

PFSM Pj for j = 1, . . . , 4.

M =



e1 e2 e3 e4 Oi

x1 (0.5, 0.7) (0.6, 0.6) (0.5, 0.6) (0.4, 0.7) (0.5,0.65)

x2 (0.6, 0.6) (0.6, 0.4) (0.7, 0.5) (0.8, 0.4) (0.675,0.475)

x3 (0.8, 0.6) (0.8, 0.3) (0.9, 0.2) (0.6, 0.2) (0.775,0.325)

x4 (0.8, 0.4) (0.4, 0.8) (0.7, 0.6) (0.8, 0.5) (0.675,0.575)

x5 (0.7, 0.6) (0.5, 0.6) (0.6, 0.3) (0.4, 0.6) (0.550,0.525)

Pj (0.68,0.58) (0.58,0.54) (0.68,0.44) (0.60,0.48)


Next, the score matrix of objected oriented matrix S(Oi) and parameter oriented matrix

S(Pj) is given as:
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- Step 3. In this step, we determine the threshold element and threshold value of the PFSM

obtained in Step 1 as:

T =
[
(0.635, 0.51)

]
and S(T ) = 0.143125.

- Stepi4.iNext, we suppress/remove thoseialternatives and parameters for which the condition

S(Oi) < S(T ) and S(Pj) > S(T ) holds respectively.

Hence, after suppressing the alternatives and parameters, we obtained our reduced matrix

M
′
as follows:

M
′
=


e1 e2 e3 S(Oi)

x2 (0.6, 0.6) (0.6, 0.4) (0.8, 0.4) 0.23

x3 (0.8, 0.6) (0.8, 0.3) (0.6, 0.2) 0.495

S(Pj) 0.126 0.448 0.1296


In the above reduced matrix, the scoreivalue for stock x3 is greater than the scoreivalue for

stock x2, therefore, the investor will prefer to invest in the stock x3.

ComparativeiRemarks andiAdvantages of ProposediWork:

In the light of above investigation, the significant comparative remarksiandiadvantages of the

proposed work are as follows:

• The methodology utilized by Peng et al.[140] to solve the problemiof decision-making

doesn’t incorporate the theory of dimensional reduction, whereas the proposed method-

ologyihas first dimensionallyireduced the undesirable data and afterward workediout to

find the optimal alternative i.e., the stock x3 is the most suitable choice for investment.

• Thus, the proposed algorithm for dimensionality reduction is found to be equally reliable,

consistent, practicable and better enough for solvingidecision-making problems byiusing

the notion of PFSM in contrast with the methodologies available in the literature.

• The proposed dimensionality reduction technique associate with the theory of matrices

and will prove to be widelyiapplicable in other real world application problems.

• The proposed methodology can also be utilized in the case of large informational data

set under the framework of PFSMs.
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3.4 Conclusion

In this chapter, an algorithm to reduce the dimensionality of the informational data by utilizing

the notion of PFSM has been provided successfully along with the reframing of the definitions

of object and parameter oriented PFSMs. Also, a new approach to find the threshold ele-

ment and its corresponding threshold value has been presented. In order to demonstrate the

methodology of the proposed technique a numericaliexample has been taken into account. A

valid comparative study has been provided to show the consistency, practicability, reliability

and flexibility of the proposed algorithm in contrast with the existing methodology. The ob-

tained results also validate our contribution and advantages of the proposed algorithm which

effectively deal with the dimension reduction.

42



Chapter 4

Parametric Pythagorean Fuzzy

Entropy Measure

In this chapter, weipropose a newiparametric Pythagorean fuzzy (R, S)-norm entropy measure

and also devise two methodologies for finding the criteria weights by incorporating the entropy

measure. Empirically, we have also studied the maximality feature and monotonicity of the pro-

posed entropy measure w.r.t. the parameters R & S. An algorithmito solve the multi-criteria

decision-makingiproblem by utilizing the proposed entropy measure has also been presented for

two different cases- criteria weights are unknown; criteria weights are partiallyiknown. In or-

der to demonstrate the methodology of the proposedialgorithm, each considered case hasibeen

dealt separately with the help of numerical examples.

4.1 Parametric (R, S)-norm Entropy Measure

Recently, Joshi and Kumar [102] proposed and studied a real valued probability distribution

function associated with the random variable X = {x1, x2,, . . . , xn} which is given as:

HS
R(P ) =

R× S

R− S

( n∑
i=1

pSi

) 1
S

−

(
n∑

i=1

pRi

) 1
R

 ; (4.1.1)

where i0 < S < 1iand i1 < R < ∞,ior 0 < S < 1iandi1 < R < ∞.

In particular, this measure reduces to the measure presented by Boekee and Lubbe [30] if the

value of S=1 or R=1 as well as if we consider the case R = 1 and S → 1 or vice-versa then

this entropy measure reduces to Shannon’s [16] entropy.
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In view of the definition of entropy measure given by Hung & Yang [129] under intuitionis-

ticifuzzy set, we reframe the definition of entropy measure for Pythagorean fuzzyiset as follows:

Let there be a real valued function H : X →[0, 1]. Then H is a Pythagorean fuzzy entropy

measure if and only if it satisfies the followingiaxioms:

• (PFS1)iSharpnessi: H(M)i = 0 iffiM is a crispiset, i.e., µM (xi) = 0, νM (xi) = 1; or

µM (xi) = 1, νM (xi) = 0; ∀xi ∈ X.

• (PFS2) Maximalityi: H(M) is maximumiiff

µM (xi) = νM (xi) = πM (xi) =
1√
3
∀xi ∈ X.

• (PFS3) Symmetryi: H (M) = H(M c).

• (PFS4) Resolutioni: H(M)i ≤ H(N) iffM ⊆ iN , i.e., µM (xi) ≤ µN (xi) and νM (xi) ≥

νN (xi) for µN (xi)i ≤ νN (xi) or if µM (xi)i ≥ µN (xi) andiνM (xi)i ≤ νN (xi) for µN (xi) ≥

νN (xi) ∀ xi ∈ X.

For consideration of Pythagoreanifuzzy information, the following entropyimeasure (4.1.2) is

being proposed:

HS
R(M) =



Ri×iS
(iR−iS)

n∑
i=1

1
n

[(
µM (xi)

2S + νM (xi)
2S + πM (xi)

2S
) 1

S −
(
µM (xi)

2R + νM (xi)
2R + πM (xi)

2R
) 1

R

]
,

where R,S > 0; either 0 < S < 1 and 1 < R < ∞ or 0 < R < 1 and 1 < S < ∞,

R
n(R−1)

n∑
i=1

{
1−

(
µM (xi)

2R + νM (xi)
2R + πM (xi)

2R
) 1

R

}
, where S = 1, R > 0, R ̸= 1,

− 1
n

n∑
i=1

(
µM (xi)

2log
(
µM (xi)

2
)
+ νM (xi)

2log
(
νM (xi)

2
)
+ πM (xi)

2log
(
πM (xi)

2
))

,

where R = 1 and S → 1 or S = 1 and R → 1

(4.1.2)

Theorem 4.1 The entropy measure given by equation 4.1.2 is a valid Pythagoreanifuzzy in-

formationimeasure.

Proof : It is sufficient to prove that the axioms PFS1itoiPFS4 hold.

• (PFS1)i(Sharpness): If HS
R(M) = 0, then

(
µM (xi)

2S + νM (xi)
2S + πM (xi)

2S
) 1

S −
(
µM (xi)

2R + νM (xi)
2R + πM (xi)

2R
) 1

R = 0.

SinceiR, iS > 0 (R ̸= 1 ̸= S), therefore, only following possibility arises:

44



– EitheriµM (xi) = 1, i.e.,iνM (xi) = πM (xi) = 0,

– νM (xi) = 1 i.e.,iµM (xi) = πM (xi) = 0,

– πM (xi) = 1 i.e.,iµM (xi) = νM (xi) = 0.

Looking at the above cases we can say that M is a crisp set. Similarly, converse can be

proved.

• (PFS2)i(Maximality)i:

In section 4.2, we have empiricallyiproved that HS
R(M) is maximumiiff

µM (xi) = νM (xi) = πM (xi) =
1√
3
.

Analytically,iwe prove theiconcavity of the HS
R(M) by calculating itsihessian at the crit-

icalipoint, i.e 1√
3
i with particularivalues of R and S. The Hessian of HS

R(M) is as

[R > 1i(= 3) and S < 1i(= 0.3)]:

HS
R(M) =

2

n


−10.4589 2.232816 2.232816

2.232816 −10.4589 2.232816

2.232816 2.232816 −10.4589

 .

It may be observed that HS
R(M) is a negative semi-definiteimatrix for differentipossible

values of R and S which shows that it is a cancaveifunction. Hence, the concavityiof the

functioniestablish the maximalityiproperty.

• (PFS3)i(Symmetry)i: It is obvious from the definition that

HS
R(M)i = HS

R(M
c).

• (PFS4)i(Resolution)i: We have∣∣∣∣(µM (xi)−
1√
3

)∣∣∣∣+ ∣∣∣∣(νM (xi)−
1√
3

)∣∣∣∣+ ∣∣∣∣(πM (xi)−
1√
3

)∣∣∣∣
≥
∣∣∣∣(µN (xi)−

1√
3

)∣∣∣∣+ ∣∣∣∣(νN (xi)−
1√
3

)∣∣∣∣+ ∣∣∣∣(πN (xi)−
1√
3

)∣∣∣∣ ;
and (

µM (xi)−
1√
3

)2

+

(
νM (xi)−

1√
3

)2

+

(
πM (xi)−

1√
3

)2

≥
(
µN (xi)−

1√
3

)2

+

(
νN (xi)−

1√
3

)2

+

(
πN (xi)−

1√
3

)2

;

becauseiif µM (xi) ≤ µN (xi) and νM (xi) ≤ νN (xi) withimax {µN (xi), νN (xi)} ≤ 1√
3
,

then µM (xi) ≤ µN (xi) ≤ 1√
3
; νM (xi) ≤ νN (xi) ≤ 1√

3
and πM (xi) ≥ πN (xi) ≥ 1√

3
which
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impliesithat the above result holds.iSimilarly, if µM (xi) ≥ µN (xi) and νM (xi) ≥ νN (xi)

with max {µM (xi), νM (xi)} ≥ 1√
3
, then also the aboveiresult holds.

Now, since HS
R(M) is a concaveifunction on the Pythagoreanifuzzy set M , there-

fore, if max{µM (xi), νM (xi)} ≤ 1√
3
then, µM (xi) ≤ µN (xi) and νM (xi) ≤ νN (xi) implies

πM (xi) ≥ πN (xi) ≥ 1√
3
.

Therefore, by the above explainediresult, we conclude that HS
R(M) satisfiesicondition of

resolutioniPFS4.

Similarly, if min{µM (xi), νM (xi)} ≥ 1√
3
, then µM (xi) ≤ µN (xi) and νM (xi) ≥

νN (xi). By usingithe above provediresult, we concludeithat HS
R(M) satisfiesithe condi-

tioniPFS4.

Hence, HS
R(M)isatisfies all theiaxioms of Pythagoreanifuzzy entropy anditherefore, HS

R(M) is

a validimeasure of Pythagoreanifuzzy information.

Theorem 4.2 Suppose M and N are two PFSs over X = {x1, x2, . . . , xn} where Mi =

i {< xi, µM (xi), νM (xi) >| xi ∈ X} andNi = i {< xi, µN (xi), νN (xi) >| xi ∈ X} suchithat ∀ xi ∈

X either M ⊆ N ioriN ⊆ M . Then

HS
R(M ∪N) +HS

R(M ∩N) = HS
R(M) +HS

R(N).

Proofi:i First, we partition X into two sub-divisions X1 & X2 suchithat

X1 = {xi ∈ X | M ⊆ N}, i.e., µM (xi)i ≤ iµN (xi), νM (xi)i ≥ iνN (xi) ∀ xi ∈ X1;

X2 = {xi ∈ X | N ⊆ M}, i.e., µM (xi)i ≥ iµN (xi), νM (xi)i ≤ iνN (xi) ∀ xi ∈ X1.

Now

HS
R(M ∪N) =

R× S

(R− S)

n∑
i=1

1

n

 (µM∪N (xi)
2S + νM∪N (xi)

2S + πM∪N (xi)
2S
) 1

S

−
(
µM∪N (xi)

2R + νM∪N (xi)
2R + πM∪N (xi)

2R
) 1

R

 ;

which implies

HS
R(M ∪N) =

R× S

(R− S)

∑
X1

1

n

 (µN (xi)
2S + νN (xi)

2S + πN (xi)
2S
) 1

S

−
(
µN (xi)

2R + νN (xi)
2R + πN (xi)

2R
) 1

R


+

R× S

(R− S)

∑
X2

1

n

 (µM (xi)
2S + νM (xi)

2S + πM (xi)
2S
) 1

S

−
(
µM (xi)

2R + νM (xi)
2R + πM (xi)

2R
) 1

R

 .
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Similarly,

HS
R(M ∩N) =

R× S

(R− S)

∑
X1

1

n

 (µM (xi)
2S + νM (xi)

2S + πM (xi)
2S
) 1

S

−
(
µM (xi)

2R + νM (xi)
2R + πM (xi)

2R
) 1

R


+

R× S

(R− S)

∑
X2

1

n

 (µN (xi)
2S + νN (xi)

2S + πN (xi)
2S
) 1

S

−
(
µN (xi)

2R + νN (xi)
2R + πN (xi)

2R
) 1

R

 .

On adding the above two terms, we get

HS
R(M ∪N)i+ iHS

R(M ∩N) = HS
R(M) +HS

R(N).

Theorem 4.3

HS
R(M) = HS

R(M
c) = HS

R(M ∪M c) = HS
R(M ∩M c).

Proofi: The proof can easily be carried out.

4.2 Monotonic Nature of Proposed Entropy Mea-

sure

The study of maximalityiand monotonicibehaviour of the proposed entropy measure has been

carried out in an empirical way. Here, we take four different Pythagoreanifuzzy sets M1, M2,

M3 and M4 overithe universeiof discourse X = {x1i, x2i, x3i}:

M1 = {(x1, i
1√
3
,
1√
3
), (x2,

1√
3
,
1√
3
), (x3,

1√
3
,
1√
3
)};

M2 = {(x1, i0.6, 0.6), (x2, i0.7, 0.7), (x3, i0.55, 0.55)};

M3 = {(x1, i0.5, 0.6), (x2, i0.2, 0.9), (x3, i0.9, 0.3)};

M4 = {(x1, i0.4, 0.8), (x2, i0.9, 0.4), (x3, i0.7, 0.6)}.

Different values of parameters have been taken for detailed study and tabulated the computed

values in Table 4.1. On the basisiof the tabulatedidata, the plotsiare givenibelow in Figure 4.1.

It is quiteiclear thatiHS
R(M) takesimaximum valueiwhen

µM (xi) = νM (xi) = πM (xi) =
1√
3
; ∀xi ∈ X;

and is a monotonicallyidecreasing functioniof R and S.
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Table 4.1: Valuesiof Entropy Measure

S R= 0.15 R = .25 R = 0.4

HS
R(M1) HS

R(M2) HS
R(M3) HS

R(M4) HS
R(M1) HS

R(M2) HS
R(M3) HS

R(M4) HS
R(M1) HS

R(M2) HS
R(M3) HS

R(M4)

1.2 86.508 74.420 62.939 66.134 8.263 7.241 6.162 6.464 2.618 2.327 1.962 2.065

1.7 83.052 71.448 60.420 63.489 7.727 6.773 5.753 6.038 2.385 2.122 1.771 1.868

2.5 80.576 69.319 58.613 61.592 7.356 6.449 5.467 5.740 2.228 1.983 1.637 1.730

5 78.100 67.190 56.806 59.692 6.996 6.133 5.188 5.446 2.079 1.850 1.509 1.594

7 77.420 66.604 56.309 59.170 6.899 6.048 5.113 5.366 2.039 1.814 1.476 1.557

10 76.917 66.172 55.942 58.784 6.828 5.985 5.058 5.308 2.010 1.788 1.451 1.530

20 76.339 65.674 55.520 58.340 6.746 5.912 4.995 5.241 1.977 1.756 1.423 1.499

40 76.053 65.427 55.311 58.120 6.706 5.877 4.963 5.208 1.961 1.741 1.409 1.484

50 75.996 65.378 55.270 58.076 6.698 5.869 4.957 5.201 1.958 1.738 1.406 1.481

70 75.931 65.322 55.222 58.026 6.689 5.861 4.950 5.194 1.954 1.734 1.403 1.477

100 75.882 65.280 55.187 57.989 6.682 5.855 4.945 5.188 1.951 1.731 1.401 1.475

200 75.826 65.231 55.145 57.945 6.675 5.848 4.939 5.182 1.948 1.728 1.398 1.472

500 75.792 65.202 55.120 57.919 6.670 5.844 4.935 5.178 1.946 1.726 1.396 1.470

700 75.788 65.198 55.116 57.914 6.652 5.839 4.934 5.177 2.080 1.721 1.396 1.470

S R= 0.50 R = 0.70 R = 0.95

HS
R(M1) HS

R(M2) HS
R(M3) HS

R(M4) HS
R(M1) HS

R(M2) HS
R(M3) HS

R(M4) HS
R(M1) HS

R(M2) HS
R(M3) HS

R(M4)

1.2 1.858 1.659 1.378 1.457 1.291 1.158 0.924 0.989 1.034 0.930 0.701 0.764

1.7 1.674 1.496 1.220 1.296 1.149 1.031 0.792 0.856 0.912 0.821 0.579 0.641

2.5 1.552 1.388 1.110 1.182 1.054 0.947 0.699 0.759 0.831 0.750 0.494 0.551

5 1.436 1.284 1.005 1.069 0.965 0.868 0.612 0.662 0.756 0.681 0.417 0.459

7 1.405 1.256 0.978 1.038 0.942 0.846 0.590 0.636 0.736 0.662 0.398 0.435

10 1.383 1.235 0.958 1.016 0.925 0.829 0.574 0.616 0.722 0.646 0.385 0.417

20 1.358 1.210 0.935 0.990 0.906 0.808 0.556 0.595 0.706 0.627 0.369 0.397

40 1.346 1.197 0.924 0.977 0.897 0.797 0.547 0.584 0.698 0.616 0.361 0.388

50 1.343 1.195 0.922 0.975 0.895 0.795 0.545 0.582 0.696 0.614 0.360 0.386

70 1.340 1.192 0.919 0.972 0.893 0.793 0.543 0.580 0.694 0.612 0.358 0.384

100 1.338 1.190 0.917 0.970 0.891 0.791 0.541 0.578 0.693 0.610 0.356 0.382

200 1.336 1.187 0.915 0.968 0.889 0.789 0.539 0.576 0.691 0.608 0.355 0.380

500 1.334 1.186 0.913 0.966 0.888 0.787 0.538 0.575 0.690 0.607 0.354 0.379

700 1.334 1.183 0.913 0.966 0.888 0.771 0.538 0.574 0.689 0.592 0.353 0.379
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Figure 4.1: Monotonicityiof thei(R, S)-norm EntropyiMeasure
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4.3 Decision Making with (R, S)-normiEntropy Mea-

sure

”The main objective of the multi-criteria decision making problem is to select the optimal/best

alternative out of the m feasible available alternatives,”i.e., Zi = i {z1, z2, . . . , zm} based

on certain laid down nicriteria (say) Oi = i {o1, o2, . . . , on} . For this, first we take the ap-

praisalivalues of an alternativeizi (i = 1, 2, 3, . . . ,m) w.r.t the criteriaioj (j = 1, 2, 3, . . . , n) is

given by zij = (pij , qij) ,isatisfyingi0 ≤ pij ≤ 1, 0 ≤ qij ≤ 1 and 0 ≤ pij + qij ≤ 1 with

ii = i1, 2, . . . ,m and ji = i1, 2, . . . , n. Thus, the above problem can be modelediby represent-

ingiit through the following Pythagoreanifuzzy decisionimatrix:

Ri = i(pij , qij)m×n = (zij) =

o1 o2 · · · on

z1 (p11, q11) (p12, q12) · · · (p1n, q1n)

z2 (p21, q21) (p22, q22) · · · (p2n, q2n)
...

...
...

...
...

zm (pm1, qm1) (pm2, qm2) · · · (pmn, qmn)

Let w = (w1, w2, . . . , wn)
T be the weightivector of all the criteriaiwhere 0 ≤ wj ≤ 1 and

n∑
j=1

wj is the degree ofiimportance of the jth criteria. Sometimesithis criteriaiweight is com-

pletelyiunknown and sometimes it is partiallyiknown because of the lack ofiknowledge,itime,

dataiand the limitediexpertise of the problemidomain.

In this section, we discussiand deviseitwo methods to determineithe weights oficriteria by

using the proposedientropy (4.1.2).

Case 1 (UnknowniWeights) When the criteriaiweights are completelyiunknown, then we

calculateithe weights by using the proposed PFSientropy as:

wj =
1− ej

n−
n∑

j=1
ej

, j = 1, 2, · · · , n; (4.3.1)

where ej =
1
m

m∑
i=1

HS
R(zij), and

HS
R(zij) =

R× S

(R− S)

m∑
i=1

1

m

 (µM (xi)
2S + νM (xi)

2S + πM (xi)
2S
) 1

S

−
(
µM (xi)

2R + νM (xi)
2R + πM (xi)

2R
) 1

R


is the proposed Pythagorean fuzzy entropy for zij = (pij , qij).

Case 2 (PartiallyiKnown Weightsi) In this case, when the weightsiare partiallyiknown
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for aimultiple-criteria decisionimaking problem, we use the minimumientropyiprinciple (Wang

andiWang [64]) to determineithe weightivector of the criteriaiby constructing the program-

mingimodel as follows:

The overallientropy of theialternative zi is

E [zi] =

n∑
j=1

HS
R(zij)

=
R× S

(R− S)

n∑
j=1


m∑
i=1

1

m

 (µM (xi)
2S + νM (xi)

2S + πM (xi)
2S
) 1

S

−
(
µM (xi)

2R + νM (xi)
2R + πM (xi)

2R
) 1

R

 ;

whereiR, iS > 0; R > 1, iS < 1ioriR < 1, iS > 1.

Sinceithere are fairicompetitive environment between eachialternative, the weight coefficient

w.r.t the sameicriteria shouldialso be equal. Further, in order to get the idealiweight, weiconstruct

the followingiaccompanying model:

minE =

m∑
i=1

wjE (zi) =

m∑
i=1

wj


n∑

j=1

HS
R(zij)

 (4.3.2)

=
Ri× iS

(iR− iS)

n∑
j=1

wj

m∑
i=1

1

m


(
µM (xi)

2S + νM (xi)
2S + πM (xi)

2S
) 1

S

−
(
µM (xi)

2R + νM (xi)
2R + πM (xi)

2R
) 1

R


R, iS > 0; R > 1, iS < 1 or R < 1, iS > 1, subjectito

∑n
j=1 iwj = 1.

In view of above two methods and using the notion of PFS, we present an algorithm to solve

general MCDM problem as in Figure 4.2.

The procedural steps of the proposed methodology are as follows:

• Stepi1: Weiconstruct the decisionimatrix R = (pij , qij)m×n = oj(zi), where the elements

oj(zi) (i = 1, 2, ...,m; j = 1, 2, ..., n) areithe appraisal of theialternative zi ∈ Z w.r.t the

criteriaioj ∈ O.

• Stepi2: Compute the criteriaiweights by using equation (5.1.1) and (5.1.4).

• Stepi3: Determine the the mostipreferred solutioni(z+) and the leastipreferred solu-

tioni(z−) as

z+i = i
((
α+
1 , β

+
1

)
,
(
α+
2 , β

+
2

)
, . . . ,

(
α+
n , β

+
n

))
;

wherei(α+
j , β

+
j ) = (sup µM (zi), inf νM (zi)), zi ∈ Z; (j = 1, 2, . . . , n); and

z− =
((
α−
1 , β

−
1

)
,
(
α−
2 , β

−
2

)
, . . . ,

(
α−
n , β

−
n

))
;

where (α−
j , β

−
j ) = (inf µM (zi), sup νM (zi)), zi ∈ Z; (j = 1, 2, . . . , n) respectively.
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Figure 4.2: Flowchartiof the ProposediAlgorithm UsingiPFS

• Stepi4: By using the Pythagorean fuzzy Hamming distance measure [139]

l(M,N) =
1

2
(|(µM (x))i2−(µN (x))i2|+|(νM (x))i2−(νN (x))i2|+|(πM (x))i2−(πN (x))i2|);

we compute the distance of z′is from z+ and z− as follows:

l(zi, z
+) =

1

2

n∑
j=1

wj

(
|(αij)i

2 − (α+
j )i

2|+ | (βij)i2 − (β+
j )i

2 | + | (πij)2 − (π+
j )

2 |
)
;

and

l(zi, z
−) =

1

2

n∑
j=1

wj

(
| (αij)

2 − (α−
j )i

2 | + | (βij)i2 − (β−
j )i

2 | + | (πij)2 − (π−
j )

2 |
)
.

• Stepi5: Evaluate the coefficient of degreesiof closenessil′is as :

li =
l(zi, z

−)

l(zi, z−) + l(zi, z+)
.

• Stepi6: Based on the values obtainediin step (5), we determineithe optimaliranking

order of theialternatives. The alternativeiwith the maximalidegree oficloseness l(zi) is

supposed to be the bestialternative.
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4.4 Numerical Examples

In this section, weipresent two numerical examples on the basis of the consideredicases in the

proposedialgorithm.

Example 1 (Unknown Weights): Assume an automobileicompany produces 4 differenticars,

say,iz1, z2,iz3 & z4 and a customeriwants to buy a caribased on the 4 givenicriteria, say, com-

fortio1, goodimileage o2, safetyio3, interiors o4. Consider the appraisalivalues of theialternatives

w.r.t eachicriteria provided by the expertiis represented as follows:

o1 o2 o3 o4

z1 (0.9, 0.3) (0.7, 0.6) (0.5, 0.8) 0.6, 0.3

z2 (0.4, 0.7) (0.9, 0.2) (0.8, 0.1) (0.5, 0.3)

z3 (0.8, 0.4) (0.7, 0.5) (0.6, 0.2) (0.7, 0.4)

z4 (0.7, 0.2) (0.8, 0.2) (0.8, 0.4) (0.6, 0.6)

Then, to solve the above problem the computational step are as follows:

1. Determine the criteriaiweight by usingiequation (5.1.1) :

w = (w1, w2, w3, w4)
T = (0.272107, i0.263037, i0.34878, i0.116077)T .

2. The mostipreferred solutioni(z+) and theileast preferred solutioni(z−) are given by

z+i = i{(0.9, 0.3), (0.9, 0.2), (0.8, 0.1), (0.7, 0.4)}

and

z−i = i{(0.4, 0.7), (0.7, 0.6), (0.5, 0.8), (0.6, 0.6)}

respectively.

3. The distancesimeasure betweenieach of z′isifrom z+ andiz− areigiven by

l(z1, z
+) = 0.040622, l(z2, z

+) = 0.186515, l(z3, z
+) = 0.0.06623, l(z4, z

+) = 0.048795,

l(z1, z
−) = 0.209804, l(z2, z

−) = 0.13179, l(z3, z
−) = 0.177491, l(z4, z

+) = 0.116968.

4. The valuesiof coefficient of degree oficloseness are as follows:

l1 = 0.837788, l2 = 0.414036, l3 = 0.728256 l4 = 0.705633.
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5. On the basis of valueiobtained in above step, the ranking of theialternatives is as follows:

z1 ≻ z3 ≻ z4 ≻ z2

and the optimal/best alternative is z1 among all the availableialternative.

Example 2 (Partially Known Weights): Assumeithere are 1000istudents in aicollege and

on the basisiof 3 laid down criteria, say, o1i(personality), o2i(intelligence) and o3 (communica-

tioniskills), the college administrationiwants to select a collegeirepresentative. Let there be 3

candidates,isay, z1,iz2 andiz3. The PFSidecision matrix for the aboveiproblem is

o1 o2 o3

z1 (0.8, 0.5) (0.6, 0.6) (0.8, 0.2)

z2 (0.6, 0.5) (0.7, 0.4) (0.8, 0.4)

z3 (0.5, 0.7) (0.7, 0.6) (0.9, 0.3)

Suppose the partial information about criteriaiweights is available in the followingiform

{0.10i ≤ w1 ≤ 0.30, 0.35i ≤ w2i ≤ 0.60, 0.25i ≤ iw3 ≤ 0.70}. The calculationifor the

rankingiprocedure for the aboveidecision-makingiproblem is as follows:

1. We calculate the criteriaiweights by constructing the lineariprogramming model by us-

ingiequation (5.1.4) as follows:

minEi = i0.609037w1 + 0.641365w2 + 0.590874w3

subject to w1 + w2 + w3 = 1 with possible ranges (careful in taking extremities)

0.10i ≤ w1 ≤ 0.30,

0.35i ≤ w2 ≤ 0.60,

0.25i ≤ w3 ≤ 0.70.

Then by using mathematical softwareiMATLAB, we obtained the criteriaiweight as follows:

wi = i(0.10, i0.35, i0.55)T .

2. The mostipreferred solutioni(z+) and the leastipreferred solutioni(z−) areigiven by

z+i = i{(0.8, 0.5), (0.7, 0.4), (0.9, 0.2)}

and

z−i = i{(0.5, 0.7), (0.6, 0.6), (0.8, 0.4)}

irespectively.

54



3. The distances measure betweenieach of z′isifrom z+ andiz− are giveniby

l(z1, z
+) = 0.013843, l(z2, z

+) = 0.015888, l(z3, z
+) = 0.068163,

l(z1, z
−) = 0.052213, l(z2, z

−) = 0.026855, l(z3, z
−) = 0.049273.

4. The valuesiof coefficient of degree oficloseness are

l1 = 0.79044, l2 = 0.628297, l3 = 0.419573.

5. In view of the values obtained in above step, theiranking of theialternatives is as:

z1 ≻ z2 ≻ z3

and theiz1 and is the optimal/bestiavailableialternative.

Remark: It may beinoted that in the above examples, for the computational procedure

we assume the value ofiR = 3iandiSi= 0.3.

4.5 Conclusion

In this chapter, we haveisuccessfully proposed a newiparametric (R,iS)-norm entropy measure

for Pythagoreanifuzzy set alongiwith the proofiof itsivalidity and also studied its maximal-

ityiand the monotonicibehavior w.r.t parameters Ri& S. Further, an algorithmifor multi-

criteriaidecision-making problem has been welliproposed and successfullyiimplemented with

the help of twoidifferent kind of numericaliexamples- when criteriaiweights areiunknown and

other when criteriaiweights are partiallyiknown.
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Chapter 5

Pythagorean Fuzzy Parametric

Discriminant Measure in Decision

Making

In this chapter, we have presented a new parametric Pythagoreanifuzzy (R, S)-norm discrim-

inantimeasure and also discussed its applicability in various computationaliapplication fields.

Analytically, we have also studied differentiproperties which the proposed discriminantimeasure

holds. We have empirically studied the monotonicityiof the proposedimeasure w.r.t. the pa-

rameters R & S. Further, differentialgorithms to handle the problem of patternirecognition,

medicalidiagnosis and decisionimaking have also been presented and demonstratediwith the

help of numerical example for each. The comparativeiremarks in each considered case have

been listed depicting the important observations and advantages of the proposed discriminant

measure.

5.1 Parametric (R,S)-Norm Discriminant Measure

Recently, Joshi and Kumar [101] proposed and studied aireal valuediprobability distribution

function associated with the random variable X = {x1, x2,, . . . , xn} and two probability distri-

butions Pi = i(p1, p2, i . . . , pn) and Qi = i(q1, q2, i . . . , iqn) which is given as:

DS
R(P,Q) =

R× S

S −R

( n∑
i=1

(pSi q
1−S
i )

) 1
S

−

(
n∑

i=1

(pRi q
1−S
i )

1
R

) ; (5.1.1)
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where eitheri0 < S < 1 andi1 < R < ∞ or 0 < R < 1iand 1 < S < ∞i.

Analogous to the measure in equation (5.1.1), we present the parametric discriminant measure

under the Pythagorean fuzzy environment as follows:

ISR(M,N)i = i
R× S

n(S −R)

n∑
i=1

[(
µM (xi)

2SµN (xi)
2i(1−S) + νM (xi)

2SνN (xi)
2i(1−S)

+ πM (xi)
2SπN (xi)

2(1−S)

) 1
S

−
(
µM (xi)

2RµN (xi)
2(1−R) + νM (xi)

2RνN (xi)
2i(1−R)

+ πM (xi)
2RπN (xi)

2i(1−R)

) 1
R

]
(5.1.2)

where either 0 < S < 1 and 1 < R < ∞ or 0 < R < 1 and 1 < S < ∞.

If Ri = 1 and S → i1 or Si = 1 and R → i1, then the discriminant measure given by equation

(5.1.2) reduces to

I(M,N) =
2

n

(
µM (xi)

2 log

(
µM (xi)

µN (xi)

)
+ νM (xi)

2 log

(
νM (xi)

νN (xi)

)
+ πM (xi)

2 log

(
πM (xi)

πN (xi)

))
. (5.1.3)

It may be noted that proposed discriminant measure is not symmetriciin connection with

itsiarguments. Hence, we present the symmetricidiscriminant measureias follows:

JS
R(M, iN)i = iISR(M,N) + iISR(N,M). (5.1.4)

iUnder the intuitionisticifuzzy setup, Vlachosiand Sergiadis [53] studied the notion of discrimi-

nantiinformation measure andidefined intuitionisticifuzzy crossientropy as IIFSi(A, iB) which

satisfies two axioms:

• IIFSi(A,B)i ≥ 0;

• IIFSi(A,B)i = 0 iff Ai = B.

Theorem 5.1 The discriminant measure given by equation (5.1.2) is a validiPythagorean

fuzzy informationimeasure.

Proofi: First, weiprove thatiISR(M,N) ≥ i0 with equality if

µM (xi)i = iµN (xi) andiνM (xi) = iνN (xi) foriallii = 1, 2, . . . , in.

”Let
n∑

i=1
µM (xi)

2 = a,
n∑

i=1
µN (xi)

2 = b,
n∑

i=1
νM (xi)

2 = c and
n∑

i=1
νN (xi)

2 = d, then

n∑
i=1

(
µM (xi)i

2

a

)S (
µN (xi)i

2

b

)(1−S)

≥ 1;
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or
n∑

i=1

(µM (xi)
2S)(µN (xi)

2(1−S)) ≥ aSb1−S . (5.1.5)

Similarly,iwe have
n∑

i=1

(
νM (xi)

2

c

)S (
νN (xi)

2

d

)(1−S)

≥ 1;

or
n∑

i=1

(νM (xi)
2S)(νN (xi)

2(1−S)) ≥ cSd1−S ; (5.1.6)

and
n∑

i=1

(πM (xi)
2S)(πN (xi)

2(1−S)) ≥ (n− a− b)Si(n− c− d)1−S . (5.1.7)

From equations (5.1.5), (5.1.6) and (5.1.7), we get

n∑
i=1

(
µM (xi)

2SµN (xi)
2(1−S) + νM (xi)

2SνN (xi)
2(1−S) + πM (xi)

2SπN (xi)
2(1−S)

)
≥
(
aSb1−S + cSd1−S + (n− a− b)Si(n− c− d)1−S

)
. (5.1.8)

Case 1: 0 < S < 1iandi1 < R < ∞.

Let µM (xi)
2SµN (xi)

2(1−S) + νM (xi)
2SνN (xi)

2(1−S) + πM (xi)
2SπN (xi)

2(1−S) = zi. Since zi < 1

and 1
S > 1, therefore, zi > (zi)

1
S .

As Ri×S
ni(S−R) < 0, then

Ri× S

ni(S −R)

n∑
i=1

[
(zi)

1
S

]
>

R× S

n(S −R)

n∑
i=1

(zi) (5.1.9)

and for R > 1,

R× S

n(S −R)

n∑
i=1

[
(zi)

1
R

]
<

R× S

n(S −R)

n∑
i=1

(zi). (5.1.10)

Therefore, from (5.1.9) and (5.1.10), we have ISR(M,N) > 0 and if µM (xi) = µN (xi) and

νM (xi) = νN (xi) in (5.1.1), we have ISR(M,N) = 0. Hence, we conclude that ISR(M,N) ≥ 0.

”Next we prove the convexity of ISR(M,N) in this case.

For 0 < S < 1, equation (5.1.8) may be written as

( n∑
i=1

(
µM (xi)

2SµN (xi)
2(1−S) + νM (xi)

2SνN (xi)
2(1−S) + πM (xi)

2SπN (xi)
2(1−S)

)) 1
S

≤
(
aSb1−S + cSd1−S + (n− a− b)S(n− c− d)1−S

) 1
S .
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Also, we can write the above equation as

n∑
i=1

[(
µM (xi)

2SµN (xi)
2(1−S) + νM (xi)

2SνN (xi)
2(1−S) + πM (xi)

2SπN (xi)
2(1−S)

) 1
S
]

≤
[ n∑

i=1

(
µM (xi)

2SµN (xi)
2(1−S) + νM (xi)

2SνN (xi)
2(1−S) + πM (xi)

2SπN (xi)
2(1−S)

)] 1
S

(5.1.11)

Next, for R > 1, from equation (5.1.8), we have

(
n∑

i=1

(
µM (xi)

2RµN (xi)
2(1−R) + νM (xi)

2RνN (xi)
2(1−R) + πM (xi)

2RπN (xi)
2(1−R)

)) 1
R

≥

(
aRb1−R + cRd1−R + (n− a− b)R(n− c− d)1−R

) 1
R

;

and above equation can be written as

n∑
i=1

[(
µM (xi)

2RµN (xi)
2(1−R) + νM (xi)

2RνN (xi)
2(1−R) + πM (xi)

2RπN (xi)
2(1−R)

) 1
R

]

≥

[
n∑

i=1

(
µM (xi)

2RµN (xi)
2(1−R) + νM (xi)

2RνN (xi)
2(1−R) + πM (xi)

2RπN (xi)
2(1−R)

)] 1
R

(5.1.12)

Since R×S
n(S−R) < 0, therefore, from (5.1.11) and (5.1.12), we get

ISR(M,N) ≥ R× S

n(S −R)

[(
aSb1−S + cSd1−S + (n− a− b)S(n− c− d)1−S

) 1
S

−
(
aRb1−R + cRd1−R + (n− a− b)R(n− c− d)1−R

) 1
R

]
. (5.1.13)

Further, if we take

ϕ(a, b) =
R× S

n(S −R)

[(
aSb1−S + cSd1−S + (n− a− b)S(n− c− d)1−S

)

−
(
aRb1−R + cRd1−R + (n− a− b)R(n− c− d)1−R

)]
,

then

∂ϕ(a, b)

∂a
=

R× S

n(S −R)

[(
S
(a
b

)S−1
− S

(
n− a− c

n− b− d

)S−1)
−(

R
(a
b

)R−1 −R
(n− a− c

n− b− d

)R−1
)]

, (5.1.14)
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and

∂2ϕ(a, b)

∂a2
=

R× S

n(S −R)

[(
S(S − 1)

b

(
a

b

)S−2

+
S(S − 1)

n− b− d

(
n− a− c

n− b− d

)S−2)

−
(
R(R− 1)

b

(
a

b

)R−2

+
R(R− 1)

n− b− d

(
n− a− c

n− b− d

)R−2)]
> 0. (5.1.15)

Thus, it may be noted that ϕ(a, b) is a convex function in a, where the minimum value is

attained to be zero when a
b = n−a−c

n−b−d .

Hence, ϕ(a, b) vanishes only when a = b and c = d.

Case 2: S > 1 and 0 < R < 1.

Let µM (xi)
2SµN (xi)

2(1−S) + νM (xi)
2SνN (xi)

2(1−S) + πM (xi)
2SπN (xi)

2(1−S) = zi. Since zi < 1

and 1
S < 1, therefore, zi < (zi)

1
S .

As R×S
n(S−R) > 0, therefore,

R× S

n(S −R)

n∑
i=1

[
(zi)

1
S

]
>

R× S

n(S −R)

n∑
i=1

(zi); (5.1.16)

and for 0 < R < 1,

R× S

n(S −R)

n∑
i=1

[
(zi)

1
R

]
>

R× S

n(S −R)

n∑
i=1

(zi). (5.1.17)

Therefore, from (5.1.16) and (5.1.17), we have ISR(M,N) > 0 and if µM (xi) = µN (xi) and

νM (xi) = νN (xi) in (5.1.2), we have ISR(M,N) = 0. Hence, we conclude that ISR(M,N) ≥ 0.

Further, on similar lines as in case 1, we prove the convexity of ISR(M,N) in this case.

Consequently, this implies that ISR(M,N) ≥ 0, where equality holds only when µM (xi) =

µN (xi), νM (xi) = νN (xi) for each i and a = b, c = d i.e., M = N . Thus, ISR(M,N) is a valid

discriminant measure of PFS M from PFS N .”

Theorem 5.2 JS
R(M,N) = ISR(M,N)+ISR(N,M) is the validisymmetric discriminantimeasure.

Proof : The proof can be carried on the similar lines as the proof of Theorem 5.1.

5.1.1 Propertiesiof Proposed DiscriminantiMeasure

Theorem 5.3 Consider M, iN, iC be three Pythagoreanifuzzy sets defined overiuniverse ofidiscourse

X.
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(i) ISR(Mi ∪N, iM) + ISR(M ∩N, iM) = ISR(N, iM).

(ii) ISR(Mi ∪N, iC) + ISR(M ∩N, iC) = ISR(M, iC) + ISR(N,C).

(iii) ISR(M ∪N, iM ∩N) = ISR(M ∩N,M ∪N).

(iv) ISR(M, iM) = ISR(M, iM).

(v) ISR(M, iN) = ISR(M, iN).

(vi) ISR(M, iN) = ISR(M, iN).

(vii) ISR(M, iN) + ISR(M, iN) = ISR(M, iN) + ISR(M, iN).

Proof : First, we partition X into two sub-divisions X1 and X2 suchithat

X1 = {xi ∈ X | M ⊆ N} , i.e., µM (xi)i ≤ µN (xi), νM (xi)i ≥ νN (xi)∀ xi ∈ X1;

X2 = {xi ∈ X | N ⊆ M} , i.e., µM (xi)i ≥ µN (xi), νM (xi)i ≤ νN (xi)∀ xi ∈ X2.

Now,

(i) We have to prove ISR(M ∪N,M) + ISR(M ∩N,M) = ISR(N,M). We consider

ISR(M ∪N,M) + ISR(M ∩N,M)

=
R× iS

ni(S −R)

n∑
i=1

 (
µM∪N (xi)

2SµM (xi)
2(1−S) + νM∪N (xi)

2SνM (xi)
2(1−S) + πM∪N (xi)

2SπM (xi)
2(1−S)

) 1
S

−
(
µM∪N (xi)

2RµM (xi)
2(1−R) + νM∪N (xi)

2RνM (xi)
2(1−R) + πM∪N (xi)

2RπM (xi)
2(1−R)

) 1
R


+

R× S

n(S −R)

n∑
i=1

 (
µM∩N (xi)

2SµM (xi)
2(1−S) + νM∩N (xi)

2SνM (xi)
2(1−S) + πM∩N (xi)

2SπM (xi)
2(1−S)

) 1
S

−
(
µM∩N (xi)

2RµM (xi)
2(1−R) + νM∩N (xi)

2RνM (xi)
2(1−R) + πM∩N (xi)

2RπM (xi)
2(1−R)

) 1
R


(5.1.18)

=
R× S

n(S −R)

∑
X1



(
µM∪N (xi)

2SµM (xi)
2(1−S) + νM∪N (xi)

2SνM (xi)
2(1−S) + πM∪N (xi)

2SπM (xi)
2(1−S)

) 1
S

−
(
µM∪N (xi)

2RµM (xi)
2(1−R) + νM∪N (xi)

2RνM (xi)
2(1−R) + πM∪N (xi)

2RπM (xi)
2(1−R)

) 1
R

+
(
µM∩N (xi)

2SµM (xi)
2(1−S) + νM∩N (xi)

2SνM (xi)
2(1−S) + πM∩N (xi)

2SπM (xi)
2(1−S)

) 1
S

−
(
µM∩N (xi)

2RµM (xi)
2(1−R) + νM∩N (xi)

2RνM (xi)
2(1−R) + πM∩N (xi)

2RπM (xi)
2(1−R)

) 1
R



+
R× S

n(S −R)

∑
X2



(
µM∪N (xi)

2SµM (xi)
2(1−S) + νM∪N (xi)

2SνM (xi)
2(1−S) + πM∪N (xi)

2SπM (xi)
2(1−S)

) 1
S

−
(
µM∪N (xi)

2RµM (xi)
2(1−R) + νM∪N (xi)

2RνM (xi)
2(1−R) + πM∪N (xi)

2RπM (xi)
2(1−R)

) 1
R

+
(
µM∩N (xi)

2SµM (xi)
2(1−S) + νM∩N (xi)

2SνM (xi)
2(1−S) + πM∩N (xi)

2SπM (xi)
2(1−S)

) 1
S

−
(
µM∩N (xi)

2RµM (xi)
2(1−R) + νM∩N (xi)

2RνM (xi)
2(1−R) + πM∩N (xi)

2RπM (xi)
2(1−R)

) 1
R


(5.1.19)

=
R× S

n(S −R)

∑
X1

 (
µN (xi)

2SµM (xi)
2(1−S) + νN (xi)

2SνM (xi)
2(1−S) + πN (xi)

2SπM (xi)
2(1−S)

) 1
S

−
(
µN (xi)

2RµM (xi)
2(1−R) + νN (xi)

2RνM (xi)
2(1−R) + πN (xi)

2RπM (xi)
2(1−R)

) 1
R


+

R× S

n(S −R)

∑
X2

 (
µN (xi)

2SµM (xi)
2(1−S) + νN (xi)

2SνM (xi)
2(1−S) + πN (xi)

2SπM (xi)
2(1−S)

) 1
S

−
(
µN (xi)

2RµM (xi)
2(1−R) + νN (xi)

2RνM (xi)
2(1−R) + πN (xi)

2RπM (xi)
2(1−R)

) 1
R


(5.1.20)

=
R× S

n(S −R)

n∑
i=1

 (
µN (xi)

2SµM (xi)
2(1−S) + νN (xi)

2SνM (xi)
2(1−S) + πN (xi)

2SπM (xi)
2(1−S)

) 1
S

−
(
µN (xi)

2RµM (xi)
2(1−R) + νN (xi)

2RνM (xi)
2(1−R) + πN (xi)

2RπM (xi)
2(1−R)

) 1
R


= ISR(N,M).
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(ii) Weiconsider

ISR(M ∪ iN,C) + ISR(M ∩ iN,C)

=
R× iS

ni(S −R)

n∑
i=1

 (
µM∪N (xi)

2SµC(xi)
2(1−S) + νM∪N (xi)

2SνC(xi)
2(1−S) + πM∪N (xi)

2SπC(xi)
2(1−S)

) 1
S

−
(
µM∪N (xi)

2RµC(xi)
2(1−R) + νM∪N (xi)

2RνC(xi)
2(1−R) + πM∪N (xi)

2RπC(xi)
2(1−R)

) 1
R


+

R× iS

ni(S −R)

n∑
i=1

 (
µM∩N (xi)

2SµC(xi)
2(1−S) + νM∩N (xi)

2SνC(xi)
2(1−S) + πM∩N (xi)

2SπC(xi)
2(1−S)

) 1
S

−
(
µM∩N (xi)

2RµC(xi)
2(1−R) + νM∩N (xi)

2RνC(xi)
2(1−R) + πM∩N (xi)

2RπC(xi)
2(1−R)

) 1
R


(5.1.21)

=
R× S

n(S −R)

∑
X1



(
µM∪N (xi)

2SµC(xi)
2(1−S) + νM∪N (xi)

2SνC(xi)
2(1−S) + πM∪N (xi)

2SπC(xi)
2(1−S)

) 1
S

−
(
µM∪N (xi)

2RµC(xi)
2(1−R) + νM∪N (xi)

2RνC(xi)
2(1−R) + πM∪N (xi)

2RπC(xi)
2(1−R)

) 1
R

+
(
µM∩N (xi)

2SµC(xi)
2(1−S) + νM∩N (xi)

2SνC(xi)
2(1−S) + πM∩N (xi)

2SπC(xi)
2(1−S)

) 1
S

−
(
µM∩N (xi)

2RµC(xi)
2(1−R) + νM∩N (xi)

2RνC(xi)
2(1−R) + πM∩N (xi)

2RπC(xi)
2(1−R)

) 1
R



+
R× S

n(S −R)

∑
X2



(
µM∪N (xi)

2SµC(xi)
2(1−S) + νM∪N (xi)

2SνC(xi)
2(1−S) + πM∪N (xi)

2SπC(xi)
2(1−S)

) 1
S

−
(
µM∪N (xi)

2RµC(xi)
2(1−R) + νM∪N (xi)

2RνC(xi)
2(1−R) + πM∪N (xi)

2RπC(xi)
2(1−R)

) 1
R

+
(
µM∩N (xi)

2SµC(xi)
2(1−S) + νM∩N (xi)

2SνC(xi)
2(1−S) + πM∩N (xi)

2SπC(xi)
2(1−S)

) 1
S

−
(
µM∩N (xi)

2RµC(xi)
2(1−R) + νM∩N (xi)

2RνC(xi)
2(1−R) + πM∩N (xi)

2RπC(xi)
2(1−R)

) 1
R


(5.1.22)

=
R× S

n(S −R)

n∑
i=1


(
µM (xi)

2SµC(xi)
2(1−S) + νM (xi)

2SνC(xi)
2(1−S) + πM (xi)

2SπC(xi)
2(1−S)

) 1
S

−
(
µM (xi)

2RµC(xi)
2(1−R) + νM (xi)

2RνC(xi)
2(1−R) + πM (xi)

2RπC(xi)
2(1−R)

) 1
R



+
R× iS

ni(S −R)

n∑
i=1


(
µN (xi)

2SµC(xi)
2(1−S) + νN (xi)

2SνC(xi)
2(1−S) + πN (xi)

2SπC(xi)
2(1−S)

) 1
S

−
(
µN (xi)

2RµC(xi)
2(1−R) + νN (xi)

2RνC(xi)
2(1−R) + πN (xi)

2RπC(xi)
2(1−R)

) 1
R


= ISR(M,C) + ISR(N,C).

Similarly, one can easily prove (iii)− (vii).

5.2 MonotoniciNature of Proposed Discriminant Mea-

sure

The study of monotonicibehaviour of the proposed discriminant measure has been carried

out in an empirical way. Here, we take four different pairs of Pythagoreanifuzzy sets A =

(P1, P2), B = (P3, P4), C = (P5, P6) and D = (P7, P8) overithe universeiof discourse X =

{x1i, x2i, x3i}:

P1 = {(x1, 0.8, 0.4), (x2, 0.7, 0.6), (x3, 0.5, 0.7)};

P2 = {(x1, 0.7, 0.4), (x2, 0.6, 0.5), (x3, 0.6, 0.4)}.

63



P3 = {(x1, 0.2, 0.5), (x2, 0.5, 0.7), (x3, 0.3, 0.8)};

P4 = {(x1, 0.4, 0.7), (x2, 0.5, 0.4), (x3, 0.9, 0.3)}.

P5 = {(x1, 0.5, 0.6), (x2, 0.2, 0.9), (x3, 0.9, 0.4)};

P6 = {(x1, 0.4, 0.8), (x2, 0.9, 0.3), (x3, 0.7, 0.6)}.

P7 = {(x1, 0.4, 0.8), (x2, 0.9, 0.4), (x3, 0.5, 0.5)};

P8 = {(x1, 0.7, 0.6), (x2, 0.5, 0.6), (x3, 0.3, 0.8)}.

Different values of parameters have been taken for detailed study and tabulated the computed

values in Table 5.1. On the basisiof the tabulatedidata andithe plotsiare givenibelow in Fig-

ure 5.1, it is quiteiclear that the proposed discriminantimeasure is a monotonicallyiincreasing

functioniof R and S.

5.3 Computational Applications of ProposediMeasure

In order to show the applicability of the proposed discriminant measure, we have consid-

ered three different fields of computational problems- pattern irecognition, medicalidiagnosis,

andidecision-making.

5.3.1 Problem of PatterniRecognition

In this section, we have considered a well posediexample taken from the existing literature

([70], [51]) to exhibit the iapplicability of the proposedidiscriminant measure.

Assume 3 existing patterns A1, A2 and A3 representing the classes C1, C2 and C3 respectively

and being described by theifollowing PFSs in Xi = {x1, ix2, x3i}:

A1 = {(ix1, 0.3, 0.3), (x2, i0.4, 0.4), (x3, i0.4, 0.4)};

A2 = {(ix1, 0.5, 0.5), (x2, i0.1, 0.1), (x3, i0.5, 0.5)};

A3 = {(ix1, 0.5, 0.4), (x2, i0.4, 0.5), (x3, i0.3, 0.3)}.

Also, suppose we have an unknown pattern Q

Qi = i{(x1, i0.4, 0.4), (x2, i0.5, 0.5), (x3, i0.2, 0.2)};
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Table 5.1: Values of R,S-norm DiscriminantiMeasure

R S= 0.15 S = .25 S = 0.4

(P1, P2) (P3, P4) (P5, P6) (P7, P8) (P1, P2) (P3, P4) (P5, P6) (P7, P8) (P1, P2) (P3, P4) (P5, P6) (P7, P8)

1.2 0.0275 0.0909 0.0933 0.0744 0.0958 0.1585 0.1642 0.1262 0.0757 0.2705 0.2845 0.2062

1.5 0.0354 0.1217 0.1271 0.0928 0.1227 0.2105 0.2216 0.1567 0.0971 0.3548 0.3779 0.2544

2 0.0484 0.1685 0.1781 0.1190 0.1667 0.2887 0.3068 0.1998 0.1323 0.4796 0.5140 0.3217

3.5 0.0800 0.2689 0.2839 0.1692 0.2694 0.4542 0.4811 0.2815 0.2151 0.7388 0.7864 0.4469

5 0.0991 0.3281 0.3441 0.1963 0.3289 0.5509 0.5792 0.3250 0.2637 0.8879 0.9370 0.5126

7 0.1138 0.3751 0.3912 0.2178 0.3736 0.6270 0.6554 0.3595 0.3004 1.0042 1.0531 0.5645

10 0.1259 0.4142 0.4308 0.2368 0.4095 0.6902 0.7191 0.3899 0.3302 1.1002 1.1495 0.6103

25 0.1446 0.4751 0.4933 0.2684 0.4641 0.7878 0.8194 0.4405 0.3756 1.2473 1.3005 0.6863

40 0.1498 0.4914 0.5104 0.2770 0.4791 0.8140 0.8467 0.4542 0.3881 1.2866 1.3414 0.7068

60 0.1529 0.5008 0.5201 0.2819 0.4880 0.8288 0.8622 0.4619 0.3956 1.3088 1.3647 0.7185

75 0.1541 0.5045 0.5241 0.2838 0.4917 0.8349 0.8685 0.4651 0.3987 1.3178 1.3741 0.7231

100 0.1554 0.5083 0.5280 0.2858 0.4955 0.8409 0.8748 0.4682 0.4018 1.3269 1.3835 0.7279

150 0.1568 0.5121 0.5320 0.2878 0.4994 0.8470 0.8812 0.4714 0.4050 1.3360 1.3930 0.7326

200 0.1574 0.5141 0.5340 0.2888 0.5013 0.8501 0.8844 0.4730 0.4067 1.3406 1.3978 0.7350

250 0.1578 0.5152 0.5352 0.2894 0.5025 0.8519 0.8863 0.4740 0.4076 1.3433 1.4007 0.7364

295 0.1581 0.5159 0.5360 0.2898 0.5032 0.8530 0.8875 0.4745 0.4082 1.3450 1.4024 0.7373

R S= 0.50 S = 0.70 S = 0.95

(P1, P2) (P3, P4) (P5, P6) (P7, P8) (P1, P2) (P3, P4) (P5, P6) (P7, P8) (P1, P2) (P3, P4) (P5, P6) (P7, P8)

1.2 0.0958 0.3515 0.3736 0.2603 0.1372 0.5249 0.5674 0.3679 0.1908 0.7490 0.8185 0.4966

1.5 0.1227 0.4574 0.4909 0.3198 0.1753 0.6722 0.7302 0.4486 0.2428 0.9430 1.0315 0.6003

2 0.1667 0.6124 0.6598 0.4023 0.2369 0.8840 0.9601 0.5588 0.3260 1.2172 1.3269 0.7397

3.5 0.2694 0.9305 0.9935 0.5540 0.3778 1.3103 1.4043 0.7569 0.5111 1.7594 1.8863 0.9844

5 0.3289 1.1120 1.1760 0.6328 0.4574 1.5497 1.6431 0.8582 0.6124 2.0592 2.1820 1.1075

7 0.3736 1.2527 1.3160 0.6950 0.5162 1.7335 1.8245 0.9380 0.6857 2.2869 2.4045 1.2046

10 0.4095 1.3683 1.4318 0.7499 0.5629 1.8833 1.9737 1.0087 0.7433 2.4709 2.5865 1.2912

25 0.4641 1.5447 1.6127 0.8410 0.6334 2.1101 2.2056 1.1261 0.8292 2.7471 2.8682 1.4354

40 0.4791 1.5917 1.6616 0.8656 0.6527 2.1701 2.2681 1.1576 0.8527 2.8198 2.9439 1.4740

60 0.4880 1.6183 1.6894 0.8794 0.6642 2.2041 2.3036 1.1754 0.8668 2.8609 2.9867 1.4957

75 0.4917 1.6290 1.7006 0.8850 0.6690 2.2178 2.3179 1.1826 0.8727 2.8774 3.0040 1.5044

100 0.4955 1.6399 1.7119 0.8907 0.6739 2.2316 2.3322 1.1898 0.8788 2.8941 3.0214 1.5131

150 0.4994 1.6507 1.7232 0.8963 0.6789 2.2454 2.3467 1.1970 0.8849 2.9108 3.0389 1.5219

200 0.5013 1.6562 1.7289 0.8991 0.6814 2.2524 2.3540 1.2006 0.8880 2.9192 3.0477 1.5263

250 0.5025 1.6595 1.7324 0.9008 0.6829 2.2565 2.3583 1.2028 0.8898 2.9242 3.0529 1.5290

295 0.5032 1.6615 1.7345 0.9019 0.6839 2.2591 2.3610 1.2041 0.8909 2.9273 3.0562 1.5306
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Figure 5.1: Monotonicity of the Proposed DiscriminantiMeasure

which we have to allocate in one of the knowniclass. For, this we have present the alloca-

tioniprocedure analogous to principle of minimum discriminantiinformation[59] as:

α∗i = imin
α

(ISR(Ak, Q)). (5.3.1)

In view of the values tabulated in Table 5.2, it may be noted that the unknownipattern Q has

leastidiscriminant value w.r.t the pattern A3. Hence, the pattern Q mustibelong to the class

C3, which is perfectlyiconsistent with the resultsiachieved by [70] [51] [53] [49] [141].
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Table 5.2: Values of ISR(Pα, Q), with αi ∈ {1, i2, i3}
R S A1 A2 A3

Q 0.1 10 0.1618 0.1475 0.09325

Q 0.9 10 1.1671 1.0211 0.4706

5.3.2 Medical Diagnosis Problem

”Assume that a doctor needs to diagnose a patient P under a set of diagnoses

D = {V iral fever, Malaria, Typhoid, Stomach problem,Chest problem}, with a set of symp-

toms S = {Temperature, Headache, Stomach pain, Cough, Chest pain}. The characteris-

tic symptoms for the diagnoses and the symptoms for patient are provided in Table 5.3 and

Table 5.4 respectively. Each component of the each table is being represented by the pair of

numbers corresponding to the membership and non-membership values, respectively, e.g., in

Table 5.3, (µ, ν) = (0.4, 0.0) describes the temperature for viral fever. In order to have a proper

diagnose, we evaluate the discriminant information measure ISR(P, dα) between the patient’s

symptoms and the set of symptoms that are characteristic for each diagnose dα ∈ D, with

α = {1, 2, 3, 4, 5}. Similar to the equation (5.3.1), the proper diagnose dα for the patient P

may be based on the following analogous equation:

α∗ = argmin
α

(ISR(P, dα). (5.3.2)

Table 5.3: Symptoms characteristic for the diagnoses considered

Viral Fever Malaria Typhoid Stomach Prob. Chest Prob.

Temperature (0.4, 0.0) (0.7, 0.0) (0.3, 0.3) (0.1, 0.7) (0.1, 0.8)

Headache (0.3, 0.5) (0.2, 0.6) (0.6, 0.1) (0.2, 0.4) (0.0, 0.8)

Stomach Pain (0.1, 0.7) (0.0, 0.9) (0.2, 0.7) (0.8, 0.0) (0.2, 0.8)

Cough (0.4, 0.3) (0.7, 0.0) (0.2, 0.6) (0.2, 0.7) (0.2, 0.8)

Chest Pain (0.1, 0.7) (0.1, 0.8) (0.1, 0.9) (0.2, 0.7) (0.8, 0.1)

Table 5.4: Symptoms for the diagnose under consideration

Temperature Headache Stomach Pain Cough Chest Pain

P (0.8, 0.1) (0.6, 0.1) (0.2, 0.8) (0.6, 0.1) (0.1, 0.6)

Therefore, the patient is diagnosed with symptoms which have the least value of the

discriminant measure from patient’s symptoms. The results for the considered patient P have

been computed and presented in the Table 5.5.
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Table 5.5: Values of ISR(P, dα)

Viral Fever Malaria Typhoid Stomach Prob. Chest Prob.

P 0.1641 0.1733 0.2782 1.7484 1.7837

Hence, the patient P is suffering from the viral fever. It may be observed that the results

obtained through the proposed method are perfectly consistent with the results achieved by

Wei & Wei [49] and Garg [52].

Comparative Remarks: It may be observed that the proposed method is found to be

perfectly competent to provide the desired result with an added advantage of the parameters

involvement in the proposed discriminant measure. The parameters may provide a better

variability in the selection of a discriminant measure for achieving a better specificity and

accuracy.”

5.3.3 Multi-criteriaiDecision MakingiProblem

The mainiobjective of the multi-criteria decision making problem is to select the optimal/best

alternative out of the m feasible available alternatives, i.e., Zi = i {Z1, Z2, . . . , Zm} based

on certain laid down criteria nicriteria Oi = i {o1, o2, . . . , on} . For this, first we take the

appraisalivalues of an alternativeizi (i = 1, 2, 3, . . . ,m) w.r.t the criteriaioj (j = 1, 2, 3, . . . , n)

is given by zij = (pij , qij) ,isatisfyingi0 ≤ pij ≤ 1, 0 ≤ qij ≤ 1 and 0 ≤ pij + qij ≤ 1 with

ii = i1, 2, . . . ,m and ji = i1, 2, . . . , n.

ProceduraliSteps of Algorithm for MCDMiProblem:

Stepi1: Thus, the above problem can be modelediby representingiit through the following

Pythagoreanifuzzy decisionimatrix:

Ri = i(pij , qij)m×n = (zij) =

o1 o2 · · · on

z1 (p11, q11) (p12, q12) · · · (p1n, q1n)

z2 (p21, q21) (p22, q22) · · · (p2n, q2n)
...

...
...

...
...

zm (pm1, qm1) (pm2, qm2) · · · (pmn, qmn)

Stepi2: In order to maintain homogeneity in the criterions, we need to transform the decision

matrix obtained in Step 1.”Thus the decision matrix A = [aij ]m×n is converted into a new
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decision matrix, say, B = [bij ]m×n where bij is given by

bij = (µij , νij) =

 aij for benefitsicriteria ;

acij for cost criteria ;
(5.3.3)

where Bi = i[bij ]m×n representingithe alternativesiin the form of”

Zi = i{(oj , µij , νij)|oj ∈ O}; i = 1, 2, . . . , im iandi j = 1, 2, i . . . , n. (5.3.4)

Stepi3:”Compute the best preferredisolution as

Z+i = i{sup(µij(Zi)), i inf(νij(Zi))} ii = 1, 2, i . . . ,m and j = 1, 2, . . . , n. (5.3.5)

Step 4: Evaluate theivalue of the discriminant measure ofialternatives Z
′
is fromiZ+ using

equation (5.1.2).

Step 5. Based on the values obtainediin Step 4, we can determineithe optimaliranking order

of theialternatives. The alternativeiwith the leastivalue ofidiscriminant measure is supposed

to be the bestialternative.

Example 5.1 ”Assume a real estate company needs to procure the material for its upcoming

project. The company advertises for receiving the tenders for purchasing the required material.

Let us suppose that there are 5 suppliers in the market, say, Z1, Z2, Z3, Z4 and Z5 and

six criterions for supplier selection which company has fixed, say, o1 (quality of material), o2

(price), o3 (services), o4 (delivery), o5 (technical support) and o6 (behavior).”

Then for the aboveiMCDM problem, the Pythagoreanifuzzy decisionimatrix A = [aij ]m×n may

be giveniby the followingiTable 5.6.

Table 5.6: PythagoreaniFuzzy DecisioniMatrix

o1 o2 o3 o4 o5 o6

Z1 (0.4, 0.5) (0.8, 0.1) (0.7, 0.3) (0.6, 0.2) (0.5, 0.4) (0.3, 0.4)

Z2 (0.7, 0.2) (0.5, 0.3) (0.3, 0.4) (0.8, 0.1) (0.2, 0.4) (0.4, 0.5)

Z3 (0.6, 0.1) (0.7, 0.3) (0.6, 0.2) (0.4, 0.1) (0.3, 0.4) (0.8, 0.2)

Z4 (0.5, 0.4) (0.3, 0.4) (0.8, 0.1) (0.7, 0.2) (0.6, 0.1) (0.7, 0.1)

Z5 (0.4, 0.3) (0.7, 0.1) (0.5, 0.2) (0.9, 0.1) (0.8, 0.1) (0.6, 0.4)

The computational steps for the aboveistated Example 5.1 areias follows:
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Table 5.7: TransformediPythagorean FuzzyiDecision Matrix

o1 o2 o3 o4 o5 o6

Z1 (0.4, 0.5) (0.1, 0.8) (0.7, 0.3) (0.6, 0.2) (0.5, 0.4) (0.3, 0.4)

Z2 (0.7, 0.2) (0.3, 0.5) (0.3, 0.4) (0.8, 0.1) (0.2, 0.4) (0.4, 0.5)

Z3 (0.6, 0.1) (0.3, 0.7) (0.6, 0.2) (0.4, 0.1) (0.3, 0.4) (0.8, 0.2)

Z4 (0.5, 0.4) (0.4, 0.3) (0.8, 0.1) (0.7, 0.2) (0.6, 0.1) (0.7, 0.1)

Z5 (0.4, 0.3) (0.1, 0.7) (0.5, 0.2) (0.9, 0.1) (0.8, 0.1) (0.6, 0.4)

1. We find the transformed matrix by using equation (5.3.3) and the transformediPythagorean

fuzzyidecision matrixi is given in the followingiTable 5.7.

2. In this step, we dtermine the bestipreferred solutioni by usingiequation (5.3.5) as follows:

Z+i = i{(0.7, i0.1), (0.4, 0.3), (0.8, i0.1), (0.9, 0.1), (0.8, i0.1), (0.8, i0.1)}. (5.3.6)

3. We compute the discriminantimeasures between Z
′
is (i = 1, . . . , 5) andiZ+ usingiequation

(5.1.2) and the values are tabulatediin the followingiTable 5.8.

Table 5.8: Evaluated values of Discriminant Measure between Z
′
is and Z+

ISR(Z1, Z
+) 0.7791

ISR(Z2, Z
+) 0.6438

ISR(Z3, Z
+) 0.3395

ISR(Z4, Z
+) 0.2042

ISR(Z5, Z
+) 0.3319

4. In view of the values obtained in above step, theiranking of theialternatives is as:

Z4 > Z5 > Z3 > Z2 > Z1;

and Z4 is the optimal/bestiavailableialternative.

5.4 ComparativeiAnalysis

We compareithe performanceiof the proposedimethod for decisionimaking with the existing

TOPSIS [21] [139] and the MOORA method [130].
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5.4.1 Comparisoniof ProposediMethod with TOPSISiTechnique

”Incorporating the proposed discriminant measure in the TOPSIS technique, the procedural

steps may be given as follows:

Step 1. Construct the matrix A = [aij ]m×n called Pythagorean fuzzy decision matrix, where

aij = (µij , νij) representing the degree of membership and non-membership respectively.

Step 2. Normalize the Pythagorean fuzzy decision matrix constructed in Step 1 as follows:

µ
′
ij =

µij√
m∑
i=1

(µij)2

and ν
′
ij =

νij√
m∑
i=1

(νij)2

. (5.4.1)

Let us take B = [bij ]m×n, where bij = (µ
′
ij , ν

′
ij).

Step 3. Formulate the weighted normalized Pythagorean fuzzy decision matrix as: W =

[wij ]m×n, where wij = uibij ; i = 1, 2, . . . ,m and j = 1, 2, . . . , n. In this MCDM problem

under consideration, we have taken ui = 1 ∀i = 1, 2, . . . ,m. It may be noted that ui’s are

components of the weight vector.

Step 4. Evaluate the best preferred solution, i.e., Z+ and the worst solution, i.e., Z− as:

Z+ = {α+
1 , α

+
2 , . . . , α

+
n , }; (5.4.2)

Z− = {α−
1 , α

−
2 , . . . , α

−
n , };

where α+
j = (supµij(Zi), inf νij(Zi)) and α−

j = (inf µij(Zi), supµij(Zi)).

Step 5. Determine the discriminant measures of Zi’s ∀ (i = 1, 2, . . . ,m) from Z+ and Z−

respectively by taking the proposed measure (5.1.2) into account.

Step 6. Compute the coefficient of relative closeness, i.e, Ci’s , (i = 1, 2, . . .m) as:

Ci =
ISR(Zi, Z

−)

ISR(Zi, Z+) + ISR(Zi, Z−)
. (5.4.3)

Step 7. Rank the alternatives Zi (i = 1, 2, . . .m) with respect to the coefficient of relative

closeness.

The computational values using the above steps for the MCDM problem by TOPSIS technique

are as:

1. First, we consider the transformed Pythagorean fuzzy decision matrix as given in Table 5.7.

2. Normalizing the above matrix using (5.4.1), we have the following Pythagorean fuzzy nor-

malized decision matrix as given in Figure 5.2.
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Figure 5.2: Pythagorean Fuzzy Normalized Decision Matrix
Table 9: Pythagorean Fuzzy Normalized Decision Matrix

o1 o2 o3 o4 o5 o6

Z1 (0.3357, 0.6742) (0.1667, 0.5714) (0.5175, 0.5145) (0.3825, 0.6030) (0.4256, 0.4815) (0.2274, 0.5080)
Z2 (0.5874, 0.2697) (0.5000, 0.3571) (0.2218, 0.6860) (0.5101, 0.3015) (0.1703, 0.7223) (0.3032, 0.6350)
Z3 (0.5035, 0.1348) (0.5000, 0.5000) (0.4435, 0.3430) (0.43530, 0.3015) (0.2554, 0.4815) (0.6065, 0.2540)
Z4 (0.4196, 0.5394) (0.6667, 0.2143) (0.5914, 0.1715) (0.4463, 0.6030) (0.5108, 0.1204) (0.5307, 0.1270)
Z5 (0.3357, 0.4045) (0.1667, 0.5000) (0.3696, 0.3430) (0.5738, 0.3015) (0.6810, 0.4781) (0.4549, 0.5080)

3. Evaluate the best preferred solution Z+ and the worst solution Z− using equation (5.4.2):

Z+ = {(0.5874, 0.1348), (0.6667, 0.2143), (0.5914, 0.1715),

(0.5738, 0.3015), (0.6810, 0.1204), (0.6065, 0.1270)};

Z− = {(0.3357, 0.6742), (0.1667, 0.5714), (0.2218, 0.6860),

(0.2550, 0.6030), (0.1703, 0.7223), (0.2274, 0.6350)}.

4. The computed values of the discriminant measure ISR of Zi’s from Z+ and Z− is given in

Table 5.9.

Table 5.9: Computed values of ISR(Zi, Z
+) and ISR(Zi, Z

−)

ISR(Zi, Z
+) ISR(Zi, Z

−)

Z1 0.8181 0.1308

Z2 0.8908 0.1686

Z3 0.2931 0.2578

Z4 0.2151 0.4545

Z5 0.5068 0.3033

5. Determine the values of coefficients of relative closeness by using equation (5.4.3) as follows:

C1 = 0.1378; C2 = 0.1591; C3 = 0.468;

C4 = 0.6788; C5 = 0.3744.

6. Finally, the ranking of the alternatives according to the values of the coefficients of relative

closeness, i.e., C
′
is i = 1, 2, . . . , 5 can be performed. The sequence of alternatives so obtained

is given by

Z4 > Z3 > Z5 > Z2 > Z1.

Therefore, Z4 is the best alternative among all Z
′
is (i = 1, 2, . . . , 5).”
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5.4.2 Comparison”of Proposed”Method with MOORA

”Incorporating the proposed discriminant measure in the MOORA technique, the procedural

steps may be given as follows:

Step 1. First three computational steps are same as of the TOPSIS technique.

Step 2. Compute the best preferred solution, i.e., Z+ and the worst solution, i.e., Z− from

the Table 5.2 given by

Z+ = {α+
1 , α

+
2 , . . . , α

+
n , } = (max

i
(µij),min

i
(νij));

Z− = {α−
1 , α

−
2 , . . . , α

−
n , } = (min

i
(µij),max

i
(νij)); (5.4.4)

for all i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

Step 3. Evaluate the value of overall performance ∀Zi , (i = 1, 2, . . .m) by using equation(5.1.2)

as ISR(Z
+, Z−).

Step 4. Finally, the ranking of the alternatives with respect to the computed values of the

overall performance and the best alternative is the one which has the least value of the overall

performance among all the alternatives.

The computational values using the above steps for the MCDM problem by MOORA technique

are as:

1. Determine the values of Z+ and Z− from equations (5.4.4), which are provided in the Table

5.10.

Table 5.10: Computed values of Z+ and Z−

Z+ Z−

Z1 (0.5175, 0.4815) (0.1667, 0.6742

Z2 (0.5874, 0.2697) (0.1703, 0.7223)

Z3 (0.6065, 0.1348) (0.2550, 0.4815)

Z4 (0.6667, 0.1204) (0.4196, 0.6030)

Z5 (0.6810, 0.3015) (0.1667, 0.5080)

2. Compute the values of the proposed discriminant measure ISR(Z
+, Z−), which are given in

Table 5.11.

3. Finally, the ranking of the alternatives according to the computed values of ISR(Z
+, Z−).

The sequence of alternatives so obtained is given by

Z4 > Z3 > Z2 > Z1 > Z5.
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Table 5.11: Evaluated values of ISR(Z
+, Z−)

ISR(Z
+, Z−) Ranking

Z1 0.6013 4

Z2 0.7963 3

Z3 0.3738 2

Z4 0.1683 1

Z5 1.1173 5

Thus, Z4 is the best alternative among all Z
′
is (i = 1, 2, . . . , 5). ”

Table 5.12: Ranking”of the alternatives”with Different”Techniques

Proposed Technique TOPSIS MOORA

Z1 5 5 4

Z2 4 4 3

Z3 3 2 2

Z4 1 1 1

Z5 2 3 5

In view of aboveidiscussions, we findithat the Z4iis the bestialternative in all the discusseditechniques.

It may also be observedithat mutualifluctuation is presentiin the finaliranking of the otherialternatives

while usingidifferent techniquesi(TOPSIS, MOORA) reflectingiin Table 5.12.iThis isibecause

of the fact that the differentialgorithms haveitheir differentiperspectives and techniques as

aniideal/universal rankingiis totally aidependent conception various influencingifactors.

5.4.3 Observationsiand Advantages of the ProposediMethod

On the basis of comparativeianalysis carriediabove, someiimportant observationsiand remarksiare

being stated asifollows:

• In TOPSISitechnique, the alternativesiused are to be arrangedibased on the coefficientiof

relativeicloseness whose values are lyingibetween 0 and 1.iHowever, iniMOORA tech-

nique, the alternativesiare ranked based on their overalliperformance.

• iWhile in theimethod which is proposediin this chapter, each alternativeiis evaluatediin

reference with each laid down criterioniindividually beforeideclaring the best/optimalialternative.
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• Itimay be observed that the proposedimethod recommends the specificiinput as well as a

specificiprocedure at the sameitime while this isn’tithe situationiwith differentitechniques.iAlso,

the proposed method isistraightforward to applyiand amountsito have less calculationsithan

other welliknown MCDM methods which have a littleiimprecise procedure toifetch a con-

clusion.

5.5 Conclusion

In this chapter, we haveisuccessfully proposed a newiparametric (R,iS)-norm discriminant

measure for Pythagoreanifuzzy set alongiwith the proofiof itsivalidity and also studied its

monotonicibehavior w.r.t parameters Ri& S. The applicabilityiof the proposed discrimi-

nantimeasure has also been workediout and illustratedithrough a numerical example in the com-

putationaliapplication fields of pattern”recognition, medical”diagnosis. Also, an algorithmifor

multi-criteriaidecision-making problem has been welliproposed and successfullyiimplemented

with theihelp of numericaliexample.
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Chapter 6

Modified VIKOR and TOPSIS

Method with Pythagorean Fuzzy

Information Measures

6.1 Introduction

The fundamental natural resources such as renewable energy and fossil fuel plays a signifi-

cant role in the socio-economic growth of a country. It has no exception that throughout

the world, the demand of energy is increasing significantly with time. The stock of natural

resources exhaust rapidly because of the major dependency on the fossil fuels which also leads

to the emission of carbon dioxide and harm the environment. The introduction of electrifi-

cation technique has significantly reduced the pollution component, but eventually couldinot

beiconsidered as a promisingisolution. Despite of this, the sustainable energy sources such as

hydrogen energy, solar energy, wind energy, bio-fuel, geothermal, biomass energy, etc. can also

be utilized in practical purposes.

In view of the present scenario, the existing technology, financial implications and eco-

friendly prospects, the utilization of hydrogen energy is considered to be one of the best al-

ternative source of energy. The major advantage of using hydrogen as a source of energy

is mainly two fold - first, it is an extreme heat-burning gas; and second it does not release

any toxic gas (e.g. CO2, SO2 and NO2) on combustion. Since theihydrogen canibe obtained
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fromiwater (electrolysis) and solarienergy (solar hydrogen),itherefore, weican have an ample

andiendlessisource ofihydrogenienergy forithe societyiand itsineed. Hence,itheiconsideration of

hydrogenienergy is supposedito be aikind oficlean renewableienergy having iperfectlyizero emis-

sionsifor the future prospectsiand it hasireceived dueiattentioniof theiresearchers inirecentipast

[87]. Variousiresearchersidealt with issuesiof felicitating the hydrogenienergy forithe energyibalance

[91]. Forithe sakeiof electricity production, alternativeienergyisources - hydrogenatedifuels

haveialso beeniutilized [128]. Juste [48] experimented with hydrogeniinjection asian aug-

mentedifuel and investigatedithe gasiturbine combustionichambers.

In the area of electromobility, the hydrogen energy has been potentially recognized as

fuel cell. The fuelicellielectrical vehicles (FCEVs)/battery vehicles uses a fuel cell (where

the hydrogen is used) instead of a battery. Though the FCEV’s cost is not practical and

repressive in current time but the people are somewhat prepared/in-transit for taking the joint

responsibility so that the ecological damage could be controlled [89] [111] [112] [85]. In addition

to the cost limitation of FCEVs, there is another inter-correlated issue of hydrogen refuelling

stations (HRSs). It is certainly easy to understand that the utilization of hydrogen energy in

electro-mobility sector is a kind of wise investment for a significantly long time. Therefore,

many decision makers [11] [88] [26] [45] have emphasized on the synchronized development of

FCEVs and HRSs because of its advantageous features in all respects.

From few decades, various researchers and decision makers have put down their signifi-

cant focus onithe selectioniissues of renewableienergy sources/technologies, speciallyion hydro-

genienergy, whichihas always beenia majoritask. Theitaskiof choosingithe rightiand most ap-

propriate site for suchisustainableienergy comprisesiof demographiciviewipoint, socio-economic

factoriand infrastructure. The decision makers also need to focus on all the inter-related quan-

titative and qualitative factors. Therefore, the process of multi-criteriaidecision-makingiplays

a critical role to model the structure of the available resources and criteria for such kinds of

complex real life problem. A formal process of site selection can be well understood through

Figure 6.1.

Theidecision-makingialgorithms certainlyienhanceithe capabilitiesiof theidecision makersito mod-

erateitheicontent ofidecisions initerms ofitheirirationality andiefficiency inia betterisense. The

processiof siteiselection forihydrogeni poweriplant canibe modeledias a multiple-criteria decision-

making (MCDM)iproblemiwhere various availableiinter-conflictingiattributes canibe explored.

In general, the indicators affecting the available alternatives and their criteria/weights should
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Phase 1

Phase II

Phase III

Phase IV

Identifying the criterion/attributes 

for Site Selection

Evaluate Project Sites

Decision Maker Opinion

Approve Project Site

Figure 6.1: Phases of Site Selection Process

be quantitative for each available option. In human sense, there is always a constraint of inac-

curacy and ambiguity which certainly limits to obtain an exact and precise value for evaluating

the outcomes of the alternatives. In order to deal such incompleteness in the information, lin-

guistic assessment by the experts in terms of fuzzy numbers (FNs) [82] have been found to be

useful, effective and convenient approach for better handling.

Inirecentiyears, variousiresearchers haveiextensivelyistudied differentiinformation measures

(similarityimeasures, entropy, distanceimeasures, discriminantimeasures etc.) because ofitheir

wider applicabilityiin theifield ofidecision-makingiproblems, patternirecognition, salesianalysis,

financialiservices, medicalidiagnosis etc. The theory of fuzzy sets/intuitionistic fuzzy [68][67]

have beeniapplied toimodel uncertaintiesiand hesitancyiinherent in many practicalicircumstances.

Yager [106]iproposed theiPythagoreanifuzzy seti(PFS) whichiis a useful generalization of IFS,

characterized by degree of membership/non-membership fulfilling theiinequality that theisum

of squaresiof theseivaluesi≤ 1.

6.2 Literature Survey

A brief literature survey in connection with multi-criteriaidecision-making model for various

types of renewable energy resources has been presented in this section. Wang et al.[20] pre-

sented a MCDM approach using fuzzy analytic network process (FANP) along with TOPSIS

for the selection of nuclear power plant site in Vietnam. Recently, Sedady et al. [43] proposed

the MCDM model for constructing renewable power plants by defining the actual priority

of technology, socio-economic aspect, political and ecological aspects. A review paper [127]
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considering the above stated aspects in the estimated power-to-gas conversion along with an

extended version to nuclear-assisted renewable hydrogen has also been reported.

For the installation of wind energy plants, Biswal and Shukla [47] proposed new method-

ologies for the selection of most suitable sites. Also, Pamucar [34] jointly utilized the concept

of Geographical Information Systems (GIS), MCDM approach of Best-Worst Method (BWM)

& multiple attribute decision making approach of ideal-real comparativeianalysis for the selec-

tioniof wind turbine sites. Keeping the classical aspects of technology, ecology, economy and

geographical point of view, Noorollahi [145] presented a MCDM support system for wind en-

ergy location selection with the help of GIS. Also, using GIS and fuzzy logic, Borah et al. [66]

presented a framework for the site selection of wind turbines to achieve the optimum energy

output.

A MCDM modeliforithe selection of aisolariplant site in Vietnam has been presented

by Wang et al. [22] where “fuzzyianalytic hierarchyiprocess (FAHP)” and “data envelop-

mentianalysis (DEA)” have been utilized to find the best appropriate and suitable site con-

sidering both the qualitative and quantitative aspects. Wang et al.[23] developed the MCDM

approach forisolid wastes to energyiplant sites in Vietnam using FANP and TOPSIS. Aktas

et al. [2] developed a hybrid MCDM method using the notion of hesitant fuzzy sets for the

selection of solar power plant site.

He et al. [17] proposed a hydrogen station optimization model for the setup of hydrogen-

energy expressway in order to reduce the production cost. Lewandowska-Smierzchalska et al.

[62] presented a decision-making model based on the popularly used AHP method to obtain

the potential hydrogen storage sites in Poland. Deveci [73] proposed a MCDM approach for

the selection of hydrogen storage sites based on the information provided in the interval type-2

hesitant fuzzy setup and carried out the sensitivity analysis toishow the effectivenessiof the

proposed methodology. Narayanamoorthy et al. [117] proposed normal wiggly dual hesitant

fuzzy set (NWDHFS) along with its score function and used in the MCDM method to find out

the best hydrogen storage sites. Messaoudi [33] proposed an integrated framework with the

combination of MCDM and GIS to evaluate the best location for the solar hydrogen production

installation system. Karatas [76] provided a new methodology by integrating the FAHP and

weighted fuzzy axiomatic design to select the hydrogen energy storage site in Turkey and

carried out the sensitivity analysis in order to validate the robustness of proposed method.

Tian et al. [81] utilized the AHP and TOPSIS method to explore the optimal region for
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developing the hydrogen energy applications and presented a case study for its functioning

in terms of industrial and cultural prospects. Lin et al. [103] studied the different hydrogen

station location models available in the literature and compared their strengths & weaknesses

in a comprehensive manner.

Due to the growing complexity in the decision-making processes and variability in the

human’s perceptions, the notion of Pythagorean fuzzy sets have received significant attention

of various researchers. Yager and Abbasov [105] established the connection of Pythagorean

fuzzy numbers (PFNs) with the complex numbers and studied its utility in the decision-making

process. Thereafter, Zhang and Xu [139] presented the modified TOPSIS method for solving

the decision-making problems by incorporating the information in the form of PFN. Also,

Yager [107] studied various aggregation operators and presented its utility for solving decision-

making problem in Pythagorean fuzzy setup. Further, Ma and Xu [147] introduced some

Pythagorean fuzzy symmetric operators and applied in solving decision-making problems. Con-

sidering the concept of similarity measures for Pythagorean fuzzy sets, Zhang [138] presented

a novel approach to solve the MCDM problems. In order to understand the perception of

the decisionimakers in solving the problems, Ren et al. [97] provided the Pythagorean fuzzy-

Portugueseifor interactive multi-criteriaidecision making approach. In order to demonstrate

the eco-friendly energy methodologies with negative identical individual and infeasible crite-

ria, the VIKOR method was given by Rani et al. [96] under Pythagorean fuzzy setup. Here

the joint utility of every alternative is computed in terms of the developed discriminant mea-

sure for the Pythagorean fuzzy sets for selecting the renewable energy methodologies. Also,

the applicability and dependability issues of the proposed approach have been duly discussed.

Various other researchers have utilized the notion of Pythagorean fuzzy information in different

capacities in the available literature.

From the above discussions, we note thatiall theiintuitionistic fuzzyidegreesiare the spe-

cialicaseiof the Pythagoreanifuzzyidegrees, whichiindicatesithat theiPFSiproves toibeimore effi-

cientito dealiwith vagueness,iimprecisenessiand incompleteness present in the information than

IFS. Certainly, the notion of PFS is in a more general frame work than IFS because the wider

value of the degree of membership enables to have broader utility. In the present manuscript,

Pythagorean fuzzy information measures ((R,S)-Norm entropy and discriminant measures)

based MCDM techniques have been proposed and utilized for hydrogen energy plant site se-

lection problem under a wider sense of fuzzy information. It may be noted that notions of

parametric Pythagorean fuzzy entropy and Pythagorean fuzzy discriminant measures have not
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been utilized in the available literature and no study is available in connection with the hy-

drogen energy resources. In the present work, we have implemented the Pythagorean fuzzy

information measures in bi-parametric form in the decision-making process format for renew-

able energy site selection problem with contrast.

The organizational structureiofithe present chapter is asifollows:iIn Section 6.3, we have

proposed a noveliMCDM approachibasedion (R,S)-Norm Pythagorean fuzzy information mea-

sures implemented with VIKOR and TOPSIS methods. The problem of hydrogen power plant

site selection has been appropriately dealt with the proposed methodologies in Section 6.4.

In Section 6.5, we have provided the comparativeianalysisiof the proposedimethodologies with

the existing literature in detail along with important remarks. Finally, Section 6.6 presents

the concludingiremarks of proposediresearch with some possible scope for future work.

6.3 Pythagorean Fuzzy Based MCDMApproach Uti-

lizing (R,S)-Norm Information Measures

In this section, we propose two modified multi-criteriaidecision-makingiapproaches based on

VIKOR andi TOPSISimethod by incorporating the notion of (R,S)-Norm Pythagorean fuzzy

entropy and respective (R,S)-Norm Pythagorean fuzzy discriminant measure. For the sake of

clarity and better understanding, we present the basic structure of Pythagorean fuzzy infor-

mation measures as follows:

Recently, Guleria and Bajaj [5] [7] proposed the following (R,S)-Norm Pythagorean fuzzy

entropy for a Pythagorean fuzzy set M ∈ PFS(U):

HS
R(M) =

R× S

(R− S)

n∑
i=1

1

n

[ (
µM (xi)

2S + νM (xi)
2S + πM (xi)

2S
) 1

S −

(
µM (xi)

2R + νM (xi)
2R + πM (xi)

2R
) 1

R

]
; (6.3.1)

and subsequently, foritwo Pythagoreanifuzzyisets M and N ∈ PFS(U), proposedi(R,S)-

NormiPythagoreanifuzzy discriminantimeasure as follows:

ISR(M,N) =
R× S

n(S −R)

n∑
i=1

[(
µM (xi)

2SµN (xi)
2(1−S) + νM (xi)

2SνN (xi)
2(1−S) + πM (xi)

2SπN (xi)
2(1−S)

) 1
S

−
(
µM (xi)

2RµN (xi)
2(1−R) + νM (xi)

2RνN (xi)
2(1−R) + πM (xi)

2RπN (xi)
2(1−R)

) 1
R

]
;

(6.3.2)
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where R,S > 0; either 0 < S < 1 and 1 < R < ∞ or 0 < R < 1 and 1 < S < ∞.

MCDM Approach Based on (R,S)-Norm Pythagorean Fuzzy Information:

Consider a multi-criteriaidecision-making problem, where A = {A1, iA2, i . . . , iAm} be the

set of availableialternatives and C = C1, iC2, i . . . , iCn be the setioficriteria. Suppose there is a

group of decision makers D = {D1, D2, . . . , Dl} who give their opinions and decisions on each

alternative withirespectito eachicriterion in the form of linguisticivariables. Let Rk = (hkij),

i = 1, 2, i . . . , im and j = 1, i2, i . . . , in be the linguisticimatrix provided by the each decision

maker, say kth decision maker, where hkij presents theiassessment ofianialternative, say Ai,

w.r.t. the criterion, say Cj , in terms of linguistic variables.

In order to select the optimal and the best alternative out of the m available alterna-

tives, we devise a modified algorithm based on VIKOR and TOPSIS method by utilizing the

Pythagorean fuzzy information measures. For the sake of illustrating the proposed algorithm,

we present all the steps through a flow chart given in Figure 6.2 which consists of two stages.

The essential procedural steps for a better understating of the proposed algorithm based

on the (R,S)-Norm Pythagorean fuzzy information measures in the VIKOR and TOPSIS

methods are listed as follows:

• Step 1: Assessment ofithe Criteria by DecisioniMakers

Based upon the experiences, the decision maker gives their individual opinion regarding

each criterion utilizing the defined set of linguistic terms connected with the Pythagorean

fuzzy number.

• Step 2: Evaluation of the Decision Maker’s Weights

It is believed that determining the decision maker’s weights is an important concern in

a decision-making problem. Weiassumeithat the major degree of the decision maker’s

is obtained by the defined set of linguistic variables and is then written in the form of

Pythagorean fuzzy numbers. The weight of kth expert isicomputed by theifollowingiformula

[42]:

λk =
µ2
k + π2

k

[ µ2
k

µ2
k+ν2k

]
l∑

k=1

µ2
k + π2

k

[ µ2
k

µ2
k+ν2k

] ; (6.3.3)

where
l∑

k=1

λ = 1 and λ ≥ 0.
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Figure 6.2: Flow Chart of the Proposed Methods
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• Step 3: Determining Aggregated Pythagorean Fuzzy Decision Matrix

For combining all the individual decision matrices into one group based on decision

maker’s opinion, we use an averaging aggregation operator to construct the aggre-

gated decision matrix. The following Pythagoreanifuzzyiweighted averagingioperator

hasibeeniutilizedi(developediby Yager [107]):

R̃ = [(r̃ij)]m×n, where r̃ij is

r̃ij = PFWAλ(h
(1)
ij , h

(2)
ij , . . . , h

(l)
ij ) =

(√√√√1−
l∏

k=1

(1− µ2
ij)

λk ,

l∏
k=1

(νij)
λk

)
(6.3.4)

• Step 4: Normalization of Pythagorean Fuzzy Decision Matrix

Sometimes, it has been observed that there is a kind of heterogeneity present in the crite-

rions. For resolving this issue, it is requireditoimakeithem homogeneous beforeiapplying

them for anyimethodology. In a broaderisense, the criteriaimay be categorizediintoitwo

types: benefiticriteria andicosticriteria. Weitransformithe decisionimatrix byitransformingithe

cost criteria intoithe benefiticriteria. Thus the decisionimatrix R̃ = [r̃ij ]m×n is con-

vertediintoia new decisionimatrix, say, R = [rij ]m×n where rij iisigiveniby

rij = (µij , νij) =

 r̃ij , for benefits criteria ;

r̃cij , for cost criteria.
(6.3.5)

• Step 5: Determining the Criteria’s Weights

It may be noted that considering different criteria weightsiwill put an impactiin the

rankingiorder of theialternatives. Hence, in the proposed approach weidetermineithe

criteriaiweights by using the (R,S)-Norm Pythagorean fuzzy information entropy as

follows:

wj =
1− ej

n−
n∑

j=1
ej

, j = 1, 2, . . . , n; (6.3.6)

where ej =
1
m

m∑
i=1

HS
R(zij), and

HS
R(zij) =

R× S

(R− S)

m∑
i=1

1

m

 (µM (xi)
2S + νM (xi)

2S + πM (xi)
2S
) 1

S

−
(
µM (xi)

2R + νM (xi)
2R + πM (xi)

2R
) 1

R

.


• Step 6: Identification of the Bestiand theiWorstiSolution

It is essential to determine theibestianditheiworst solutionifor allithe criteria. Inithe pro-

posediapproach, theibestiand theiworst ratings areidetermined in theiform of Pythagorean
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fuzzyipositive idealisolution r+j and Pythagoreanifuzzy negativeiideal solution r−j , whichiare

computediasifollows:

r+j =


max

i
µij , for benefit criterion Cj ,

min
i

νij , for costicriterion Cj ;

(6.3.7)

and

r−j =


min
i

µij , for benefiticriterion Cj ,

max
i

νij , for cost criterion Cj .

(6.3.8)

Remarks: The above stated six steps are the common steps in the stage 1. Further, in

stage 2, we may either go for Pythagorean Fuzzy VIKOR method or PythagoreaniFuzzy

TOPSIS method depending on the choice of the competent authority. Their respective

steps have been listed in two parts as follows:

— Pythagorean Fuzzy VIKORiMethod

The VIKORiis oneiof theiimportant methodology of MCDM introduced by Opricovic

[118] to solveidecisioniproblems with conflictingicriteria with assumption that compro-

mise is acceptable. In literature, this method is one ofithe widelyiused MCDM methods

for obtaining the compromiseisolution(s) ofithe satisfyingiall the incompatibleicriteria at

the sameitime. In continuation with the calculations of the six steps stated above, we

carry out further calculations to accomplish the decision-making task as follows:

• Step 7: Evaluation of the Essential Measures for all the alternatives

In this step weicalculate, the essential measures - groupiutility Si,iindividualiregret Ui

& compromiseimeasure Qi of every alternative Ai by using the notion of (R,S)-Norm

Pythagorean fuzzy discriminantimeasure. Iniorderito determine the values of these mea-

sures ofitheialternatives Ai (i = 1, 2, . . . ,m), we use the following formula:

Si =

n∑
j=1

wj

ISR

(
r+j , rij

)
ISR

(
r+j , r

−
j

) ; (6.3.9)

Ui = max
1≤j≤n

wj

ISR

(
r+j , rij

)
ISR

(
r+j , r

−
j

) ; (6.3.10)

and

Qi = γ

(
Si −min

i
Si

)
(
max

i
Si −min

i
Si

) + (1− γ)

(
Ui −min

i
Ui

)
(
max

i
Ui −min

i
Ui

) ; (6.3.11)
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where γ and 1− γ denote the weights of the strategyiof maximumigroupiutility and the

weightiofithe individualiregretirespectively.

• Step 8: Ranking of theiAlternatives

We rank the alternatives basedion theidecreasing order values of Si, Ui, Qi, i.e., the

minimum value of the compromise measure Qi gives the best alternative.

• Step 9: Determining the Compromise Solution

For the uniqueness of the best solution, the alternatives must hold following conditions:

– Condition C1

Q(A(2))−Q(A(1)) ≥ 1

m− 1
, (6.3.12)

given A(1) is the best ranked alternative and A(2) is theisecond best ranked alter-

native by the measure of Q.

– Condition C2

A(1) mustibe the bestirankediby Si or/andi Ui. Theicompromiseisolution is sta-

bleiwith in aidecision-makingiprocess, whichicould be theistrategy ofimaximum

groupiutility (when γ > 0.5) or byiconsensus (γ > 0.5) oriwithiveto ( γ < 0.5).

In case, ifitheicondition C1iis notisatisfied, thenithe utmostivalueiof M must be exam-

inediand giveniby the following irelation:

Q(A(M))−Q(A(1)) ≤ 1

m− 1
;

where M isithe arbitrary ranking position ofitheialternatives other than the best one. As

a consequence, the alternative A(i) is the compromise solution for some i = 1, 2, . . . ,m.

— PythagoreaniFuzzy TOPSIS Method

Hwang and Yoon [21] developed the “Technique for Order of Preference by Similarity

to Ideal Solution (TOPSIS)” for multi-criteriaidecision analysis which hasibeen widely

used in the literature. The schematic concept behind this method is to choose an alter-

native which hasitheishortestigeometric distanceifrom the positiveiidealisolution (PIS)

anditheilongest geometricidistance from theinegativeiidealisolution (NIS).

In continuation with the six steps stated above in the stage 1, we carry out further

calculations to accomplish the decision-making task as follows:
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• Step 7: Computation of the (R,S)-Norm DiscriminantiMeasure

In this step, we determine the value of theidiscriminantimeasures of Ai’s ∀ i = 1, 2, . . . ,m

from r+j and r−j respectivelyiby takingithe discriminantimeasure (6.3.2) into account.

• Step 8: Evaluation of the Coefficientiof RelativeiCloseness

Evaluateitheicoefficient ofirelativeicloseness, i.e, RCCi’s , (i = 1, 2, . . .m) as

RCCi =
ISR(Ai, r

−
j )

ISR(Ai, r
+
j ) + ISR(Ai, r

−
j )

. (6.3.13)

• Step 9. Ranking of theiAlternatives

Finally, weirankitheialternatives by ordering the values of the coefficient of relative close-

ness. The highest value is the best alternative.

Hence, we completely presented the proposed work of solving the decision-making problem

in a modified format of VIKOR and TOPSIS by utilizing the (R,S)-Norm Pythagorean fuzzy

information measures.

6.4 Hydrogen Power Plant Site Selection Process

In this section, we implement (R,S)-Norm Pythagorean fuzzy information measures in the

VIKOR and TOPSIS MCDM methods to obtain the modified form for the hydrogen power

plant site selection. The sites underiiconsideration must have beeniichosen through profes-

sionaliicommunication by the competentiiexperts. All the criteria affecting the siteiiselection

have beeniidetermined on the basis of theiiexpert/decision maker’s opinion and the avail-

ableiliterature. For theisake of selecting the best site/location, the decision makers must take

the socialiaspects, environment aspects, technology aspects, financialiiimplications and also

some major characteristiciiaspects. Consider a selection problem in a conventional frame in

which we have four availableisites, say, L1, L2, L3&L4, which are under consideration in solv-

ing the problem. These sites have been systematicallyiexamined w.r.t. the fiveiimain criteria

and 14 sub-criteria (Refer Table 6.1).

It is quite probable that if we increase the number of criteria then we would get a better

solution. The problem of site selection may be handled in a more critical way by the experts

in a Pythagorean fuzzy set up of VIKOR and TOPSIS”technique.

Procedural Steps of Solving the Selection Problem:

88



Table 6.1: Criteria Affecting the Hydrogen Power Plant Site Selection
Main Criteria Sub-criteria Literature Review

Public acceptance (F1) [58]

Social Aspect Protection law (F2) [22]

Legal and Regulation compliance (F3) [22][58]

Availability of Water (F4) [126]

Environment Aspect Water Storage (F5) [126]

Environment Affect (F6) [126]

Distance from Major Road (F7) [120] [123] [80] [77]

Technology Aspect Distance from Power Network (F8) [23] [120] [123] [80] [77] [74]

Potential Demand (F9) [22] [120]

Construction Cost (F10) [22] [80]

Economical Aspect Operation and Management Cost (F11) [22] [58] [123]

New Feeder Cost (F12) [123]

Site Characteristics Land Use (F13) [22] [37]

Ecology (F14) [22]

Table 6.2: Values of Linguistic Terms

Linguistic Term PFNs

Extremely Qualified (EQ) (0.97, 0.20)

Very Qualified (VQ) (0.85, 0.35)

Qualified (Q) (0.55, 0.50)

Less Qualified (LQ) (0.30, 0.80)

Very Less Qualified (VLQ) (0.15, 0.90)

• Step 1. The linguisticievaluations for thei14icriteria under consideration are qualita-

tively stated by the decision makers (Ref Table 6.5) and have been transformed into

Pythagorean fuzzy information using their quantitative rating in PFNs scale given in

Table 6.2. Also, the decision makers provide the qualitative information for four hydro-

gen power plant sites L1, L2, L3&L4 w.r.t. the 14 criteria (Refer Table 6.4) which have

been transformed into Pythagorean fuzzy information by using the defined quantitative

rating in PFNs scale given in Table 6.3.

• Step 2. In thisistep, weifirst present the importance of the decisionimakers using the

linguistic terms which are being transformed into Pythagorean fuzzy information with

the defined quantitative rating in PFNs scale given in Table 6.2. Next, we calculate the

decision maker’s weights using equation (6.3.3) which are being tabulated in Table 6.6.

• Step 3. By utilizing the Pythagorean fuzzy weighted averaging aggregation operator

given in equation (6.3.4), we aggregate all the decision matrices obtained from the dif-

ferent decision makers to form a single decision matrix. The aggregated matrix hence
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Table 6.3: Linguistic Terms for Rating Alternative

Linguistic Term PFNs

Excellently Good (EG) (0.97, 0.20)

Very Very Good (VVG) (0.88, 0.30)

Very Good (VG) (0.80, 0.40)

Good (G) (0.70, 0.45)

Moderately Good (MG) (0.65, 0.50)

Fair (F) (0.55, 0.55)

Moderately Bad (MB) (0.50,0.65)

Bad (B) (0.35, 0.80)

Very Bad (VB) (0.25, 0.88)

Very Very Bad (VVB) (0.15,0.95)

Table 6.4: Linguistic Evaluation of the Alternatives
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14

L1 EG EG MG EG EG EG VG G VG VG VG VG EG VVG

DM1 L2 VG VG MG VG G G MG G MG MG G G VG VG

L3 VG VG EG MG MG MG MG MG G F F G F F

L4 VG VG G VG G VG G G MG EG VG VG VVG VG

L1 EG EG MG VVG VVG VVG G VVG VVG VVG EG MG VVG VVG

DM2 L2 MG G MG G G G G G G G G VG VG VG

L3 VG VVG VG MG F MG F MB MG VB MB VG MB MG

L4 VG VG G G VG VG G MG MG EG VG G VG VG

L1 EG EG MG EG VVG EG G VG EG VG VVG MG VG VVG

DM3 L2 G VG MG VG G MG F MG VG MG G G VG VG

L3 VG MB VVG MB F MG F MB MG VB MB VG MB MG

L4 MG MG VG VG G G F MG VG MG G G G VG

L1 VVG VVG F VVG VG VG MG G VG G VG G VG VG

DM4 L2 MG G F G MG F F F G F MG G G G

L3 G F VG B F F F B F VVB B G B F

L4 F F G G MG MG F F G F MG G MG G

Table 6.5: Linguistic Evaluation for Rating Criteria
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14

DM1 VQ VQ Q EQ EQ VQ Q Q VQ EQ VQ VQ EQ EQ

DM2 VQ EQ EQ VQ EQ EQ LQ VQ Q VQ LQ VQ EQ Q

DM3 EQ Q VQ EQ LQ VQ VQ VQ EQ Q VQ VQ Q EQ

DM4 EQ LQ Q EQ Q Q VQ Q EQ LQ Q Q Q VQ

Table 6.6: Decision Maker’s Weights
DM1 DM2 DM3 DM4

Linguistic Term VQ Q EQ VQ

Weight 0.265802 0.170204 0.298192 0.265802
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Table 6.7: Aggregated Pythagorean Fuzzy Decision Matrix
L1 L2 L3 L4

F1 (0.957, 0.223) (0.714, 0.457) (0.778, 0.413) (0.711, 0.465)

F2 (0.957, 0.223) (0.762, 0.421) (0.712, 0.479) (0.711, 0.465)

F3 (0.627, 0.513) (0.627, 0.513) (0.898, 0.305) (0.735, 0.434)

F4 (0.946, 0.239) (0.762, 0.421) (0.550, 0.613) (0.762, 0.421)

F5 (0.906, 0.291) (0.688, 0.463) (0.598, 0.528) (0.709, 0.454)

F6 (0.938, 0.258) (0.652, 0.490) (0.611, 0.521) (0.740, 0.440)

F7 (0.449, 0.721) (0.518, 0.609) (0.518, 0.609) (0.504, 0.626)

F8 (0.405, 0.775) (0.490, 0.652) (0.613, 0.550) (0.499, 0.642)

F9 (0.310, 0.898) (0.447, 0.724) (0.507, 0.627) (0.455, 0.717)

F10 (0.393, 0.797) (0.504, 0.637) (0.720, 0.439) (0.344, 0.880)

F11 (0.326, 0.877) (0.463, 0.688) (0.639, 0.492) (0.440, 0.740)

F12 (0.712, 0.458) (0.721, 0.441) (0.775, 0.405) (0.732, 0.436)

F13 (0.891, 0.317) (0.778, 0.413) (0.516, 0.628) (0.775, 0.407)

F14 (0.863, 0.324) (0.778, 0.413) (0.601, 0.526) (0.769, 0.424)

obtained is presented in Table 6.7.

• Step 4. Inithisistep, we normalizeithe obtained aggregated Pythagoreanifuzzy decision

matrix using the equation (6.3.5) and the computed normalized Pythagorean matrix is

presented in Table 6.8.

• Step 5. In this step, the weights of all the criteria have been evaluated using the (R,S)-

Norm Pythagorean fuzzy entropy measure given by equation (6.3.1) and the computed

values of criteria’s weights are tabulated in Table 6.9.

• Step 6. The computed valuesiof Pythagoreanifuzzy positiveiideal solution r+j and

Pythagorean fuzzyinegativeiidealisolution r−j are as follows:

r+j = {(0.957, 0.223), (0.957, 0.223), (0.898, 0.305), (0.946, 0.239), (0.906, 0.291), (0.938, 0.258),

(0.449, 0.721), (0.405, 0.775), (0.310, 0.898), (0.344, 0.880), (0.326, 0.877), (0.712, 0.458),

(0.891, 0.317), (0.863, 0.324)}; (6.4.1)

and

r−j = {(0.711, 0.465), (0.711, 0.479), (0.627, 0.513), (0.550, 0.613), (0.598, 0.528), (0.611, 0.521),

(0.518, 0.609), (0.613, 0.550), (0.507, 0.627), (0.720, 0.439), (0.639, 0.492), (0.775, 0.405),

(0.516, 0.628), (0.601, 0.526)}. (6.4.2)

Remark: The above stated steps comprise of all the six common steps of the proposed

methodology. Next, we first carry the steps in connection with the Pythagorean fuzzy

VIKOR method and then with the Pythagorean fuzzy TOPSIS method.
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Table 6.8: Normalized Aggregated Pythagorean Fuzzy Decision Matrix
L1 L2 L3 L4

F1 (0.957, 0.223) (0.714, 0.457) (0.778, 0.413) (0.711, 0.465)

F2 (0.957, 0.223) (0.762, 0.421) (0.712, 0.479) (0.711, 0.465)

F3 (0.627, 0.513) (0.627, 0.513) (0.898, 0.305) (0.735, 0.434)

F4 (0.946, 0.239) (0.762, 0.421) (0.550, 0.613) (0.762, 0.421)

F5 (0.906, 0.291) (0.688, 0.463) (0.598, 0.528) (0.709, 0.454)

F6 (0.938, 0.258) (0.652, 0.490) (0.611, 0.521) (0.740, 0.440)

F7 ( 0.721, 0.449) (0.609, 0.518,) ( 0.609, 0.518) ( 0.626, 0.504)

F8 (0.775, 0.405) ( 0.652, 0.490) ( 0.550, 0.613) ( 0.642, 0.499)

F9 ( 0.898, 0.310) ( 0.724, 0.447) ( 0.627, 0.507) ( 0.717, 0.455)

F10 ( 0.797, 0.393) ( 0.637, 0.504,) ( 0.439, 0.720) ( 0.880, 0.344,)

F11 ( 0.877, 0.326) (0.688, 0.463) ( 0.492, 0.639) ( 0.740, 0.440)

F12 ( 0.458, 0.712) ( 0.441, 0.721) ( 0.405, 0.775) ( 0.436, 0.732)

F13 (0.891, 0.317) (0.778, 0.413) (0.516, 0.628) (0.775, 0.407)

F14 (0.863, 0.324) (0.778, 0.413) (0.601, 0.526) (0.769, 0.424)

Table 6.9: Evaluation of Criteria’s Weights
Criteria Weights (wi)

F1 0.1070

F3 0.0514

F4 0.1339

F5 0.0900

F6 0.0657

F7 0.0361

F8 0.0244

F9 0.0926

F10 0.0900

F11 0.0361

F12 0.0387

F13 0.0783

F14 0.0926
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Table 6.10: Computation Outcomes and Compromise Measure of Each Site
Si Ui Qi

L1 0.129 0.073 0.000

L2 1.069 0.295 0.8589

L3 1.437 0.233 0.8596

L4 0.952 0.293 0.8091

Ranking Order S1 > S4 > S2 > S3 U1 > U3 > U4 > U2 Q1 > Q4 > Q2 > Q3

— Pythagorean Fuzzy VIKOR Method

• Step 7. Using equations (6.3.9), (6.3.10) and (6.3.11), we determine the values of Si,

Ui and Qi respectively. For calculating the values of the compromise measure, we take

γ = 0.5. The computed values are tabulated in the Table 6.10.

• Step 8. On the basis of the computed values of Si, Ui and Qi in the step 7, the ranking

results have been obtained as follows:

S1 > S4 > S2 > S3; U1 > U3 > U4 > U2; Q1 > Q4 > Q2 > Q3.

• Step 9. Based onitheidescendingiorder of the obtainedivaluesiof the Qi’s, the site L1 is

supposed to be the best appropriate site. Since

Q(A(2))−Q(A(1)) = 0.8091 >
1

4− 1
= 0.333,

therefore, the site L1 also fulfill the condition C1 & C2. Thus, we jointly conclude that

the site L1 is the most suitable location to setup a hydrogen power plant.

Sensitivity Analysis of the Obtained Solution:

In order to observe the changes in the ranking order for different suppositions of the

weights (γ (0 ≤ γ ≤ 1)) of the strategy of maximum group utility, we carry out a

sensitivity analysis for the compromise solution as shown in Table 6.11, Figure 6.3 and

Figure 6.4. In view of the obtained values in the Table 6.11, we conclude that the site

L1 is the most suitable location for setting up the hydrogen power plant which can also

be viewed in Figure 6.5.
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Table 6.11: Sensitivity Analysis for Different Values of γ
L1 L2 L3 L4

Si 0.129 1.069 1.437 0.952

Ui 0.073 0.295 0.233 0.293

Qi (γ = 0.0) 0.0 1.0 0.719293091 0.989211567

Qi (γ = 0.1) 0.0 0.97179769 0.747363782 0.953178618

Qi (γ = 0.2) 0.0 0.94359538 0.775434472 0.917145668

Qi (γ = 0.3) 0.0 0.91539307 0.803505163 0.881112718

Qi (γ = 0.4) 0.0 0.88719076 0.831575854 0.845079768

Qi (γ = 0.5) 0.0 0.85898845 0.859646545 0.809046819

Qi (γ = 0.6) 0.0 0.83078614 0.887717236 0.773013869

Qi (γ = 0.7) 0.0 0.80258383 0.915787927 0.736980919

Qi (γ = 0.8) 0.0 0.77438152 0.943858618 0.700947969

Qi (γ = 0.9) 0.0 0.74617921 0.971929309 0.66491502

Qi (γ = 1.0) 0.0 0.7179769 1.0 0.62888207
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Figure 6.3: Sensitivity Study of Alternatives w.r.t. Measures
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— Pythagorean Fuzzy TOPSIS Method

• Step 7. In this step, we evaluate the values of the discriminant measures of Li’s ∀

i = 1, 2, 3, 4 from r+j and r−j respectively with the help of the equation (6.3.2) and

presented in Table 6.12.

Table 6.12: Discriminant Measure for L
′
is w.r.t. r+j /r

−
j

ISR(Li, r
+
j ) ISR(Li, r

−
j )

L1 0.3349 0.495

L2 0.5398 0.358

L3 0.6342 0.324

L4 0.5036 0.389

• Step 8. We compute the values of the coefficient of relative closeness by using the

equation (6.3.13) and put in Table 6.13.

Table 6.13: Coefficient of Relative Closeness
Sites Closeness Index

L1 0.5967

L2 0.3986

L3 0.3381

L4 0.4360

• Step 9. On theibasisiof the computed values of the coefficientiof relativeicloseness, the

ranking results have been obtained as follows:

L1 > L4 > L2 > L3.

Hence, basedion theicoefficient oficloseness, the site L1 is the most suitable location to

setup a hydrogen power plant.

Remark: It may be observed that the ranking results obtained through both the methodolo-

gies, i.e., Pythagorean Fuzzy VIKOR and TOPSIS MCDM methods, are completely consistent

and acceptable.

6.5 Comparative Analysis and Advantages

In thisisection, aicomparativeianalysis by taking the results of the proposed methodologies and

various other existing methods into account has been carried out to illustrate the advantages
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of the proposed methodologies - modified Pythagorean fuzzy VIKOR and TOPSIS MCDM

techniques. The followingiare the importanticomparative remarksiandiadvantages:

• The risk information loss has been significantly minimized in the proposed methods as

the computations consider the (R,S)-Norm Pythagorean entropy measure and discrim-

inant measure which spans a wider information in the fulfilment of the criteria. The

incorporation of the parameters enables us to have the flexibility in the calculations

along with the family of information measures.

• The proposed modified VIKOR and TOPSIS method incorporate the notion of Pythagorean

fuzzy sets while various researchers have implemented FSs/IFSs which are the special

case of Pythagorean fuzzy sets. As discussed in the introduction, Pythagorean fuzzy

sets are more generalized and have a wider coverage for the imprecise and incomplete

information.

• We have appropriately assigned the weights to the expert’s/decision maker’s opinion

in developing the proposed methodologies which provide the more precise decisions for

the MCDM problems under consideration while Boran et al. [42] utilized intuitionistic

approach in solving theigroup decision-makingisupplieriselection problem with TOP-

SISimethodiin a straight way.

• One of the major advantage of the PythagoreanifuzzyiVIKOR approach is that it yields

the compromise solution which takes the maximumigroupiutility along with the mini-

mumiindividualiregret. The compromise solution obtained though the modified VIKOR

method is the best solution with respect to theiidealisolution.

• The notion of Pythagorean fuzzy numbers have the capabilityitoideal with the impre-

ciseiand incompleteiinformationiwhich arise in a MCDM problem. Since the input pa-

rameters - assessment of alternatives, decision maker’s weights and the criteria’s weights

may have uncertainty in the content, therefore, the implementation of the notion of

Pythagorean fuzzy number is found to be more appropriate.

• It may be noted that a MCDM method broadly consists of different essential charac-

teristics, viz., weights of criteria, expert’s/decision maker’s weights and evaluation of

available alternatives with the laid down criteria. Therefore, any novel approach in the

field of MCDM focuses on these stated characteristics. Here, we present the comparison
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Table 6.14: Comparison with the Various Existing Methods
Authors & Researchers Expert

Weight

Criteria

Weight

Linguistic

terms

Entropy and Dis-

criminant Mea-

sure

Alternative As-

sessment Infor-

mation

Kaya & Kahraman [124] Consider Partially

Known

Yes NO FS

Kahraman & Kaya [18] Consider Partially

Known

Yes NO FS

Mousavi et al. [78] Computed Completely

Unknown

Yes NO HFS

Mishra et al. [9] Consider Partially

Known

Yes Discriminant Mea-

sure

IFS

Schitea et al. [36] Computed Completely

Unknown

Yes NO IFS

Proposed Work Computed Completely

Unknown

Yes Both PFS

Table 6.15: Comparison with the Various Existing Methods
WASPAS [36] COPRAS [36] EDAS [36] Proposed VIKOR Proposed TPOSIS

L1 1 1 1 1 1

L2 3 3 3 3 3

L3 4 4 4 4 4

L4 2 2 2 2 2

of our proposed research based on these features with various existing approaches in

literature along with its advantages as shown in Table 6.14.

• The final ranking for the available hydrogen power plant site alternatives studied by

various researchers in recent past is summarized and tabulated in Table 6.15 which

shows a clear and crisp consistency of the proposed methodologies. It may be observed

that the results obtained are statistically similar but the proposed methods are different

from the other methods available in literature.

• The utilizationiofitheimethod isisupposed to coordinateiwith theirequirement of decision-

making environment.iVIKOR can maximizeithe groupiutilityiand minimize theiindividual

regretiwhile TOPSIS is a compensatory method which allows the trade-off between cri-

teria. With irespect toiour proposedimethods, it caniconsiderithe advantageiaspects of

both VIKORiandiTOPSIS. Inigeneral, ouriproposedimethods makeifull use ofimore in-

formation duringithe decision-makingiprocedure, whichiare more suitable for a complex

environment.
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6.6 Conclusion

In this chapter, a newiparametrici(R,S)-Norm Pythagorean fuzzy entropy measureiand re-

spective Pythagoreanifuzzy discriminantimeasure haveibeenisuccessfully incorporated in the

VIKOR and TOPSIS MCDM methods to propose the modified MCDM methodologies which

is more generalized in its own sense. The utilizediPythagoreanifuzzy informationimeasures

haveibeen found to beisignificantly efficientitoihandle theiuncertaintyiwhere the weights of the

criteria are completely unknown. In addition, the respective sensitivity analysis has also been

done for the sake of better understanding and readability. The literature review clearly shows

the novelty of the proposed approach. The 14 criteria used for the hydrogen power plant site

selection give a comprehensive coverage for the experts/decision makers. The detailed compar-

ative study clearly shows that we have obtained a completely feasible and equally consistent

ranking which are in a more general frame work of Pythagorean fuzzy information.
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Chapter 7

Conclusions

In the present thesis, we have studied and proposed some new decision making approaches

along with various results for different problems under Pythagorean fuzzy setup. For the sake

of presenting the concluding remarks of the thesis, we are listing the findings of the work

carried out in various chapters as follows:

• The notion of Pythagorean fuzzy soft matrix (PFSM) has been successfully introduced

with different categories, properties & various standard binary operations.

• The general structured decision making problem has been illustrated and solved with

the help of revised definition of choice/weighted choice matrix.

• A new approach, by taking Pythagorean fuzzy soft matrix into consideration, for solv-

ing a general medical diagnosis problem has been well presented by incorporating the

score/utility matrix.

• A comparison analysis is also carried to show the practicability and consistency of the

proposed algorithms with the help of numerical examples and the existing literature.

• In continuation, a new technique for the dimensionality reduction of the informational

data has been presented in the Pythagorean fuzzy setup.

• A new methodology for the dimensionality reduction based on the reframed object-

oriented/parameter-oriented PFSMs has been successfully presented with comparative

analysis. Consequently, the consistency and viability of the proposed algorithm in con-

trast with methodologies available in literature have been duly discussed.
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• Further, a new kind of parametric information measure, termed as (R,S)-norm Pythagorean

fuzzy entropy measure has been presented with proper validation. Some important prop-

erties, monotonicity and maximality of proposed entropy measure have also been studied

with due consideration.

• A new approach to determine the weight of criteria for two different cases (weights par-

tially known or weights completely unknown) has been proposed to present a method-

ology for solving the general structured multi-criteria decision making problem. A nu-

merical example has also been solved for better understanding.

• Next, a bi-parametric (R,S)-norm Pythagoreanifuzzy discriminantimeasure has been

successfully presented with different important properties. The monotonic nature of the

discriminantimeasure has also been studied empirically for necessary validation.

• Some new approaches based on the proposed parametric discriminantimeasure for solving

different types of soft computing problem have been discussed and each computational

application has also been illustrated with the help of an illustrative example.

• Upon utilizing the Pythagorean fuzzy (R,S)-norm entropy measure and the (R,S)-

norm divergence measure, the standard VIKOR and TOPSIS approaches for solving the

MCDM problem have been accordingly presented and modified.

• The problem of site selection of hydrogen power plant has been remodeled in Pythagorean

fuzzy setup and solved with the help of the proposed modified VIKOR and TOPSIS

methods. Finally, the practicability and consistency of the proposed method have been

studied.

• The various methodologies presented in the thesis can further be applied on the real

survey data of the real world decision making problems and results may be derived

based on the necessary modeling and simulation.

• The proposed dimensionalityireduction technique may further be applied in enhancing

theiperformance of large scale imageiretrieval.

• In future, the proposedimodified VIKORiand TOPSISiMCDM approach can also be

used for locationiselection of differentitypes of renewable energyiresources or any other

selectioniproblem.

102



Bibliography

[1] A. A. Konate, H. Pan, H. Ma, X. Cao, Y. Y. Ziggah, M. Oloo, N. Khan, “Application of

dimensionality reduction technique to improve geo- physical log data classification perfor-

mance in crystalline rocks,” Journal of Petroleum Science and Engineering, vol. 133, pp.

633–645, 2015.

[2] A. Aktas, M. Kabak, “A Hybrid Hesitant Fuzzy Decision-Making Approach for Evaluating

Solar Power Plant Location Sites,” Arabian Journal for Science and Engineering, vol. 44,

pp. 7235–7247, 2019.

[3] A. Deluca, S. Termini, “A definition of non-probabilistic entropy in the setting of fuzzy set

theory,” Information and control, vol. 20, pp. 301–312, 1971.

[4] A. G. Hatzimichailidis, G. A.Papakostas, V. G.Kaburlasos, “A novel distance measure of

intuitionistic fuzzy sets and its application to pattern recognition problems,” International

Journal of Intelligent Systems, vol. 27(4), pp. 396–409, 2012.

[5] A. Guleria, R. K. Bajaj, “Pythagorean Fuzzy (R, S)-norm Information Measure based

Multicriteria Decision Making Problem,” Advances in Fuzzy Systems, vol. 2018, pp. 1–11,

2018.

[6] A. Guleria, R. K. Bajaj, “On Pythagorean Fuzzy Soft Matrices, Operations and their

Applications in Decision Making and Medical Diagnosis,” Soft Computing, vol. 23(17), pp.

7899–7900, 2019.

[7] A. Guleria, R. K.Bajaj, “Pythagorean Fuzzy(R,S)-Norm Divergence Measure in Various

Decision Making Processes,” Journal of Intelligent & Fuzzy Systems, vol. 38(3), pp. 761–777,

2019.

[8] A. Kaufmann, “Fuzzy subsets: Fundamentals Theorectical Elements Vol. III,“ Academic

Press, New York.

103



[9] A. R. Mishra, R. Kumari, D. K. Sharma, “Intuitionistic fuzzy divergence measure-based

multi-criteria decision making method,” Neural Computing and Applications, vol. 31, pp.

2279–2294, 2019.

[10] A. Renyi, “On measures of entropy and information, Proceedings of the Fourth Berkeley

Symposium on Mathematics, Statistics and Probability, Vol. I,” University of California

Press, Berkeley, Calif., pp. 541–561, 1961.

[11] A. Simonnet, “Technical options for distributed hydrogen refueling stations in a market

driven situation,” Institute of transportation Studies UC Davis, University of California,

Report UCD-ITS-RP-05-08, 2005.

[12] A. T. W. Chu, R. E. Kalaba, K. Spingarn, “A comparison of two methods for determining

the weights of belonging to fuzzy sets,” Journal of Optimization Theory and Applications,

vol. 27, pp. 531–538, 1979.

[13] B. Chetia, P. K. Das, “Some results of Intuitionistic fuzzy soft matrix theory,” Advances

in Applied Science Research, vol. 3, pp. 412–423, 2012.

[14] B. D. Sharma, D. P. Mittal, “New non-additive measures of entropy for discrete probability

distributions,” Journal of Mathematical Sciences, vol. 10, pp. 28–40, 1975.

[15] B. Su, X. Ding, H. Wang, Y. Wu, “Discriminative Dimensionality Reduction for Multi-

Dimensional Sequences,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 40(1), pp. 77–91, 2018.

[16] C. E. Shannon, “A Mathematical theory of communication,” Bell System Technical Jour-

nal, vol. 27(3), pp. 379–423, 1948.

[17] C. He, H. Sun, Y. Xu, S. Lv, “Hydrogen refueling station siting of expressway based on

the optimization of hydrogen life cycle cost”, International Journal of Hydrogen Energy, vol.

42(26), pp. 16313–16324, 2017.

[18] C. Kahraman, V. Q. Kaya, “A fuzzy multi-criteria methodology for selection among energy

alternatives,” Expert Systems with Applications, vol. 37(9), pp. 6270–6281, 2010.

[19] C. L. Hwang, M. J. Lin, “Group decision making under multiple criteria: methods and

applications,” Springer, Berlin, Germany, 1987.

[20] C. N. Wang, C. C. Su, V. T. Nguyen, “Nuclear Power Plant Location Selection in Vietnam

under Fuzzy Environment Conditions,” Symmetry, vol. 11, 548, 2018.

104



[21] C. L. Hwang, K. P. Yoon, Multiple Attribute Decision Making Methods and Applications,

Springer, New York, 1981.

[22] C. N. Wang, V. T. Nguyen, H. T. N. Thai, D. H. Duong, “Multi-Criteria Decision Making

(MCDM) Approaches for Solar Power Plant Location Selection in Vietnam,” Energies, vol.

11, 1504, 2018.

[23] C. N. Wang, V. T. Nguyen, H. T. N. Thai, D. H. Duong, “A Hybrid Fuzzy Analysis

Network Process (FANP) and the Technique for Order of Preference by Similarity to Ideal

Solution (TOPSIS) Approaches for Solid Waste to Energy Plant Location Selection in Viet-

nam,” Journal of Applied Sciences, vol. 8, 1100, 2018.

[24] C. Naim, E. Serdar, “Soft matrix theory and its decision making,” Computers and Math-

ematics with Applications, vol. 59, pp. 3308–3314, 2010.

[25] C. P. Wei, Z. H. Gao, T. T. Guo, “An intuitionistic fuzzy entropy measure based on

trigonometric function,” Control and Decision, vol. 27(4), pp. 571–574, 2012.

[26] C. Stiller, P. Seydel, U. Munger, M. Wietschel, “Early hydrogen user centers and corridors

as a part of the European hydrogen energy roadmap (HyWays),” International Journal of

Hydrogen Energy, vol. 33, pp. 4193–4209, 2008.

[27] D. A. Molodstov, “Soft set theory-first result,” Computers and Mathematics with Appli-

cation, vol. 27, pp. 19–31, 1999.

[28] D. Bhandari, N. R. Pal, “Some new information measures for fuzzy sets,” Information

Sciences, vol. 67(3), pp. 204–228, 1993.

[29] D. Chen, E. C. C. Tsang, D. S. Yeungand, X. Wang, “The parameterization reduction

of soft sets and its application,” Computer and Mathematics with Applications, vol. 49, pp.

757–763, 2005.

[30] D. E. Boekee, J. C. A. Van der Lubbe, “The R-norm information measure,” Information

and Control, vol. 45(2), pp.136–155, 1980.

[31] D. F. Li, “Some measures of dissimilarity in intuitionistic fuzzy structures,” Journal of

Computer and System Sciences, vol. 68(1), pp. 115–122, 2004.

[32] D. F. Li, “Multiattribute decision making models and methods using intutionistic fuzzy

sets,” Journal of Computer and System Sciences, vol. 70(1), pp. 73–85, 2005.

105



[33] D. Messaoudi, N. Settou, B. Negrou, B. Settou, “GIS based multi-criteria decision making

for solar hydrogen production sites selection in Algeria”, International Journal of Hydrogen

Energy, vol. 44(60), pp. 31808–31831, 2019.

[34] D. Pamucar, L. Gigovic, Z. Bajic, M. Janosevic, “Location Selection for Wind Farms Using

GIS Multi-Criteria Hybrid Model: An Approach Based on Fuzzy and Rough Numbers,”

Sustainability, vol. 9, 1315, 2017.

[35] D. S. Hooda, R. Kumari, “On Applications of Fuzzy Soft Sets in Dimension Reduction

and Medical Diagnosis,” Advances in Research, vol. 12(2), pp. 1–9, 2017.

[36] D. Schitea, M. Deveci, M. Iordache, K. Bilgili, V. Q. Z. Akyurt, V. Q. Iordache, “Hydrogen

Mobility roll-up site selection using intuitionistic fuzzy sets based WASPAS, COPRAS and

EDAS,” Internation Journal of Hydrogen Energy, vol. 44(16), pp. 8585–8600, 2019.

[37] E. Chamanehpour, A. Akbarpour, “Site selection of wind power plant using multi-criteria

decision-making methods in GIS: A case study,” Computational Ecology and Software, vol.

7, pp. 49–64, 2017.

[38] E. P. Klement, R. Mesiar, E. Pap, Triangular norms, Kluwer Academic Publishers, Dor-

drecht, 2000.

[39] E. Szmidt, J. Kacprzyk, “Entropy for intuitionistic fuzzy sets,” Fuzzy sets and systems,

vol. 118(3), pp. 467–477, 2001.

[40] E. Szmidt, J. Kacprzyk, “A similarity measure for intuitionistic fuzzy sets and its appli-

cation in supporting medical diagnostic reasoning, in: International Conference Artificial

Intelligence and Soft Computing, Zakopane, Poland, pp. 388–393, 2004.

[41] E. U. Choo, W. C. Wedley, “Optimal criterion weights in repetitive multicriteria decision

making,” Journal of the Operational Research Society, vol. 36, pp. 983–992, 1985.

[42] F. E. Boran, S. Genc, M. Kurt, D. Akay, “A multi-criteria intuitionistic fuzzy group deci-

sion making for supplier selection with TOPSIS method,” Expert Systems with Applications,

vol. 36(8), pp. 11363–11368, 2009.

[43] F. Sedady, M. A. Beheshtinia, “A novel MCDMmodel for prioritizing the renewable power

plants’ construction,” Management of Environmental Quality An International Journal, vol.

30, pp. 383–399, 2019.

106



[44] F. Xiao, W. Ding, “Divergence measure of Pythagorean fuzzy sets and its application in

medical diagnosis,” Applied Soft Computing, vol. 79, pp. 254–267, 2019.

[45] G. Anandarajah, E. P. McDowall, “Decarbonizing read transport with hydrogen and elec-

tricity: long term global technology learning scenarios,” International Journal of Hydrogen

Energy, vol. 38, pp. 3419–3432, 2013.

[46] G. A. Papakostas, A. G. Hatzimichailidis, V. G. Kaburlasos, “Distance and similarity

measures between intuitionistic fuzzy sets, a comparative analysis from a pattern recognition

point of view,” Pattern Recognition Letters, vol. 34(14), pp. 1609–1622, 2013.

[47] G. C. Biswal, S. P. Shukla, “Site Selection for Wind Farm Installation,” International

Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control En-

gineering, vol. 3, pp. 59–61, 2015.

[48] G. Juste, “Hydrogen injection as additional fuel in gas turbine combustor. Evaluation of

effects,” International Journal of Hydrogen Energy, vol. 31, pp. 2112–2121, 2006.

[49] G. Wei, Y. Wei, “Similarity measures of Pythagorean fuzzy sets based on cosine function

and their applications,” International Journal of Intelligent Systems, vol. 33(3), pp. 634–652,

2018.

[50] G. Wei, “Pythagorean fuzzy interaction aggregation operators and their application to

multiple attribute decision making,” Journal of Intelligent and Fuzzy Systems, vol. 33(4),

pp. 2119–2132, 2017.

[51] H. B. Mitchell, “On the Dengfeng-Chuntian similarity measure and its application to

pattern recognition,” Pattern Recognition Letters, vol. 24, pp, 3101–3104, 2013.

[52] H. Garg, “A novel correlation coefficients between Pythagorean fuzzy sets and its ap-

plications to decision making processes,” International Journal of Intelligent Systems, vol.

31(12), pp. 1234–1252, 2016.

[53] I. K. Vlachos, G. D. Sergiadis, “Intuitionistic fuzzy information, Applications to pattern

recognition,” Pattern Recognition Letters, vol. 28, pp. 197–206, 2007.

[54] I. Kaya, C. Kahraman, “A comparison of fuzzy multicriteria decision making methods for

intelligent building assessment,” Journal of Civil Engineering and Management, vol. 20(1),

pp. 59–69, 2014.

107



[55] I. Montes, N. R. Pal, V. Janis, S. Montes, “Divergence Measures for Intuitionistic Fuzzy

Sets”, IEEE Transactions on Fuzzy Systems, vol. 23(2) pp. 444–456, 2015.

[56] I. Mukhametzyanov, D. Pamucar, “A sensitivity analysis in MCDM problems: A statis-

tical approach,” Decision Making: Applications in Management and Engineering, vol. 1(2),

pp. 51–80, 2018.

[57] I. Perfilieva, “Dimensionality Reduction by Fuzzy Transforms with Applications to Math-

ematical Finance,” in Anh L., Dong L., Kreinovich V., Thach N. (eds), Econometrics for

Financial Applications (ECONVN 2018), Studies in Computational Intelligence, vol. 760,

Springer, Cham, 2018.

[58] I. Talinli, E. Topuz, E. Aydin, S.B. Kabakcy, “A Holistic Approach for Wind Farm Site Se-

lection by Using FAHP, Wind Farm-Technical Regulations, Potential Estimation and Siting

Assessment,” Gaston O. Suvire, IntechOpen, DOI: 10.5772/17311.

[59] J. E. Shore, R. M. Gray, “Minimization cross-entropy pattern clasiification and cluster

analysis,” IEEE Transaction Pattern Analysis Machine Intelligence, vol. 4(1), pp. 11–17,

1982.

[60] J. Fan, W. Xie, “Distance measures and induced fuzzy entropy,” Fuzzy Sets and Systems,

vol. 104(2), pp. 305–314, 1999.

[61] J. Havrda, F. Charvat, “Quantification method of classification processes: concept of

structural α-entropy,” Kybernetika, vol. 3(1), pp. 30–35, 1967.

[62] J. Lewandowska-Smierzchalska, R. Tarkowski, B. Uliasz-Misiak, “Screening and ranking

framework for underground hydrogen storage site selection in Poland”, International Journal

of Hydrogen Energy, vol. 43(9), pp. 4401–4414, 2018.

[63] J. P. Brans, V. Mareschel, “PROMETHEE: A new family of outranking methods in

multicriteria analysis,” In J. P. Brans (Ed.), Operational research 84, pp. 477–490, New

York: North-Holland, 1984.

[64] J. Wang, P. Wang, “Intuitionistic linguistic fuzzy multi-criteria decision-making method

based on intuitionistic fuzzy entropy,” Control and Decision, vol. 27 pp. 1694–1698, 2012.

[65] J. Ye, “Two effective measures of intuitionistic fuzzy entropy,” Computing, vol. 87(1-2),

pp. 55–62, 2010.

108



[66] K. K. Borah, S. Roy, T. Harinarayana, “Optimization in Site Selection of Wind Turbine

for Energy Using Fuzzy Logic System and GIS– A Case Study for Gujarat,” Open Journal

of Optimization, vol. 2, pp. 116–122, 2013.

[67] K. T. Atanassov, “Intuitionistic fuzzy sets,” Fuzzy Sets and Systems, vol. 20, pp. 87–96,

1986.

[68] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, pp. 338–353, 1965.

[69] L. A. Zadeh, “Similarity relations and fuzzy orderings,” Information Science, vol. 3, pp.

177–200, 1971.

[70] L. Dengfeng, C. Chuntian, “New similarity measures of intuitionistic fuzzy sets and ap-

plication to pattern recognitions,” Pattern Recognition Letters, vol. 23, pp. 221–225, 2002.

[71] L. F. A. M. Gomes, M. M. P. P. Lima, “Todim: Basic and application to multicriteria

ranking of projects with environmental impacts,” Foundations of Computing and Decision

Sciences, vol. 16, pp. 113–127, 1991.

[72] L. P. Dominguez, L. A. Rodrguez-Picon, A. Alvarado-Iniesta,D. L. Cruz, Z. Xu, “MOORA

under Pythagorean Fuzzy Set for Multiple Criteria Decision Making,” Complexity, vol. 2018,

pp. 1–10, 2018.

[73] M. Deveci, “Site selection for hydrogen underground storage using interval type-2 hesitant

fuzzy sets“, International Journal of Hydrogen Energy, vol. 43(19), pp. 9353–9368, 2018.

[74] M. G. Toklu, O. Uygun, “Location Selection for Wind Plant using AHP and Axiomatic

Design in Fuzzy Environment,” Periodicals of engineering and Natural Sciences, vol. 6, pp.

120–128, 2018.

[75] M. Ghosh, D. Das, C. Ray, A. K. Chakraborty, “Autumated leukocyte recoginition using

fuzzy divergence,” Micron, vol. 41(7), pp. 840–846, 2010.

[76] M. Karatas, “Hydrogen energy storage method selection using fuzzy axiomatic design

and analytic hierarchy process”, International Journal of Hydrogen Energy, vol. 45(32), pp.

16227–16238, 2020.

[77] M. L. Sabo, N. Mariun, H. Hizam, M. A. MohdRadzi, A. Zakaria, “Spatial matching of

large-scale grid-connected photovoltaic power generation with utility demand in Peninsular

Malaysia,” Applied Energy, vol. 191, pp. 663–688, 2017.

109



[78] M. Mousavi, H. Gitinavard, S. Mousavi, “A soft computing based-modified ELECTRE

model for renewable energy policy selection with unknown information,” Renewable and

Sustainable Energy Reviews, vol. 68, pp. 774–787, 2017.

[79] M. Sabitha, M. Mayilvahanan, “Application of Dimensionality Reduction techniques in

Real time Dataset,” International Journal of Advanced Research in Computer Engineering

& Technology, vol. 5(7), pp. 2187–2189, 2016.

[80] M. Uyan, “GIS-based solar farms site selection using analytic hierarchy process (AHP) in

Karapinar region, Konya/Turkey,” Renewable and Sustainable Energy Reviews, vol. 28, pp.

11–17, 2015.

[81] M. W. Tian, H. C. Yuen, S. R. Yan, W. L. Huang, “The multiple selections of foster-

ing applications of hydrogen energy by integrating economic and industrial evaluation of

different regions”, International Journal of Hydrogen Energy, vol. 44(56), pp. 29390–29398,

2019.

[82] N. C. Onat, S. Gumus, M. Kucukvar, O. Tatari, “Application of the TOPSIS and intuition-

istic fuzzy set approaches for ranking the life cycle sustainability performance of alternative

vehicle technologies,” Sustainable Production and Consumption, vol. 6, pp. 12–25, 2016.

[83] N. Gandotra, R. K. Bajaj, J. Mathew, “On ranking in triangular intuitionistic fuzzy multi

criteria decision making under (α, β) cut with useful parametric entropy,” Proceeding of the

International Conference on Advances in Computing and Communications, pp. 69–74, 2016.

[84] N. K. Pal, S. K. Pal, “Object background segmentation using new definition of entropy,”

IEEE Proceeding, 136(E), pp. 284–295, 1989.

[85] N. M. A Huijts, B. Van Wee, “The evaluation of hydrogen fuel stations by citizens: the

interrelated effects of sociodemographic, spatial and psychological variables,” International

Journal of Hydrogen Energy, vol. 40, pp. 10367–10381, 2015.

[86] O. Parkash, P. Sharma, R. Mahajan, “New measures of weighted fuzzy entropy and their

applications for the study of maximum weighted fuzzy entropy principle,” Information Sci-

ences, vol. 178(11), pp. 2389–2395, 2008.

[87] P. A. Pilavachi, S. D. Stephanidis, V. A. Pappas, N. H. Afgan, “Multi-criteria evaluation of

hydrogen and natural gas fuelled power plant technologies,” Applied Thermal Engineering,

vol. 29(11-12), pp. 2228–2234, 2009.

110



[88] P. Angolucci, “Hydrogen infrastructure for the transport sector,” International Journal

of Hydrogen Energy, vol. 32, pp. 3526–3544, 2007.

[89] P. Bellany, P. Upham, R. Flynn, M. Ricci, “Unfamiliar fuel: how the UK public view

the infrastructure required to supply hydrogen for road transport,” International Journal of

Hydrogen Energy, vol. 41, pp. 6534–6543, 2016.

[90] P. Chatterjee, S. Mondal, S. Boral, A. Banerjee, S. Chakraborty, “A novel hybrid

method for non-traditional machining process selection using factor relationship and Multi-

Attributive Border Approximation Method,” Facta Universitatis, series: Mechanical Engi-

neering, vol. 15, pp. 439–456, 2017.

[91] P. Hennicke, M. Fischedick, “Towards sustainable energy systems: The related role of

hydrogen,” Energy Policy, vol. 34, pp. 1260–1270, 2006.

[92] P. K. Maji, R. Biswas, A. R. Roy, “Intuitionistic fuzzy soft sets,” Journal of fuzzy math-

ematics, vol. 9, pp. 677–692, 2001.

[93] P. K. Maji, R. Biswas, A. R. Roy, “An application of soft sets in a decision making

problem,” Computers and Mathematics with Applications, vol. 44, pp. 1077–1083, 2002.

[94] P. K. Maji, R. Biswas, A. R. Roy, “Soft Set Theory,” Computers and Mathematics with

Applications, vol. 45, pp. 555–562, 2003.

[95] P. K. Bhatia, Singh S., “Three families of generalized fuzzy directed divergence,” Advanced

Modelling and Optimization, vol. 14(3), pp. 599–614, 2012.

[96] P. Rani, A. R. Mishra, K. R. Pardasani, A. Mardani, H. Liao, D. Streimikiene, “A novel

VIKOR approach based on entropy and divergence measures of Pythagorean fuzzy sets to

evaluate renewable energy technologies in India,” Journal of Cleaner Production, vol. 238,

2019, [DOI:https://doi.org/10.1016/j.jclepro.2019.117936].

[97] P. Ren, Z. Xu, X. Gou, “Pythagorean fuzzy TODIM approach to multi-criteria decision

making,” Applied Soft Computing, vol. 42, pp. 246–259, 2016.

[98] Q. Zhang, S. Jiang, “A note on information entropy measure for vague sets,” Information

Sciences, vol. 178, pp. 4184–4191, 2008.

[99] R. Benayoun, B. Roy, B. Sussman, “ELECTRE: Une methode pour guider le choix en

presence de points de vue multiples,” Note de travail 49, Direction Scientifique: SEMA-

METRA International, 1966.

111



[100] R. Joshi, S. Kumar, D. Gupta, H. Kaur, “A Jensen α-norm Dissimilarity Measure for

Intuitionistic Fuzzy Sets and Its Applications in Multiple Attributes Decision Making,”

International Journal of Fuzzy Systems, vol. 20(4), pp. 1188–1202, 2018.

[101] R. Joshi, S. Kumar, “An (R′, S′)-norm fuzzy relative information measure and its appli-

cations in strategic decision making,” Computational and Applied Mathematics, vol. 37, pp.

4518–4543, 2018.

[102] R. Joshi, S. Kumar, “(R, S)-norm information measure and a relation between coding

and questionaire theory,” Open systems and Information Dynamics, vol. 23(3), pp. 1–12,

2016.

[103] R. H. Lin, Z. Z. Ye, B. D. Wu, “A review of hydrogen station location models”, Interna-

tional Journal of Hydrogen Energy, 2020, https://doi.org/10.1016/j.ijhydene.2019.12.035.

[104] R. K. Bajaj, T. Kumar, N. Gupta, “R-norm intuitionistic fuzzy information measures

and its computational application,” Eco-friendly Computing and Communication Systems,

Communications in Computer and Information Science, vol. 305, pp. 372–380, 2012.

[105] R. R. Yager and A. M. Abbasov, “Pythagorean membership grades, complex numbers

and decision making,” International Journal of Intelligent Systems, vol. 28, pp. 436–452,

2014.

[106] R. R Yager, “Pythagorean fuzzy subsets,” in Proceedings of Joint IFSA World Congress

and NAFIPS Annual Meeting, Edmonton, Canada, pp. 57–61, 2013.

[107] R. R. Yager, “Pythagorean Membership Grades in Multicriteria Decision Making,” IEEE

Transactions on Fuzzy Systems, vol. 22(4), pp. 958–965,2014.

[108] R. Verma, B. D. Sharma, “Intuitionistic fuzzy Jensen Renyi divergence, application to

multiple attribute decision making,” Informatica, vol. 37(4), pp. 399–409, 2013.

[109] R. Verma, B. D. Sharma, “On generalized intuitionistic fuzzy divergence (relative infor-

mation) and their properties,” Journal of Uncertain Systems, vol. 6(4), pp. 308–320, 2012.

[110] R. Verma, B. D. Sharma, “Exponential entropy on intuitionistic fuzzy sets,” Kybernetika,

vol. 49(1), pp. 114–127, 2013.

[111] R. Zimmer, J. Welke, “Let’s go green with hydrogen! the general public’s perspective,”

International Journal of Hydrogen Energy, vol. 37, pp. 17502–17508, 2012.

112



[112] S. Hardman, E. Shiu, R. Steinberger-Wilckens, T. Turrentine, “Barriers to the adoption

of fuel cell vehicles: a qualitative investigation into early adopters attitudes,” Transportation

Research Part A: Policy and Practice, vol. 95, pp. 166–182, 2017.

[113] S. F. Zhang, S. Y. Liu, “GRA-based intuitionistic multi criteria decision making method

for personal selection,” Expert Systems with Applications, vol. 38(9), pp. 11401–11405, 2011.

[114] S. Kullback, R. A. Leibler, “On information and sufficiency”, The Annals of Mathemat-

ical Statistics, vol. 22, pp. 79–86, 1951.

[115] S. K. De, R. Biswas, A. R. Roy, “An application of intuitionistic fuzzy sets in medical

diagnosis,” Fuzzy Sets and Systems, vol. 117(2), pp. 209–213, 2001.

[116] S. Montes, I. Couso, P. Gil, C. Bertoluzza, “Divergence measure between fuzzy sets,”

International Journal of Approximate Reasoning, vol. 30(2), pp. 91–105, 2002.

[117] S. Narayanamoorthy, L. Ramya, D. Baleanu, J. V. Kureethara, V. Annapoorani, “Appli-

cation of normal wiggly dual hesitant fuzzy sets to site selection for hydrogen underground

storage”, International Journal of Hydrogen Energy, vol. 44(54), pp. 28874–28892, 2019.

[118] S. Opricovic, “Multicriteria optimization of civil engineering systems,” Faculty of Civil

Engineering, Belgrade, vol. 2(1), pp. 5–21, 1998.

[119] S. Opricovic, G. H. Tzeng, “Extended VIKOR method in comparison with outranking

methods,” European Journal of Operational Research, vol. 178, pp. 514–529, 2007.

[120] S. Ozdemir, G. Sahin, “Multi-criteria decision-making in the location selection for a solar

PV power plant using AHP,” Measurement, vol. 129, pp. 218–226, 2018.

[121] S. Zeng, J. Chen, X. Li, “A hybrid method for Pythagorean fuzzy multiple criteria

decision making,” International Journal of Information Technology & Decision Making, vol.

15(2), pp. 403–422, 2016.

[122] T. Chen, C. Li, “Determining objective weights with intutionistic fuzzy entropy measures:

A comparative analysis,” Information Sciences, vol. 180, pp. 4207–4222, 2010.

[123] T. Demirel, U. Yalcinn, “Multi-Criteria Wind Power Plant Location Selection using

Fuzzy AHP,” in Proceedings of the 8th International FLINS Conference, Madrid, Spain,

21–24 September, 2008.

113



[124] T. Kaya, C. Kahraman, “Multicriteria decision making in energy planning using a mod-

ified fuzzy TOPSIS methodology,” Expert Systems with Applications, vol. 38(6), pp. 6577–

6585, 2011.

[125] T. L. Saaty, “The analytical hierarchy process,” McGraw-Hill: New York, NY, USA,

1980.

[126] The Electrical Portal, Site selection of Hydroelectric power plant. Available online: http :

//www.theelectricalportal.com/2015/08/site−selection−of−hydroelectric−power.html.

[127] V. Eveloy, T. Gebreegziabher, “A Review of Projected Power-to-Gas Deployment Sce-

narios,” Energies, vol. 11, 1824, 2018.

[128] V. Q. Gokalp, E. Lebas, “Alternative fuels for industrial gas turbines (AFTUR),” Applied

Thermal Engineering, vol. 24, pp. 1655–1663, 2004.

[129] W. L. Hung, M. S. Yang, “Fuzzy entropy on intuitionistic fuzzy sets,” International

Journal of Intelligent Systems, vol. 21 pp. 443–451, 2006.

[130] W. K. M. Brauers, E. K. Zavadskas, “The MOORA method and its application to

privatization in transition economy,” Control and Cybernetics, vol. 35(2), pp. 443–468, 2006.

[131] W. L. Hung, M. S. Yang, “On the j-divergence of intuitionistic fuzzy sets and its appli-

cation to pattern recognition”, Information Science, vol. 178(6), pp. 1641–1650, 2008.

[132] W. L. Hung, M. S. Yang, “Similarity measures of intuitionistic fuzzy sets based on

Housedorff distance,” Pattern Recognition Letters, vol. 25, pp. 1603–1611, 2004.

[133] W. R. W. Mohd, L. Abdullah, “Similarity measures of Pythagorean fuzzy sets based on

combination of cosine similarity measure and Euclidean distance measure,” AIP Conference

Proceedings, 1974, 030017, 2018.

[134] W. Pedrycz, “Fuzzy sets in pattern recognition, accomplishments and challenges,” Fuzzy

Sets and System, vol. 90(2), pp. 171–176, 1997.

[135] W. Q. Wang, X. L. Xin, “Distance measures between intuitionistic fuzzy sets,” Pattern

Recognition Letters, vol. 26, pp. 2063–2069, 2005.

[136] X. D. Peng, S. Ganeshsree, “Pythagorean fuzzy set: state of the art and future direc-

tions,” Artificial Intelligence Review,vol. 52, pp.1873–1927, 2019.

114



[137] X. G. Shang, W. S. Jiang, “A note on fuzzy information measure,” Pattern Recognition

Letters, vol. 18, pp. 425–432, 1997.

[138] X. L. Zhang, “A Novel Approach Based on Similarity Measure for Pythagorean Fuzzy

Multiple Criteria Group Decision Making,” International Journal of Intelligent Systems,

vol. 31(6), pp. 593–611, 2016.

[139] X. L. Zhang, Z. S. Xu, “Extension of TOPSIS to multiple-criteria decision making with

Pythagorean fuzzy sets,” International Journal of Intelligent Systems, vol. 29, pp. 1061–

1078, 2014.

[140] X. Peng, Y. Yang, J. Song, Y. Jiang, “Pythagorean Fuzzy Soft Set and Its Application,”

Computer Engineering, vol. 41, pp. 224–229, 2015.

[141] X. Peng, H. Yuan, Y. Yang, “Pythagorean Fuzzy Information Measures and their appli-

cations,” International Journal of Intelligent Systems, vol. 32(10), pp. 991–1029, 2017.

[142] X. Peng, Y. Yang, “Some results for Pythagorean fuzzy sets,” International Journal of

Intelligent Systems, vol. 30, pp. 1133–1160, 2015.

[143] X. Xu, T. Liang, J. Zhu, D. Zheng, T. Sun, “Review of Classical Dimensionality Reduc-

tion and Sample Selection Methods for Large-scale Data Processing,” Neurocomputing, vol.

328, pp. 5–15, 2019.

[144] Y. C. Jiang, Y. Tang, J. Wang, S. Tang, “Reasoning with intuitionistic fuzzy rough

description logics,” Information Sciences, vol. 179, pp. 2362–2378, 2009.

[145] Y. Noorollahi, H. Yousefi, M. Mohammadi, “Multi-criteria decision support system for

wind farm site selection using GIS,” Sustainable Energy Technologies and Assessments, vol.

13, pp. 35–50, 2016.

[146] Y. Yong, J. Chenli, “Fuzzy Soft Matrices and their Applications,” Lecture notes in

computer Science, vol. 7002, pp. 618–627, 2011.

[147] Z. M. Ma, Z. S. Xu, “Symmetric Pythagorean Fuzzy Weighted Geometric/Averaging

Operators and Their Application in Multicriteria Decision-Making Problems,” International

Journal of Intelligent Systems, vol. 31(12), pp. 1198–1219, 2016.

[148] Z. P. Fan, “Complicated multiple attribute decision making: theory and applications”,

Ph.D. Dissertation, Northeastern university, Shenyang, China, 1996.

115


	Thesis front Page
	content of thesis
	Final Thesis

