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ABSTRACT 

Recent progress in various wireless services such as device-to-device (D2D) communication, 

anytime anywhere access to multimedia content on smart phones, have driven explosive demand 

of data traffic. In addition, new frequency spectrum is required to provide these different wireless 

services to the end users resulting inadequacy of required radio spectrum. However, as per the 

Federal Communication Committee (FCC) report, the allocated spectrum is not utilized 

efficiently due to fixed spectrum assignment policy which has resulted the spectrum scarcity 

problem. In the fixed spectrum assignment policy, the dedicated spectrum (licensed channel) is 

allocated to the users called licensed/primary users and other unlicensed users are not allowed to 

access that dedicated spectrum. Therefore, the demand of dynamic spectrum allocation (DSA) 

strategy has been developed, which also allows the unlicensed users to access the licensed 

channel without affecting the communication of licensed users. Cognitive Radio (CR) technology 

is a promising technology which has the potential to address frequency requirements by 

employing DSA and improve spectrum efficiency. Various spectrum sensing techniques can be 

employed by CR in order to sense the status of licensed channels being active/busy or idle. The 

energy detector spectrum sensing (EDSS) is one of the potential spectrum sensing technique, 

majorly employed by various researchers due to its low computation complexity and easy 

implementation over other techniques. Further, it is a blind spectrum sensing method which does 

not require prior knowledge of the primary user (PU) signal. Due to its inherent advantages, we 

have employed EDSS based CR system in this thesis. The spectrum sensing decision in energy 

detector spectrum sensing relies on the sensing threshold consequently, the computation and 

selection of sensing threshold is a very prominent aspect. In addition, the key spectrum sensing 

performance metrics of CR are the false-alarm and detection probabilities. For the maximum 

utilization of channel, the low false-alarm probability is required while to provide sufficient 

protection to PU from CU transmission, the significantly higher value of detection probability is 

needed. For example, as per the CR Wireless Regional Area Network (WRAN) standard, 

minimum 90% detection probability and maximum 10% false-alarm probability is permitted for 

the licensed TV signal detection with maximum sensing time of 25ms. 

Since the spectrum sensing threshold plays a major role in EDSS for detection of licensed user, 

therefore its proper selection is needed for minimizing false-alarm and maximizing detection 
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performance. However, both the false-alarm and detection probabilities decrease with increase in 

the sensing threshold.  Therefore, there is tradeoff between the false-alarm and detection 

probabilities for the selected sensing threshold. Further, the sensing performance of CU is 

degraded under the multipath fading, shadowing and non-line-of-sight communication therefore, 

various researchers have employed cooperative spectrum sensing (CSS) technique to improve the 

spectrum sensing performance of CU under the fading environment. In CSS technique, the 

spectrum sensing decision of each CU is sent to the fusion center (FC) via the reporting channels 

where FC apply different cooperative rules (OR, AND, Majority and K-out-of-M rules) to take 

the overall decision about the status of licensed or primary user channel. In practice, the reporting 

channels are imperfect which leads to inaccurate sensing decisions by the FC. Further, the 

multiple antennas can be employed at each CU to improve the sensing decision by employing 

spatial diversity. However, in CSS technique, the energy consumption increases due to 

cooperation overhead bits, therefore to reduce the energy consumption and to save the bandwidth 

of reporting channels, hard reporting, sleeping, censoring approaches, and selection of optimal 

fusion rule are employed.  

In this thesis, we have precisely overviewed the state-of-the-art of various spectrum sensing 

techniques. In addition to this, we have presented detailed study of threshold computation 

methods employed by different researchers and their breakthrough contribution. The threshold 

selection is mostly performed with constant false-alarm rate (CFAR), constant detection rate 

(CDR), minimizing error probability (MEP) in EDSS.  

In CFAR approach, the sensing threshold (𝜆𝑓) is computed for desired or targeted value of 

false-alarm probability (𝑃𝑓 ) while in CDR approach the sensing threshold (𝜆𝑚 ) is computed for 

targeted or desired detection probability (𝑃𝑑   ). However in MEP approach, the sensing threshold 

(𝜆𝑒) is computed by differentiating the sensing error probability (𝑃𝑒) with respect to the threshold. 

Further, for the fixed value of number of samples (N), individual consideration of 

CFAR/CDR/MEP threshold selection approach agrees to meet either the target/desired false-

alarm or detection probability values individually but is not achieved simultaneously at all the 

signal-to-noise ratio (SNR) which is a challenging issue.  
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In this context, we have developed an algorithm to achieve the single spectrum sensing 

threshold in the additive white Gaussian noise (AWGN) with the non-cooperative environment, 

which has achieved the desired values of false-alarm and detection probabilities, simultaneously 

at all (low as well as high) SNR. The existence of this single threshold is made possible by 

finding and satisfying the optimality condition. In addition to this, we have also analyzed the 

effect of various threshold selection approaches on the throughput of CU. We have demonstrated 

that at low SNR, the proposed optimal threshold selection approach has provided improved 

throughput as compare to that of CDR and MEP threshold selection approaches. 

Furthermore, we have considered practical wireless communication scenario that is fading 

channels which leads to low received SNR at CUs. Under the fading channels, the spectrum 

sensing performance of CU also decreases therefore, we have employed centralized cooperative 

spectrum sensing to improve the sensing performance with the perfect reporting (PR) channels. 

Further, we have shown the comparison of spectrum sensing performance of non-cooperative and 

different cooperative rules scenario at low SNR by analyzing receiver operating characteristic 

(ROC) curve under AWGN and fading channels. In addition, we have also shown the variation in 

throughput and sensing error probability with SNR while employing different sensing threshold 

selection approaches under the non-cooperative and cooperative spectrum sensing scenario. With 

the observation, we have concluded that the throughput is maximized by CFAR with cooperative 

spectrum sensing rule at some SNR while it is maximized with MEP approach at other, inthe 

non-cooperative scenario. In addition, the sensing error probability has decreased after 

cooperation, however in the Rayleigh and Nakagami-m fading environment, MEP and CFAR 

approaches have provided least sensing error probability at different SNRs. 

Further, it is observed for fading channels that the single threshold selection approach is not 

suitable to provide significantly higher throughput and less sensing error probability under the 

non-cooperative or cooperative spectrum sensing scenario. Therefore, we have introduced the 

concept of critical SNR (𝛾𝑐) and have proposed the algorithms to select an appropriate sensing 

threshold to achieve significantly higher throughput and minimum sensing error probability at 

different SNR (𝛾). From the obtained results, we have accomplished that the proposed approach 

has outperformed the other approaches in terms of throughput and sensing error probability in 

different fading environments.  
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Subsequently, we have considered more realistic wireless communication scenario of imperfect 

spectrum sensing and imperfect reporting channels and have analyzed its consequences on the 

CU communication system performance (sensing error probability and throughput) at different 

SNR while employing different threshold selection approaches. Since in CSS, the energy 

consumption increases with increases in the number of cooperative CUs, resulting energy 

inefficient CUs communication and one of the possible solutions to improve the energy efficiency 

is the censoring approach in which only few CUs report their sensing decision to the fusion 

center. With this context, we have applied censoring approach in proposed communication 

system to analyze the system performance and have compared its effect with the non-censoring 

based cognitive radio network (CRN) system under the perfect and imperfect reporting (IR) 

channels. 

Further,the spectrum sensing error probability and energy efficiency are the key performance 

parameters in CRN which are affected by the threshold selection techniques, number of antennas 

employed at CU, reporting error probability and cooperative fusion rule applied at the fusion 

center (FC). Therefore, we have derived the mathematical expression for sensing error probability 

by considering the effect of all these parameters and have optimized the cooperative fusion rule at 

FC. The optimal cooperative rule at different SNR is decided by formulating the mathematical 

expression for number of cooperative CUs to minimize the sensing error probability. In addition, 

we have also illustrated the sensing error and energy efficiency (EE) improvement achieved  with 

the censoring approach when different threshold selection approaches are employed at each CU. 

From the results, significant enhancement in energy efficiency is achieved with censoring 

approach in comparison to that of the non-censoring approach while employing particular 

threshold selection technique. 
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CHAPTER 1  

INTRODUCTION 

 

1.1  Motivation 

Recent reports [1] revealed that at the end of 2018, globally 5.1 billion people subscribed to the 

mobile services, which is approximately 67% of the global population. However, with the 

introduction of 5G which is now with us, carries exciting new services and new telco-business 

opportunities: internet-of-things (IoT), media convergence, artificial intelligence (AI) and new 

milestones in connected devices. Further, these new opportunities have the potential to increase 

mobile operator revenue over the coming years, with an expected annual average growth rate of 

1.4% between 2018 and 2025. Therefore, an increase in spectrum-hungry radio applications over 

mobile and wireless devices, as well as its inefficient static assignment, which is accompanied by 

an uneven distribution of wireless traffic across the radio spectrum and the proliferation of 

unlicensed wireless technology, has led to a problem of spectrum scarcity. Further, the demand of 

wireless radio frequency (RF) spectrum has been increased to provide various services e.g. 

accessing high speed internet, seamless connectivity between devices everywhere at all time, 

internet-of-things (IoT), multimedia applications (video streaming in Netflix, YouTube, Skype 

etc) [2]–[4]. Further, the RF spectrum is partitioned into different frequency bands which are 

allocated to numerous applications and usage. The spectrum assignment process organized by 

regulatory bodies (International and/or National/Local), allows some of these frequency bands to 

be used openly (unlicensed bands) by the public community without any permission while the 

other frequency bands are allocated to the primary users (PUs) called licensed users [5]. The 

primary users have full-authority to use the licensed bands wherever needed but in unlicensed 

band, the interference issue may rise due to the uncoordinated usage of the band by different kind 

of users [6]. However, as per the report of Federal Communications Committee (FCC), the vast 

amount of PU frequency bands are not used efficiently, indeed, they are unutilized or 

underutilized [7]. Further, this problem arises due to fixed spectrum allocation policy therefore, 

there is a demand of dynamic spectrum allocation (DSA) technique to utilize the radio frequency 
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spectrum efficiently [8], [9]. In DSA, the unutilized/underutilized available spectrum (spectrum 

hole) is dynamically allocated to unlicensed users in spatial as well as temporally manner. One of 

the technologies which employ DSA is cognitive radio (CR) in which the cognitive user called as 

unlicensed user has the capability to access the licensed band and can successfully provide the 

solution for this era of spectrum demand [10]–[13]. 

Further, recent technologies such as industrial internet of things (IIoT) [14], industrial wireless 

networks (IWNs) [15], big data [16], cloud computing [17], Internet-of-vehicles (IoVs) 

[18],internet-of-medical-thing (IoMT) [19], [20], etc. have brought enormous opportunities for 

encouraging industrial upgrades and has allowed the introduction of the fourth industrial 

revolution, namely Industry 4.0 [21], [22]. In the context of Industry 4.0 which uses IoT, all kinds 

of intelligent equipment supported by the wired or wireless networks are widely adopted. The 

wireless sensor network (WSN) is one of the key enablers for the Internet-of-Things (IoT), where 

WSNs will play an important role in future internet for several application scenarios, such as 

healthcare, agriculture, environment monitoring, and smart metering [23]. However, as we have 

already discussed that radio spectrum is very crowded for the rapid increasing popularities of 

various wireless applications [23] hence, WSN can utilize the advantages of cognitive radio 

technology, namely, the cognitive radio-based WSN (CR-WSN). Further, CR-WSN leads to a 

promising solution for spectrum scarcity problem of IoT applications in Industry 4.0. One of the 

major challenges in CR-WSN is the efficient detection of the unutilized licensed spectrum in the 

practical wireless scenario which motivated us to work in this direction [24]. Further in recent 

era, the mobile wireless sensor network has many applications in IoT and it is a universal network 

of interconnected objects which are uniquely addressable, and allows people and things to be 

connected any-time, anyplace, any path/network and any service. Conversely, it is anticipated 

that large number of IoT objects will grow up and will increase the data traffic on the network 

resulting in shortage of frequency spectrum for IoT objects. Moreover, it is presented by various 

researchers [4], [25] that IoT objects consisting of spectrum sensing block have the capability to 

separately search for existing available frequency channel in cloud servers and it is also possible 

to combine IoT with 5G network [26]. Moreover, in the vehicular ad hoc networks (VANETs), 

demand of wireless applications is increasing therefore shortage of frequency spectrum has 

occurred for coordination between different services. Implementation of sensing operation of CR 
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for searching new available frequency bands can be a potential solution of this frequency 

shortage for VANETs. 

Further, the spectrum sensing is also employed under battlefield surveillance system to monitor 

the attack of enemy missile or other aircrafts [27]. In addition to this, the spectrum sensing has 

great importance for utilization of the new technologies such as, internet of medical thing 

(IoMT), CR based vehicular ad hoc networks (CR-VANETs), cloud based radio access networks 

(C-RAN), etc. The C-RAN is widely employed in heterogeneous networks (HetNets) to resolve 

the complexity of broadband wireless services and provide better coverage along with high data 

rates concurrently. The HetNets are placed by service provider (SP) which requires cautious 

frequency planning such that the interference between overlapping and adjacent cell is avoided. 

Therefore, the spectrum sensing block can be used to perform the efficient utilization of spectrum 

in HetNets [28]. As a result, the spectrum sensing is considered as a foundational technology for 

better spectrum efficiency in the next generation networks and has received a persistent attention 

from the communication and signal processing community. Its fundamental task is to obtain the 

awareness about the licensed spectrum usage and existence of PU in a geological area and this 

knowledge can be obtained by various local spectrum sensing techniques [29]. In this context, 

CR-VANETs have employed spectrum sensing in cooperative manner to resolve the frequency 

spectrum scarcity issue. However, the location of vehicle and vehicular speed are the key 

challenges in spectrum sensing performance of CR-VANETs [30]. From the above discussion it 

is clear that spectrum sensing has great advantage for different application of industry 4.0 

therefore efficient SS has the major role for its proper functioning.  

 

1.2  Cognitive Radio 

Cognitive radio (CR) is a technological advancement that envisions giving solution to static 

spectrum allocation problem by employing DSA in the wireless communication systems. Its core 

objective is to provide the provision of PU spectrum access through dynamic and opportunistic 

spectrum access (DOSA), as long as there is no harmful interference to the primary user (PU). 

[31], [32]. The cognition and reconfiguration ability of CR enables it to adapt easily in the 

dynamic radio frequency environment. Further, the cognitive capability of CR is defined as the 

interaction with its RF environment in real time to determine appropriate communication 
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parameters. While the reconfigurability is the capability of adjusting operating parameters (e.g. 

Transmission power, modulation type, operating frequency) for the transmission without any 

modifications in the hardware systems[8]. Further, CR devices are developed with an in-built 

capacity to sense and predict the surroundings in which they operate. Apart from spectrum 

sensing, CR is also characterized by three other distinct operations namely: spectrum decision, 

spectrum mobility and spectrum sharing and the association of all these four operations of CR is 

shown in Fig. 1.1 [32], [33]. 

 

Figure 1.1: Cognitive cycle [32]. 

1.2.1 Spectrum sensing 

In the spectrum sensing (SS), cognitive user (CU) identify the idle and underutilized licensed 

frequency band either in time/frequency/space/code/angle domain etc [29]. Initially, the CU 

receives the signal in the desired frequency band and employ any of the suitable spectrum sensing 

technique (which is discussed later in Section 1.2.3 of this thesis) to detect the presence or 

absence of the PU in the channel. The absence or presence of PU are considered to be related 

with binary hypothesis 𝐻1 and 𝐻0; where 𝐻1/𝐻0 are the hypothesis for PU channel being 

active/idle respectively. In general, the spectrum sensing detection problem analyzed as a binary 

hypothesis model, is defined as follows: 

𝑋 𝑛 =  
𝑊 𝑛                            ∶  𝐻0

. 𝑆 𝑛 +𝑊 𝑛        ∶  𝐻1
           (1.1) 
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where, X(n), S(n), W(n) and  are the received signal, transmitted PU signal, additive white 

Gaussian noise (AWGN), channel gain coefficient, respectively. n =1, 2, …. N and N is the total 

number of samples of received signal. Further, the SS is most crucial part of CU whose high 

accuracy is highly desired. Since if the sensing results are not accurate e.g. wrong predication of 

the busy licensed channel can create interference to PU and inaccurate sensing decision of idle 

licensed channel cause the transmission opportunity deprivation of CU in the available idle/free 

frequency band. Therefore, further we have elaborated about the spectrum sensing task of CR. 

1.2.2 Spectrum sensing classification 

In this section, we have presented the spectrum sensing classification employed by various 

researchers and this classification is also shown in Fig. 1.2 [34], [35]. On the basis of signal 

processing techniques, SS can be classified as: Energy Detection (ED), Feature Detection (FD), 

Matched Filter Detection (MFD), Covariance Based Detection (CBD), and Eigen Value Based 

Detection (EVD). The detailed description of these techniques has been presented further in 

Section 1.2.3. where it is elaborated to show how the received signal is processed by the CU 

device to obtain the status of licensed channel (idle or free). In addition, on the basis of 

bandwidth of licensed channels to be sensed, it is classified as narrowband and wideband SS [3]. 

Here, the term narrowband entails that the frequency range is adequately narrow such that the 

channel frequency response can be treated as flat. In other words, the bandwidth of interest is less 

than the coherence bandwidth of the channel. Moreover, in case the bandwidth of interest is 

greater than the coherence bandwidth of the channel, it can be considered as wideband spectrum 

sensing. Afterwards on the basis of the need of the prior information of the PU signal, SS is 

classified as blind and non-blind. In the blind SS, the PU information is not required to detect the 

licensed channel while in non-blind SS some or full information of PU signal (i. e. PU signature 

and noise power estimation) is required. Moreover, on the basis of spectrum sensing frequency, it 

may be classified as proactive and reactive; where the proactive sensing employ continuous 

spectrum sensing  after a fixed interval of time while reactive sensing is performed on demand 

basis [34]. In addition to this,the SS can be also classified as non-cooperative and cooperative on 

the basis of decision of individual sensing result sharing between multiple CUs. Moreover, the 

detailed discussion of CSS is presented in Section 1.2.4. 
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Figure 1.2: Classification of spectrum sensing (SS). 

 

1.2.3 Spectrum sensing classification based on signal processing 

This section presents the methodology of various spectrum sensing techniques which are 

described as follows.  

1.2.3.1 Energy detection 

The energy detector identifies the presence or absence of PU in the channel by computing the 

energy of the received signal as shown by the block diagram of the energy detection spectrum 

sensing (EDSS) in Fig. 1.3. In EDSS, the received signal is passed from the band pass filter 

(bandwidth of filter depends on the spectrum of interest) and then the filter output signal X(t) is 

converted to discrete signal X(n) with the help of analogue-to-digital (A/D) converter. Further, the 

energy of sampled signal X(n) is computed over N samples which acts as a test statistics (T(x)) for 

the energy detector. The test statistics (T(x)) is then compared with the predefined sensing 

threshold (λ) to achieved the status of PU channel being either active/idle and then accordingly 

the hypothesis 𝐻1/𝐻0 become true [36][37], [38].  
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Figure 1.3: Basic block diagram of EDSS. 

1.2.3.2 Feature detection 

The principle of feature detection is based on acquiring the some specific signature of PU signal. 

In the wireless communication systems, some features such as cyclic prefix, preamble, hopping 

sequence, pilots, beacon frames etc. are added in the transmitted signal for synchronization or 

signaling purpose and hence the transmitted signal show periodicity which can be employed for 

sensing purpose. Therefore, to detect the PU signal transmission in background of noise, this 

built-in periodicity of received signal at CU is helpful for PU signal detection in feature detection 

[39], [40]. For example, when the mean and correlation replicate after regular interval of time in 

PU signal then received signal show high correlation  which is employed in cyclic autocorrelation 

function (CAF), or cyclic spectral density (CSD) based feature detection (FD) technique [31]. 

This technique has the capability to differentiate among different types of PUs and PU signal 

from interference and noise since noise is in general (white) uncorrelated. Moreover, FD achieve 

high accuracy but at the cost of large sensing time and implementation complexity. 

1.2.3.3 Matched filter detection 

The matched filter based detection perform processing by correlating a known signal with an 

unknown received signal which is comparable to convolving the anonymous signal with a 

conjugated time-reversed version of the template. The matched filter designing is performed such 

that it maximizes the signal-to-noise ratio (SNR) at the output in the presence of noise. However, 

the matched filter based spectrum sensing can be employed only when CU has the perfect 

knowledge about the PU signal and physical structure e.g. (preambles, pilot, spreading codes, 

modulation type, pulse shape, frame format etc.). After correlating the template and received 

signal, wherever peak occurs, CU detect the presence of PU on that band otherwise PU is not 

present [41], [42].  

BPF A/D 𝑇 𝑥  
 

𝑁
  𝑋 𝑛   
 

   

T(x) ≥ λ

T(x) < λ

𝑋 𝑡 

H1

H0

𝑋 𝑛 



8 

 

1.2.3.4 Covariance based detection 

The covariance is used to determine the variation in two random variables and generally the 

statistical covariance matrices of noise and signal are different. In this method of detection, the 

receiving filter determines the statistical covariance matrix of noise with the help of its structure 

and make new covariance matrix of the received signal. The finding of non-diagonal elements 

zero in the covariance matrix of the received channel signal leads to the conclusion of PU 

absence on that channel, however, in other case PU presence will be detected [43], [44].The 

covariance frobenius norm (CFN) and covariance absolute value (CAV) detectors, take the 

advantage of difference between the covariance matrices of noise and primary signals, and it has 

lower computational complexity in comparison to the eigen value based detection [45]. Further, 

the covariance-based detection technique is also considered with multi-antenna based CU by 

exploiting spatial correlation and it is concluded that performance of covariance based spectrum 

sensing is good when there is high correlation between multiple antennas. In addition, a weighted 

correlation-based detector [46] has been presented which requires the knowledge of correlation 

coefficients that may not be available in practice. Further, both the spatial and temporal 

correlations have been exploited in [47] for spectrum sensing, which achieves good performance 

with apriori knowledge of noise power and signal temporal correlation function. 

1.2.3.5 Eigen value based detection 

This SS method is based on the received signal’s covariance matrix which can be built by 

utilizing the receiver diversity such as multiple antennas, cooperation among multiple users, and 

oversampling [48]. Further, the ratio between the largest and the smallest eigen value in 

covariance matrix is considered as decision threshold to predict the busy or idle state of licensed 

channel. The eigen value based detection (EVD) is a blind SS and provides better performance 

under noise uncertainty[48]–[50]. In the minimum EVD algorithm [51], the relation between the 

least eigen value and the power of the noise signal can be used to detect the presence of the PU. 

This spectrum sensing approach provide higher sensing performance as compare to maximum 

EVD at low SNR [51] however, different types of eigen value based SS is discussed in 

[52].Moreover, in Table 1.1 comparison among different SS approaches are presented.  
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Table 1.1: Comparison among different SS techniques. 

Spectrum Sensing 

Approach 

Pros. Cons. References 

Energy Detection 

(ED) 

Implementation easy. 

Computational complexity is low. 

Blind. 

Suitable for detecting the PU  signal 

who are independent identical 

distributed (IID). 

Unable to detect spread spectrum signal. 

Unable to differentiate between different types 

of signal. 

 Poor performance under noise uncertainty and 

at low SNR.  

 

[31], [53]–

[59] 

Feature Detection 

(FD) 

 Able to differentiate between 

different types of signal (e.g. PU 

signal from noise and interference 

signal). 

 Robust to noise uncertainty. 

Less prone to hidden node problem. 

Fast sensing as compare to ED. 

Implementation complexity. 

Non-blind. 

Bad performance when noise is stationary.  

Poor performance under fading.  

 For higher accuracy demand, longer duration 

of known sequence is needed resulting in less 

spectrum utilization. 

 

[60]–[66] 

Matched Filter 

Detection 

Detection time is less 

Maximized the SNR 

 

 Perfect knowledge of PU signal features are 

required (e.g. frame format, pulse shaping, 

modulation type, operating frequency, 

bandwidth). 

 Implementation complexity is high. 

 Large power consumption. 

[41], [42], 

[67]–[69] 

Covariance Based 

Detection 

 Low computational complexity. 

 Blind 

 High accuracy 

Performance degrades when signals are not 

independent identical distributed (IID).  

Sensing performance degrades when antenna 

correlation is relatively low. 

[44], [45], 

[70]–[74] 

Eigen Value 

Based Detection 

 Non-coherent 

 Suitable at low SNR 

Robust to noise uncertainty 

High computational complexity 

Poor threshold accuracy for less number of 

samples. 

[49], [75]–

[79] 

 

Moreover, due to the promising advantages of EDSS such as its simplicity, low implementation 

complexity and blind nature of sensing (no information is requires about the PU signal), various 

researchers have worked on EDSS technique under different channel conditions and have 

analyzed the performance of CRN [31], [58], [80].  
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1.2.4 Cooperative spectrum sensing 

The key goal of any spectrum sensing approach is to identify the absence or presence of a PU in a 

specified frequency band at a given moment in a certain location. When each node makes an 

autonomous decision on the availability of a licensed frequency band, and acts accordingly then 

SS is considered as non-cooperative spectrum sensing. However, the sensing results in non-

cooperative spectrum sensing may be inaccurate under real wireless scenario (multipath and 

shadowing). Therefore, to increases the reliability under real wireless scenario, individual sensing 

results of multiple CUs are shared among each other. The cooperative communication and 

networking allows different users or nodes in a wireless network to share resources and to create 

collaboration through distributed transmission/processing. The cooperative communication and 

networking is a new communication paradigm that promises significant capacity and increased 

multiplexing gain of wireless networks. It also realizes a new form of space diversity to reduce 

the harmful effects of severe fading, shadowing and the receiver uncertainty problem [81], [82]. 

In Fig. 1.4, we have shown the multipath fading, shadowing and receiver uncertainty scenario 

under the non-cooperative cognitive radio network.  

 

 

Figure 1.4: Multipath and shadowing effect in non-cooperative SS [83]. 

From Fig. 1.4, it is clear that CR2 suffers multiple signals from building and comes in the shadow 

of house, therefore CR2 suffers multipath fading and shadow fading which results degradation of 

the sensing decision of CR2 even though CR 2 is within the range of PU transmission. In 

addition, CR 3 is outside the PU transmitter range hence cannot detect the transmission of PU and 

it is allowed to access the channel in spite of PU transmission so suffers receiver uncertainty 
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problem. As a result, the transmission from CR3 may interfere with the reception at PU Rx. 

Therefore to deal with all these issues, multiple CRs can be intended to cooperate with each other 

in spectrum sensing results to employ spatial diversity [84]. Since due to spatial diversity, it is 

unlikely for all spatially distributed CR users in a CR network to concurrently experience the 

fading or receiver uncertainty problem, hence the cooperative spectrum sensing can greatly 

increase the sensing performance of CR in the real wireless scenario [85]. Further, on the basis of 

sharing the sensing results between CUs, CSS can be classified in to three groups [81], [83]: a) 

Centralized, b) Distributed, and c) Relay-assisted and these CSS are described below: 

Centralized:  In the centralized CSS, all CUs/CRs sense the licensed frequency band using 

sensing channels and report the local sensing results to one central entity called fusion center 

(FC) using reporting channels which is also shown in Fig. 1.5(a). Further, FC combines all local 

sensing results using different fusion rules and take global final decision about the status of 

licensed channel being busy or idle. Afterwards, the global decision taken by FC is broadcasted to 

all CR in the network. The detailed description of reporting and fusion rules employed in 

centralized based cooperative spectrum sensing (C-CSS) is presented further in Section 1.2.5. 

Distributed: In the distributed CSS, all CUs share the sensing results from each other and 

converge to single decision about the status of PU channel by iterations. Fig. 1.5(b) illustrates the 

distributed CSS in which all CRs sense the transmission of PU signal in the desired frequency 

band on the sensing channel and these sensing results are shared with each CR in the network. 

Afterwards, each CR combines its own sensing results with the received sensing results and 

employs some local criteria to make a decision about the PU presence or absence. When the local 

criteria is satisfied, CR will take unanimous cooperative decision,  however in case of ambiguity, 

CR user will send its combined result to other users again in the network and this process is 

repeated until the criteria is not satisfied and unanimous cooperative decision has not come [83]. 

Relay-assisted: Since in a CRN, the sensing and reporting channels are not perfect therefore, it 

might be the possibility that some CR have good sensing channel and weak reporting channel 

while some CRs may have weak sensing and good reporting channels. Consequently, due to 

imperfect sensing or imperfect reporting channel, the sensing decision is affected. Therefore, the 

relay assisted SS employs the advantage of that CR having strong sensing and/or reporting 
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channel by considering CR as a relay. Further, the relay assisted CSS can be employed either in 

centralized or distributed manner, however Fig. 1.5(c) illustrated the centralized based relay 

assisted CSS. In Fig. 1.5(c) it is shown that CR1 and CR5 have good sensing channels but weak 

reporting channels while other CR in the network i.e. CR2, CR3 and CR4 have good reporting 

channels, in that case later CRs (i.e. CR2, CR3 and CR4) can act as relays to help in forwarding 

the sensing results of CR1, and CR5 to the FC [83]. 

In addition, the comparison among different CSS approaches has been presented in Table 1.2. 

 

Figure 1.5: Classification of  CSS (a) centralized (b) distributed (c) relay assisted [83]. 

Table 1.2: Comparison among CSS approaches 

Topology Pros. Cons. References 

Centralized More reliable decision  

Detailed information acquired 

by the FC  

Cooperation overhead bits are 

less than the distributed   

Energy consumption and delay in sensing 

decision increases with increase in cooperative 

CUs. 

Quality of reporting channels must be good. 

Sensing decision highly depends on the FC. 

Selection of FC is crucial. 

[86]–[89] 

Distributed Sensing decision does not 

depend on one central device. 

Each CU collects the sensing 

results from the surrounding 

CUs. 

It may take a number of iterations to reach the 

common cooperative decision. 

It may be inefficient in terms of energy 

efficiency. 

[90]–[92] 

Relay 

Assisted 

Suitable when either sensing 

or reporting channel of CU is 

weak and other CUs channel/s 

are strong. 

Requires fast and accurate route selection 

algorithm 

Energy consumption is high. 

[93]–[96] 
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1.2.5 Reporting and fusion rules in C-CSS 

The centralized CSS (C-CSS), one of the majorly deployed methods for cooperation, has three 

phases, in which first phase is sensing which is followed by reporting and fusion decision phases. 

In the sensing phase, each CU senses the licensed channel and takes the sensing decision by 

employing spectrum sensing technique. The reporting and fusion decision phases have been 

detailed further where the type of reported sensing results to FC and different fusion rules 

employed by FC to take global final decision, has been presented.  

1.2.5.1 Reporting phase 

In the reporting phase, the sensing results of each CU is reported to FC either in hard, soft or 

quantized soft reporting manner in CRN which is discussed as follows.  

a) Hard decision reporting 

In the hard decision reporting, individual sensing result of each CU about the status of licensed 

channel being busy or idle is sent in single bit (D). D=1 represents the sensing decision in favor 

of licensed channel being busy while D=0 represents idle channel, which is shown in Fig. 1.6(a). 

In the hard reporting, it is considered that when the decision variable (such as the received signal 

power, the presence of periodicity in the received signal, etc.) is above a specified sensing 

threshold (λ), the CU will decide the sensing decision in favor of hypothesis 𝐻1 and only bit 1 is 

sent to FC otherwise sensing decision comes in favor of hypothesis 𝐻0 and only bit 0 is sent. 

Since in the hard decision reporting, sensing decision is sent with single bit only therefore, it is 

bandwidth efficient, easy for decoding and decision making. However this type of reporting also 

has some drawback such as sensing results may be imprecise, and the decision made by the CU is 

not replicated in its binary representation [97]. 

b) Soft decision reporting 

In the soft decision reporting, the spectrum sensing result of each CU is sent in the form of 

multiple bits which represents the useful information, such as sensing-channel quality, a 

dedicated metric describing the CU’s previous decisions etc. Since in the soft decision reporting, 

all important information regarding the sensing decision is sent therefore, the global detection 

probability increase however at the cost of large overhead reporting bits and delay in transmission 

and computational complexity [98], [99]. In Fig. 1.6(b) shows the soft decision reporting where 
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the sensing data (D) is sent in the vector form of long sequence of 0 and 1. The sensing data (D) 

reported by the CU can be used to someway replicate the degree of uncertainty of the CU’s 

decision, e.g., the vector of 1’s which is represented as D = [111 . . . 1] will correspond to the 

belief of the accuracy of hypothesis 𝐻1. The higher the number of bits in vector D, the higher the 

accuracy of the decision [81], [100]. 

c) Quantized soft reporting 

In the quantized soft reporting, combination of the hard and soft reporting is employed where two 

or more bits are used to report the sensing decision. In Fig. 1.6(c), two bit quantized soft reporting 

is presented which has total four possible cases. To differentiate among these four cases, CR 

consider three thresholds, namely,𝜆1, 𝜆2, and 𝜆3. When decision variable is below 𝜆1, the sensing 

decision of CU is highly probable of channel being free and report 00 to FC, whereas, if the 

decision variable lies between 𝜆1 and 𝜆2, CU reports a weak sensing decision for the channel 

being idle by sending bits 01. Further, if the decision variable lies between 𝜆2and 𝜆3, then CR 

reports weak sensing decision in favor of licensed channel being occupied and bits 10 are 

reported to the FC. In the final scenario, where decision variable is greater than 𝜆3, a strong 

sensing decision will be reported by the CU in favor of licensed channel being occupied and bits 

11 is sent to the FC. Further, in depth analysis of the aforesaid schemes (quantized soft reporting) 

are presented in [101]–[103]. 

 

Figure 1.6:  Reporting schemes (a) hard decision (b) soft decision (c) quantized decision (two bits). 

1.2.5.2 Fusion rules 

In this section, we have presented various fusion rules employed by FC in the cooperative 

communication to take global final decision about the status of licensed channel (active/idle). The 

FC may employ either soft or hard fusion rules whereas in the soft fusion rules, each CU forward 
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the soft or quantized soft reporting results while in hard fusion rules, the CU forward the hard 

reporting results to the FC [104], [105]. For the soft fusion, FC may apply maximal ratio 

combining (MRC), square law combining (SLC) or selection combining (SC) [106]–[108] etc 

rules while in hard fusion, OR, AND, Majority, or K-OUT of M [109]–[111] rules are mostly 

employed by the researchers.  

In this context, the weighted sum of sensing results are added at the FC in MRC to yield the 

status of licensed channel, where the weight assigned to the sensing result is decided according to 

their SNR. However, in the Square Law Combining (SLC), FC combines all the sensing results 

received from each CU and compares this summation value with the predefined threshold to 

decide the idle or busy status of licensed channel while in the selection combining (SC), FC only 

process the strongest sensing data out of all CUs. Further, in K-out of M hard decision fusion rule, 

FC takes the sensing decision in favour of licensed channel being active only when K out of M 

CUs report to the FC in the favor of active licensed channel. Further, OR, AND and Majority 

rules of hard fusion are the special case of K-out of M rule, when K=1, M, and M/2, respectively. 

Moreover, the hard fusion rule provides better performance than soft fusion rule in terms of less 

overhead bits, energy consumption, reporting channel bandwidth, at the cost of less sensing 

performance [112]. 

1.3    CRN Performance Parameters 

In the CRN, various performance parameters such as reliability, throughput and energy efficiency 

etc. are considered and presented in Fig 1.7. Various approaches are employed by different 

researchers to enhance the performance of these parameters (Reliability, Throughput and Energy 

Efficiency) in CRN which are presented further. 

 

Figure 1.7: QoS parameters in CRN. 

Performance Parameters in CRN

Reliability Throughput Energy Efficiency
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1.3.1. Reliability 

The reliability of CR can be defined as the trustworthiness and can be considered in terms of 

minimizing call outage (false-alarm or miss-detection) probability [113], [114], the sensing error 

probability [113], call dropping probability[115], call blocking probability [116], collision 

probability [117], [118], and bit error rate (BER) [119]. The false-alarm probability (𝑃𝑓) is 

defined as the probability of falsely detecting the presence of PU and in context of EDSS is given 

as T(x)≥λ/𝐻0 ; i.e. the result of test statistics is higher than sensing threshold value (λ) giving the 

sensing decision in favour of 𝐻1while actually PU channel is free (
0H ). However, the miss-

detection probability is defined as the probability of missing the detection of active PU channel 

given as T(x) <λ/𝐻1; i.e. the result of  test statistics T(x) is less than the sensing threshold value 

providing the sensing decision in favour of 𝐻0 while actual status is active (
1H ). Therefore, the 

spectrum sensing error probability is the combination of false-alarm and miss-detection 

probability given as 𝑃𝑒 = 𝑃𝑓 + 𝑃𝑚 . However, the maximum utilization of channel and sufficient 

protection of PU need low numerical values of 𝑃𝑓  and 𝑃m . Since the reliability can be improved 

by reducing the sensing error probability therefore, in Fig.1.8, we have presented various 

approaches available in the literature to minimize the spectrum sensing error and is detailed 

below:  

 

 

Figure 1.8: Techniques affecting sensing error. 

a) Sensing threshold 

The spectrum sensing error is the function of false-alarm and miss-detection probability and these 

parameters are affected with sensing threshold value which influences the sensing decision of CU 

(idle or active state of licensed channel). For higher value of sensing threshold, false-alarm 
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probability is reduced but at the same time miss-detection probability is increased therefore, the 

selection of threshold is an important parameter to minimize the spectrum sensing error. In the 

reported literature, the fixed as well as dynamic threshold methods are commonly employed by 

researchers [120]–[122];  whereas in former, the sensing threshold value remains constant while 

in later its value is varied with change in SNR to minimize the probability of error (𝑃𝑒) in sensing 

results which is also shown in Fig.1.9 and Fig. 1.10.  

 

Figure 1.9: Threshold versus SNR at different N [121]. 

 

Figure 1.10: Probability of error versus SNR (a) at different N (b) various threshold selection approaches at N=500; 

NP: Neyman-Pearson, BD: Bayesian Detection [121], [122]. 

It has been demonstrated by various researchers [120]–[122] that the threshold selection with 

dynamic threshold, gives better sensing result as compare to that of the fixed threshold method. 
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Further, detailed discussion of fixed and dynamic threshold selection approaches is presented in 

Chapter 2 of the thesis.   

b) Multi-stage spectrum sensing 

The implementation of single spectrum sensing technique can taint the performance of CR as we 

have already discussed in Section 1.2.3, e.g. the energy detector (ED) has low sensing 

performance in noise uncertainty, feature detector (FD) requires a priori information about the PU 

signal etc. Therefore to mitigate the drawbacks of single stage spectrum sensing, various 

researchers [123]–[125] have employed two stage instead of single stage spectrum sensing to 

improve the sensing performance. With this context, most of the researchers have employed ED 

at first stage for coarse sensing while other SS techniques (e.g. FD, EVD etc) for fine sensing at 

the second stage [32], [123]–[126]. 

c) Cooperation 

The cooperative can improve the sensing performance of CRN by increasing the detection 

probability to a great extent with space diversity, by means of which other CUs also involve in 

PU detection process for the case when individual CU may not be able to detect it due to fading 

or shadowing. The CU positioned in the neighborhood of PU can also function as relay for 

forwarding the sensing data in CSS. Detection probability can also be improved [127]. Further in 

[128], the fusion rules (hard and soft) effect on the C-CSS performance has been presented, 

where the soft reporting (multi-bit combination rule) has shown better sensing performance than 

hard (one-bit) combination rules at the cost of increased reporting overhead bits [129]. 

1.3.2. Throughput 

The throughput of CRN is the average number of successful bits transmitted by the CU. In the 

reported literature, various parameters available to maximize the throughput and the work done in 

this direction are presented further. 

 

 

Figure 1.11: Techniques affecting throughput. 
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a) Sensing threshold 

The spectrum sensing threshold is one of the critical parameter which affects the sensing error as 

presented in Section 1.3.1 and also the throughput of CU is dependent on this parameter. It is 

because the sensing threshold has an effect on the sensing parameters, 𝑃𝑓  as well as on 𝑃𝑑 , which 

has direct impact on the throughput of CRN. One of the threshold selection approach provided by 

Verma and Sahu [130], which has fixed the false-alarm probability, provides higher throughput 

however at the cost of increased probability of interference to PU. However, by fixing the 

detection probability in the other approach [130], has sufficiently avoided PU interference from 

CU with reduction of throughput. In addition, Jafarian and Hamdi [131] have employed double 

threshold based SS and maximized the throughput by minimizing the difference between two 

threshold values. Further, in [132] Shi et.al. have jointly optimized the sensing threshold and 

resource allocation schemes (i.e. power allocation and sub-channel assignment) to maximize the 

throughput. Moreover, Table 1.3 presents the additional major work on the throughput of CR by 

considering the sensing threshold parameters. 

b)  Sensing and transmission time 

The spectrum sensing and transmission time of CU is another parameter affecting the throughput 

of CU; larger the transmission time, more is the transmitting opportunity that CU gets and hence 

higher will be the throughput as is clear from Fig.1.12. Fig. 1.12 has presented the frame structure 

of CU having frame duration T.  

 

Figure 1.12: CU frame structure without CSS [133]. 

Further, the frame duration T comprises 𝑇𝑠 sensing time and remaining (T-𝑇𝑠) time will be 

allotted for data transmission. For the fixed frame duration T, the less sensing time although 

provides more data transmission time to increase the throughput but at the same time will 

increase the sensing error. However, the longer sensing time will lead to more accurate sensing 

results by reducing the throughput. This is a major problem called sensing-throughput tradeoff, 

on which various researchers have worked to provide a solution. In this context, authors in [134] 

Frame Duration (T)

Sensing Time  (Ts) Transmission Time  (T-Ts)
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have computed the optimal sensing time and threshold to maximize the CU throughput while 

providing adequate protection to the PU. However, the optimal sensing time and power allocation 

strategies are obtained by Pei et. al [135] to maximize the throughput. 

c) Cooperative CUs 

In CSS, the number of cooperative CUs also affects the throughput as described in Fig. 1.13 

which presents the frame structure of CRN in C-CSS. The total frame duration is considered to be 

of T units of time, which has 𝑇𝑠 time allotted to multiple CUs to sense the channel. Further, each 

CU takes 𝑇𝑅  time to report the individual sensing results to the FC and the total number of 

reporting CUs are considered to be M, therefore total reporting time will be M∗ 𝑇𝑅 and 

consequently, the data transmission time is: T-𝑇𝑠-M𝑇𝑅 . As the number of reporting CUs (M) 

increases, the transmission time will reduce and cooperation overhead bits from large number of 

CUs will also increase resulting in reduced throughput of CRN. In this context, Liu and Tan [136] 

have jointly optimized the sensing time and the cooperative CUs to enhance the throughput of 

CRN and has minimized the overall sensing time to get the free licensed channels. In addition, by 

considering minimum sensing error, Bhowmick et.al [137] have computed the optimal number of 

CUs for cooperation to maximize the throughput.  

 

Figure 1.13: Frame structure in C-CSS. 

d) Full Duplexing 

In the full-duplex (FD) technology, generally CUs are equipped with two antennas, one antenna 

employed for sensing operation and other for transmission. This result in additional transmission 

time to CU than the system employing only single antenna for both operations and hence has 

increased the throughput of CU. However, the self-interference is the critical issue for the 

implementation of full-duplex technology therefore, different self-interference suppression 

techniques such as active analogue cancellation, null-steering beam forming, passive suppression, 

ST RTM *
Rs TMTT *

Sensing Time Data Transmission Time

T

RT

1 2 M
RT RT

Reporting Time



21 

 

antenna polarization diversity etc. are readily employed in FD-CRN [138]–[140]. Further, in 

[141], Tan and Le have employed full-duplex cognitive medium access control (FDC-MAC) 

protocol and have analyzed the throughput performance by considering the effects of self-

interference, PU activity and imperfect sensing. Moreover, the CU equipped with full-duplex 

transceivers has maximized the throughput with constraints on energy consumption [142]. 

Further, Table 1.3 presents the key approaches employed by various researchers and their 

contribution to improve the sensing error and throughput of CRN. 

Table 1.3: Literature survey for improvement in sensing error and throughput of CR. 

References Key Approaches Major Contribution 

[143]  Dynamic Threshold 

(DT) 

 A filter bank approach is used for spectrum sensing. 

 Gradient descent based algorithm is proposed for threshold adaptation in 

dynamic scenarios to minimize the sensing error. 

[144]  Two stage sensing 

(Multistage) 

 Spectrum sensing time is minimized. 

 Based on the received signal sample strength, switching between ED and CAV 

sensing approach is performed.  

 Their proposed approach has achieved better performance as compare to single 

stage in terms of hardware area and reconfiguration time. 

[145]  Two stage sensing 

(Multistage) 

 Energy consumption is minimized for optimizing the reliability. 

 Achieved good detection performance along with energy efficiency. 

 Energy efficiency is achieved with two stage sensing which has employed 

energy detection and cyclostationary feature detection, jointly.  

[146]  Two stage sensing  Minimized the sensing time with respect to the one stage sensing, to detect the 

idle channel when bandwidth of the coarse sensing unit is less.  

[147]  Optimal threshold   Illustrated the trade-off between detection and false alarm probability.  

[148]  Double threshold  Proposed the combination of hard plus soft reporting and demonstrated the 

trade-off between sensing performance and communication overhead.  

[149]  Two stage sensing 

 Double threshold 

 ED is employed at both stages for which fixed threshold is used at first stage 

and dynamic threshold at the second stage. 

 The proposed approach has achieved higher detection probability and less 

sensing time at low SNR. 

[131]  Sensing time 

 Double Threshold 

 Shown the sensing-throughput trade-off. 

 Optimized the difference between two threshold values and sensing time, 

simultaneously to achieve higher throughput at CU.  

[150]  Double Threshold   Employed dynamic double thresholds to achieve desired Pd and Pf by limiting 

sensing overhead bits.  

[151]  Weighted hard-soft  DT-LLR-HSC schemes is employed to sense the spectrum under fading 
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combining scheme  channels. 

 Achieved higher performance than LLR-SC scheme in fading scenario. 

[152]  Threshold  Derived the methods to calculate the Pd as a function of range from the sensing 

node to the object of interest. 

 This kind of function is important as it enables optimal positioning of multiple 

sensors over a region of interest. 

[153]–

[155] 
 Sensing and 

transmission  time 

 Showed sensing-throughput tradeoff problem. 

 Computed optimal sensing duration to maximize the achievable throughput. 

 Tang et al. found optimal sensing time to maximize the achievable throughput 

by considering different traffic patterns of PUs. 

[156]–

[158] 
 Sensing time  

 CU transmission 

power 

 Proposed the strategy to maximize the throughput by jointly optimizing sensing 

time and power allocation to CU. 

[159], 

[160] 
 Full Duplex  Applied a partial relaying scheme in CRN and improved the network 

throughput significantly of full-duplex CU. 

[136]  Sensing time  

 Number of CUs 

 Jointly optimized the sensing time and number of the cooperative CUs to 

maximize the throughput. 

1.3.3. Energy efficiency 

The energy efficiency (EE) is defined as the ratio of average number of bits transmitted 

successfully (throughput, i.e. C) to the average energy consumed (𝐸𝑇𝑜𝑡𝑎𝑙 ). The CRN performance 

can be improved by enhancing the energy efficiency by throughput maximization and/or by 

minimizing energy consumption [161] as is clear from following equation: 

𝐸𝐸 =
𝐶

𝐸𝑇𝑜𝑡𝑎𝑙
           (1.2) 

Since, the work and methods of throughput improvement has already been presented in Section 

1.3.2, therefore in this section, we have focused only for the energy consumption reduction to 

improve the energy efficiency. Various methods available for minimizing the energy 

consumption in CRN are presented in Fig. 1.14.   

a) Sleeping and censoring schemes 

In [162], the researchers have employed dynamic censored spectrum sensing scheme in which 

each CU compares the received signal power with predefined censoring threshold to decide the 

termination of sensing by the CU. Therefore, each CU turns off its sensing module with a specific 

sleeping rate to decrease the energy consumption. In addition, Wang et al. in [163] have 
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considered censoring to send the informative sensing observations of some particular CUs to FC 

which has reduced the energy consumption of the overall CRN. Further, the sleeping scheme 

implementation in sensing phase along with censoring in the transmission has been performed in 

[164], [165] for minimizing the energy consumption of each CU. Moreover, Akhila and Priya in 

[166] have proposed the schemes for intra- and inter-cluster data transmission along with sleep 

and wake schemes to reduce the energy consumption,  however Lunden et.al. in [167] used 

censoring in CSS.  

 

Figure 1.14: Approaches affecting energy efficiency. 

b) Network organization 

Generally, the CSS techniques enhance the spectrum efficiency of CRN by effectively combating 

the fading and shadowing effects at the cost of higher overhead bits, power consumption, and 

complexity [168]. In CSS, the cluster- based network architecture consists of local information 

sensing clusters distributed throughout the network. A cluster head is allocated for each cluster 

which is accountable for receiving sensing information from each CU belonging to the cluster 

and forward their sensing result to the fusion center. The energy consumption in this scenario 

increases with increase in distance between cluster head and FC and the amount of sensing data 

to be transmitted. Therefore, the network organization for cluster formation and proper cluster 

head selection is important parameter to reduce the energy consumption [169]. Further, 

minimizing the overall energy consumption with minimum geometric dilution of precision 

(GDOP) method, employed for the optimal placements of the CUs is presented  by Saeed and 

Nam in [170].   However, Monemian et.al. in [171] have proposed the CU node selection strategy 

for spectrum sensing to minimize the energy consumption.   

c) Miscellaneous parameters 

Some other major parameters affecting the EE of CRN are the sensing and transmission time, 

number of cooperative CUs, fusion rule, transmitted power etc. As per the frame structure of the 

centralized CSS CU shown in Fig.1.13, consisting of sensing, reporting and transmission period, 
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the power consumption in the frame can be minimized by optimizing their duration. In addition, 

the power consumed in the spectrum sensing phase also depends on the complexity of selected 

sensing technique. Further, the proper selection of number of cooperative CUs is required in the 

reporting phase to get the least energy consumption with appropriate performance of the network. 

In this context, Najimi et.al. in [172] have presented the optimal number of cooperative CUs by 

proposing the algorithm which has satisfied the Karush– Kuhn–Tucker (KKT) condition. While 

Xu et. al.[173] have derived the optimal number of cooperative relays in the cooperative 

spectrum sensing for minimizing the energy consumption. Further, in [174], the authors have 

dynamically selected the appropriate CUs for CSS with insight of their energy constraints. Since, 

the fusion rule (hard or soft) employed at the FC also affects the energy consumption therefore, 

Maleki et.al. in [175] have chosen the hard fusion over soft fusion rule to make energy and 

bandwidth efficient CRN. Further, it is shown for the hard fusion scheme that energy efficiency 

of AND rule is less with respect to the OR and Majority rule.  

In summary, Table 1.4 has presented the key approaches employed by the various researchers and 

their significant contribution in the direction of energy efficiency improvement. 

Table 1.4: Literature survey on improvement in energy efficiency of CR. 

References Key Approach Major Contribution 

[176], 

[177] 
 Active and sleep 

mode 

 Decreased the energy consumption by dividing each cluster into disjoint subsets 

with overlapped sensing coverage of PU activity and activates only one subset 

at certain period. 

 Selected the nodes from the active subset to perform sensing and schedules the 

switching of subsets for sleeping.  

[164]  Censoring 

 Sleeping 

 Combined censoring and sleeping scheme to achieve significant energy saving.  

 Computed the lower and upper limit of energy consumption on each CU under 

AND and OR rule  

 Minimized the energy consumption on each CU  

[89], [178]  Network organization 

(Clustering) 

 Presented survey on clustering approach by minimizing the number of clusters, 

cluster size, and efficient clustering. 

 Energy efficiency is achieved by dynamic clustering. 

[179]  Fusion rule  (K-out-

of-M) 

 Achieved significant improvement in energy efficiency by optimizing K in K 

out of M rule for predefined threshold. 

[175]  Hard fusion rule  Derived the optimal number of CUs for energy efficient optimization. 

 OR and Majority rule has outperformed the AND rule in terms of energy 

efficiency.  
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 OR rule gives higher throughput than AND rule with a smaller number of CUs. 

[180]  Number of 

cooperative CUs 

 Derived the closed-form expressions for determining the optimum number of 

cooperative CUs to optimize the average sensing energy efficiency. 

[181]  Optimal sensing 

interval  

 Number of CUs 

 Derived the bounds for the number of CUs to achieve the desired 𝑃𝑓  and 𝑃𝑑 , 

simultaneously 

 Computed optimal sensing interval and the optimal CUs to minimize the energy 

consumption. 

[182]  Sensing and 

transmission 

durations 

 Sensing and transmission time computation for energy-efficiency. 

 Proposed the condition to balance the energy consumption in sensing and 

transmission phase. 

[183]  Transmit power  Maximized the ergodic capacity and minimized the average transmission 

power. 

 Iterative algorithm based sub-gradient method is proposed to obtain the 

minimum transmit power. 

 Minimum power allocation approach for spectrum sensing is presented under 

perfect and imperfect sensing. 

[134]  Sensing time 

 Sensing threshold 

 Maximized the throughput and minimized the energy consumption jointly in 

CSS by optimizing the sensing time, sensing threshold and the sensing and data 

transmitting CUs. 

[184]  Sensing Threshold  Jointly selected the sensing CUs, sensing threshold and decision CU nodes for 

minimizing the energy consumed in distributed sensing. 

1.4    Literature Survey, Problem Formulation and Contribution 

In this section we have presented the literature survey and from there formulated the research 

gaps. Verma and Sahu [130], which has fixed the false-alarm probability, provides higher 

throughput however at the cost of increased probability of interference to PU. However, by fixing 

the detection probability in the other approach [130], has sufficiently avoided PU interference 

from CU with reduction of throughput. In addition, Jafarian and Hamdi [131] have employed 

double threshold based SS and maximized the throughput by minimizing the difference between 

two threshold values. Further, in [132] Shi et.al. have jointly optimized the sensing threshold and 

resource allocation schemes (i.e. power allocation and sub-channel assignment) to maximize the 

throughput. Authors in [134] have computed the optimal sensing time and threshold to maximize 

the CU throughput while providing adequate protection to the PU. However, the optimal sensing 

time and power allocation strategies are obtained by Pei et. al [135] to maximize the throughput. 

Moreover, the detailed literature survey for improvement in sensing error, throughput and 

improvement in energy efficiency of CR is presented in Table 1.3 and Table 1.4 of this chapter. 
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As per the above presented literature in Table 1.3 and Table 1.4, there exist different challenges 

in the implementation of spectrum sensing methods of CRN which are discussed further in this 

section. The practical wireless communication scenario has been considered that is affected by 

the fading which degrades the received SNR and sensing and reporting channels. Therefore, the 

major challenge of spectrum sensing in practical wireless communication scenario lies in the 

selection of threshold for improving particular spectrum sensing detector performance. In this 

context, the researchers in [185] have analyzed the effect of threshold on the false-alarm and 

detection probabilities and have tried to achieve the desired 𝑃𝑓  and 𝑃𝑑 .  However, since the 

attainment of both 𝑃𝑓  and 𝑃𝑑  values at low SNR is a challenging task, therefore in this thesis, we 

have presented the optimum results for the aforementioned sensing parameters. Further, in the 

literature presented in [130], [185], the researchers have analyzed the system performance for 

only non-cooperative CRN. However due to the significant advantages of cooperation over non-

cooperation we have analyzed the CUs cooperation for the spectrum sensing to enhance the 

sensing performance of CRN.  

However, there is very limited work on the effect of threshold approaches to maximize the 

throughput and minimize the sensing error in CRN for practical wireless cooperative 

communication scenario. Therefore, the analysis of threshold approaches in cooperative scenario 

is another major contribution of this thesis. In addition, the throughput and spectrum sensing error 

performance comparison for perfect and imperfect reporting channels with different threshold 

selection approaches is also provided in details, which is an important factor to be included in 

cognitive network design. Moreover, the cooperation increases the energy consumption of the 

network, therefore various researchers have worked on different methods which has minimized 

the energy consumption. One of the methods to do so for reducing the energy consumption due to 

the requirement of sensing results reporting by the large number of CUs, is the censoring method. 

In the censoring method, only the informative sensing results of limited CUs are sent to the FC. 

Further, the fusion rule applied at the FC also plays an important role in the energy consumption. 

However, the researchers in [186] have optimized the number of CUs whose decision is to be 

considered to yield the channel status while minimizing the sensing error for particular 
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considered range of thresholds, without analyzing its effect on the energy efficiency. Moreover, 

the researchers study in [186] have presented for high SNR. However in this thesis, we have 

described the analysis at low SNR for threshold selection in the censoring and non-censoring 

scenario. Further, it is shown that there is significant improvement in the energy efficiency with 

censoring approach over that of the non-censoring while implementing different threshold 

selection approaches.  

Based on the aforementioned potential challenges of the threshold selection and its effect, the  

contributions of this thesis is as follows: 

 In this thesis, we have analyzed the condition for a single optimal threshold to achieve the 

desired probability of false alarm (𝑃𝑓) and probability of detection (𝑃𝑑 ) simultaneously under 

AWGN in the non-cooperative scenario. Further, we have proposed the approach to satisfy 

the optimality condition for a single optimal threshold at all SNR. Afterwards, for the 

proposed approach we have computed the closed-form expressions of various sensing 

performance metrics (𝑃𝑓 , 𝑃𝑑 , and 𝑃𝑒) and achieved throughput and compared with the state-

of-the-art work. 

 Further, the sensing performance of CRN is analyzed under different fading channels in terms 

of ROC curve with different cooperation rules at low SNR and selected the Majority 

cooperative rule. We have also explored the effect of selection of various threshold selection 

approaches (using fixed (CFAR) and dynamic (MEP)) on throughput and sensing error in 

non-cooperative and cooperative (Majority rule) CRN under AWGN, Rayleigh and 

Nakagami-m fading channels. 

 We have computed the value of critical SNR (𝛾𝑐) which provided the efficient threshold 

selection approach at different SNR to optimize the throughput and sensing error. In addition, 

algorithms to maximize the throughput and reduce the sensing error probability at all SNR are 

proposed for Rayleigh and Nakagami-m fading channels. 

 The imperfect reporting channel is employed which has affected the sensing decision at FC 

and two scenarios are considered in such a manner where the sensing decision of CUs is sent 

to the FC with and without the censoring approach. Further, we have derived the expressions 

of sensing error and throughput for the fading channels while employing perfect/imperfect 



28 

 

reporting channel in the censoring and non-censoring approaches. The comparison between 

censoring and non-censoring approach is also presented. 

 It is shown that by employing the optimal rule at FC, the sensing error is minimized with 

respect to Majority fusion rule. Further, the censoring approach is employed to improve the 

energy efficiency, and the closed-form expressions are derived for the optimal number of CUs 

at FC. Moreover, the energy efficiency comparison is also illustrated under the non-censoring 

and censoring scenario for CFAR and MEP threshold selection approaches when the 

respective optimal value of K is employed at the FC to reduce the sensing error. Further, from 

the results, it is depicted that the energy efficiency is significantly higher in the censoring 

scenario as compare to that of the non-censoring scenario. 

1.5    Research Objectives  

Our contribution in the thesis is categorized under three research objectives which are as follows: 

Objective 1: Optimal threshold selection in AWGN channel under non-cooperative scenario such 

that both the sensing requirement parameters (Pf   and Pd ) achieved simultaneously.  

Objective 2 : Optimal threshold selection in fading channels under cooperative scenario and its 

effect on performance of CR. 

Objective 3: Optimization of Cooperative rule at FC to minimize the sensing error probability 

under different threshold selection in AWGN channel. 

We have attained Objective 1 in Chapter 2 of the thesis, in which we provided an approach for 

optimal selection of threshold under AWGN channel and achieved the desired values of false and 

detection probabilities, simultaneously. However, Objective 2 is achieved in Chapter 3, 4 and 5 in 

which we have selected the optimal threshold under fading channel in cooperative spectrum 

sensing scenario. The Chapter 3 provides the analysis of different threshold selection approaches 

for AWGN and fading channels and illustrated the effect of threshold selection on throughput and 

sensing error probability in the considered scenarios. Moreover, in the Chapter 4, we have 

commenced the critical SNR concept to choose the appropriate threshold approach at different 

SNR to reduce the spectrum sensing error probability and improved the throughput of CRN for 

fading channels while considering perfect reporting channels. In Chapter 5, we have considered 
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more realistic scenario of wireless CRN system consisting of imperfect spectrum sensing and 

imperfect reporting channels in all considered channels. Further, we have employed the censoring 

approach in CRN system and have analyzed the effect of different threshold selection in the non-

censoring and censoring under cooperative scenario. Moreover, the Objective 3 is achieved in 

Chapter 6, in which we have optimized the number of cooperative users at FC in AWGN channel 

to minimize the sensing error probability. Further we have also analyzed the effect of multiple 

antennas, reporting error probability and probability of idle – or active – state of the licensed 

channel on the spectrum sensing performance in Chapter 6. 

1.6    Thesis Organization 

The remainder of the thesis is organized as follows. Chapter 2 provides the optimal threshold 

selection approach in AWGN channel under non-cooperative spectrum sensing to achieve the 

desired values of probability of false alarm (𝑃𝑓) and probability of detection (𝑃𝑑 ), simultaneously 

at all SNR. Further, we have also shown the effect of optimal threshold selection on sensing error 

probability and throughput of CRN.   

Chapter 3 provides the analysis of different threshold selection approaches for AWGN and fading 

channels in the non-cooperative as well as cooperative scenario. Further, we compared the 

detection performance of CU under the non-cooperative and cooperative environment for 

different threshold selection approaches. In addition, we have also illustrated the effect of 

threshold selection on throughput and sensing error probability in fading channels.  

Moreover in Chapter 4, we have commenced the critical SNR concept to choose the appropriate 

threshold approach at different SNR to reduce the sensing error probability and to improve the 

throughput of CRN for fading channels while considering perfect reporting channels. Further the 

analysis performed in this chapter has shown the trade-off between sensing error probability and 

throughput.    

In Chapter 5, we have considered more realistic scenario of wireless CRN system consisting of 

imperfect spectrum sensing and imperfect reporting channels in AWGN, Rayleigh and 

Nakagami-m fading channels. Further, we employed the censoring approach in CRN system and 

have analyzed the effect of different threshold selection in the non-censoring and censoring 

scenario. 
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In Chapter 6, we have optimized the number of cooperative users at FC to minimize the sensing 

error probability. Further we have considered the effect of multiple antennas, reporting error 

probability and probability of free or active state of the licensed channel. In addition, we have 

also employed censoring approach in CSS and achieved significant improvement in the energy 

efficiency over non-censoring.  

Finally, the Chapter 7 concludes the thesis and recommends its future scope. 
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CHAPTER 2  

THRESHOLD SELECTION APPROACHES IN EDSS 

2.1   Introduction 

The comparison of different spectrum sensing approaches has been already presented in Chapter 

1 and it is observed that energy detector spectrum sensing (EDSS) is commonly used for sensing 

the licensed spectrum. This sensing technique has significantly fewer computations and low 

complexity to implement. In EDSS, the energy of the received signal is presented in terms of test 

statistics (T(x)) and compared with the sensing threshold (λ) at CU to decide the sensing decision.  

When the T(x)≥ λ, the sensing decision of CU comes in favor of licensed channel being active 

otherwise idle. Since the sensing decision of CU is affected by the chosen value of threshold 

therefore, selection of threshold is crucial in EDSS. In addition, the key spectrum sensing 

performance metrics are the false-alarm and detection probabilities and these values are affected 

with the selection of threshold [120], [121], [185]. This effect of selection of threshold on false-

alarm and detection probabilities is also shown in Fig. 2.1, e.g. if the threshold (λ) increases, both 

𝑃𝑑  and 𝑃𝑓  decreases while these parameters increases with reduction in threshold (λ). 

 

Figure 2.1: Effect of threshold on sensing performance. 

Usually, EDSS employs fixed and dynamic threshold (FT and DT) selection schemes, which is 

also described in Section 1.3.1 of Chapter 1. In the fixed threshold (FT) method, constant false-

alarm rate (CFAR) approach is commonly employed to find the fixed value of threshold while in 

DT method, constant detection rate (CDR) and/or minimizing error probability (MEP) 

approaches are employed for computing the variable threshold value with SNR variation. 
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Moreover, in CFAR approach, threshold (λCFAR  or λ𝑓) is computed for the targeted value of false-

alarm probability (𝑃𝑓 ) [187]–[189], while in CDR approach, the sensing threshold (λCDR  or λ𝑚 ) is 

calculated for the desired or targeted value of detection probability (𝑃𝑑   ) [130], [190]–[192]. 

However, sensing error probability is minimized to find the value of sensing threshold in MEP 

approach (𝜆𝑀𝐸𝑃  or 𝜆𝑒  ) [185], [193], [194]. 

Different researchers have used above mentioned approaches to select the appropriate threshold 

for spectrum sensing to find the presence/absence of licensed user in the channel, which are 

detailed further in related work section of Chapter 2 and in Table 2.1.  

2.2    Related Work 

In this section, we have presented the related work on CFAR, CDR and MEP approaches which 

are as follows: 

2.2.1 CFAR and CDR Approaches 

As discussed above, in CFAR approach the threshold value is computed for targeted value of 

false alarm probability. In this perspective, Gandhi and Kassam [195] have employed the CFAR 

threshold selection approach to find out the status of licensed channel  and show that CFAR 

performance is highly degraded in the presence of noise variation. Further, in the presence of 

noise uncertainty, Kortun et. al. [196] have employed EVD to enhance the sensing performance 

and maximized the throughput. Moreover, forward-detection methods is employed in [187] to 

control the 𝑃𝑓  under multiple PUs environment. However to improve the 𝑃𝑑 , Badrawi and Kirsh 

in [197] have employed the CFAR and empirical mode decomposition (EMD) techniques. 

Recently, simultaneously sensing and transmission at CU is employed by the researchers in [198] 

to improved the throughput. Moreover in [199], CDR approach is employed and found the 

throughput.  Further, Gaurav and Sahu [200] improved the throughput of CU at low SNR by 

employing combination of CFAR and CDR approaches. Further, Zhang et al. [201] have also 

employed CDR approach and designed a framework for sensing time optimization and the power 

control. Moreover, in various literature [187], [195]–[197], [200], researchers have investigated 

on CFAR and CDR approaches. 
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2.2.2 MEP and other approaches 

In MEP approach, the threshold is computed by minimizing the sensing error probability. In 

[185], [202], the researchers computed the dynamic value of threshold  for Gaussian channel  

with MEP approach. Further, dynamic value of threshold is computed by Choi et.al. in [203] by 

considering the CU transmit power. Moreover, gradient descent algorithm is employed by Joshi 

et. al. [143][204] to obtain the dynamic value of sensing threshold without considering the CU’s 

transmitted power. Further, researchers in [205] found the dynamic value of threshold by 

considering the distance between CU and base station as well as maximum allowable 

transmission power of CU. Further, Yu et. al. [206] have considered variable sensing duration, 

dynamic threshold to achieve the targeted value of false-alarm and detection probabilities and 

suggested that dynamic threshold is a more appropriate method to achieve the desired value of 

detection instead of increasing the sensing duration.  

Moreover, the dynamic threshold is computed by Ling et. al. [120] whose dependence on signal-

to-interference plus noise ratio (SINR) is shown and maximized the throughput of their system. 

However, researchers in  [207] employed the information related to previous state of licensed 

channel to select the threshold and improved the sensing performance. Further for better 

utilization of spectrum, spectrum prediction techniques are employed by Ding et. al. in [208] 

which were based on channel utilization and resources of spectrum information. However, 

optimization of multiple parameters such as sensing time, sensing threshold and selection of CUs 

is employed by Kerdabadi et. al. in [134] and have maximized the throughput of CU. Further in 

[74], to minimize the sensing error probability, adaptive threshold is employed and sufficient 

protection is provided to licensed user. However, to enhance the probability of detection and 

minimize the sensing time, constant energy (CE) technique  is employed by Benedetto and Giunta 

[209]. Afterwards, the weighted-covariance-based detection (WCD) is employed by Jit et al. in 

[45] and shown that low correlation CU’s receiver antennas has reduced the detection probability 

in WCD. Therefore, Ljung-Box (LB) test is employed by Chen et.al. [210] to conquer problem of 

WCD and improve the detection probability. However, PU activity model is employed in 

adaptive spectrum sensing strategy (ASSS) by Xiong et. al. [211] to find the quick detection of 

free licensed channel. Further, Bayat and Aïssa [212] have considered the full duplex cognitive 
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radio and use the sleep period between the neighboring sensing period to improve the energy 

efficiency without any considerable deterioration in throughput. 

2.3    Problem Formulation and Contribution  

As per above discussion, the threshold is mainly selected with CFAR, CDR or MEP in EDSS. In 

[130], Verma and Sahu selected the threshold with CFAR and CDR approaches individually 

which provides target value of false-alarm or detection probabilities individually but not achieved 

both the desired values simultaneously. Further, they exploited the combination of CFAR and 

CDR approaches to select the threshold at different SNR in order to improve the overall 

throughput  [200]. In [200] the researchers achieved the improved throughput at low SNR 

however, both the desired values of sensing metric 𝑃𝑓  and 𝑃𝑑  have not been achieved at the same 

time, which is one of the challenging issues. Moreover, the optimality conditions for threshold 

selection have not considered by the researchers which is necessary to attain the desired 𝑃𝑓  and 

𝑃𝑑  simultaneously. Therefore in this chapter, we have presented the approach to select the 

optimal threshold in EDSS for targeted 𝑃𝑓  and 𝑃𝑑  simultaneously at low and high SNR. Further, 

the throughput is computed for the proposed approach which has satisfied the optimality limits 

for the threshold selection. The prospective contributions of this chapter are summed up as 

follows. 

 For a fixed samples (N) of received signal and primary SNR at CU (𝛾), threshold values 

are computed in CFAR, CDR and MEP approaches. 

 Since most of the authors have worked on the selection of threshold either by fixing the 

value of 𝑃𝑓  or 𝑃𝑑  individually but not simultaneously which degraded the sensing results 

at low SNR. Therefore, to improve the spectrum sensing performance, we have selected 

the threshold by considering both 𝑃𝑓  and 𝑃𝑑  simultaneously.  

 Thereafter, the condition for a single optimal threshold is analyzed to achieve the desired 

values of 𝑃𝑓  and 𝑃𝑑  simultaneously at all SNR. However, at low SNR region, we have 

observed that the threshold with CFAR approach is greater than that of the CDR 

approach (𝜆𝑓>𝜆𝑚), therefore the optimality condition for the selection of threshold has 

not been satisfied as discussed in detail in Section 2.5.1. Further, we have obtained the 
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optimal number of samples such that the same optimality condition is satisfied even at 

low SNR. 

 The closed-form expressions of different spectrum sensing performance metrics such as 

the probability of detection, the probability of false-alarm, and the probability of error 

have been computed for the proposed approach and compared with the state-of-the-art 

work. Thereafter, throughput for the proposed approach has been computed and compared 

with reported literature. 

Table 2.1 shows the major contributions and comparison with various reported literatures in the 

direction of threshold selection approaches. 

Table 2.1: Summary and comparison of literature employing different threshold selection methods. 

[Ref. No.] Threshold 

selection  

Major contribution Pros and cons  

[187], [195] CFAR  Maximized the detection 

probability 

 Multiple primary user environments have been 

considered.    

 Threshold selection through the proposed 

approaches is not appropriate when there is 

abrupt variation in noise.    

[143], 

[204] 

MEP, Gradient 

descent 

 Dynamic threshold approach has 

been employed to minimize the 

sensing error as compare to fixed 

threshold scheme. 

 Sensing performance has improved, and 

threshold value has been adapted according to 

the noise power of the channel. 

 Employed for wideband spectrum sensing. 

 Tradeoff between the sensing time and power 

consumption. 

[185] MEP  Closed form expression for miss-

detection probability has been 

derived for Rayleigh and 

Nakagami-m fading channels. 

 Sensing performance is measured at low SNR. 

 The desired value of sensing parameters has not 

been achieved at low SNR. 

[120] Variable threshold 

according to the 

SINR 

 Improved the transmission rate of 

CU by employing the dynamic 

threshold with respect to fixed 

threshold. 

 Transmission rate of CU is maximized  

 This approach is applied only for slotted 

spectrum sensing. 

[213] Threshold is 

randomly selected to 

minimize the sensing 

error. 

 Interference effect of other 

cognitive users on the sensing node 

of respective CU has been 

computed and sensing results show 

significant degradation due to 

interference effect.   

 Further, the sensing errors have 

been improved by proper selection 

of threshold. 

 Multiple CU environments have been 

considered.                                                                

 However, the cooperative spectrum sensing has 

not been employed to improve the sensing 

performance.                                              

 

[196] CDR, Eigen-value 

based spectrum 

sensing.  

 Eigen-value based spectrum 

sensing has provided the improved 

spectrum sensing performance in 

comparison to ED for noise 

uncertainty environment. 

  Further, the throughput of CU 

 Energy with minimum eigen-value (EME) 

based detector has provided higher throughput 

as compare to energy detector and maximum 

eigen-value based detector under noise 

uncertainty scenario.  

 However, this proposed approach requires 
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has been maximized at low SNR in 

the presence of noise uncertainty.  

multiple antennas. 

[214] 

 

Gradient based 

detection  

 

 Improved the detection 

probability at low SNR 

 

 This approach is useful in WBSS and variable 

noise floor environment to improve the 

detection of PU at low SNR.   

 The simulated probability of detection curves 

deviates with the theoretical ones for higher 

signal bandwidths. 

[197] 

 

Cell averaging CFAR 

and empirical mode 

decomposition 

 

 Use empirical mode 

decomposition (EMD) technique 

to improve the detection 

probability. 

 Identified multiple idle channels 

using multiple detectors in CU for 

the given frequency band. 

 

 Threshold selection is not affected with 

variation in noise and/ interference, therefore 

this approach could be blindly used for sensing 

the channel without prior knowledge of PU 

signal. 

  Sampling rate has been adapted to achieve the 

sensing performance which increases the 

implementation cost.  

 Miss detection has increased for lower valued 

of the false alarm even after increasing the 

sampling rate. 

[45] CFAR, Weighted 

Covariance based 

spectrum sensing 

 Achieved better sensing 

performance by employing the data 

aided weight to covariance matrix 

and employing multiple antennas at 

cognitive user. 

 It is a blind spectrum sensing.                                                                       

 Detection performance is improved even when 

there is low correlation between PU signals. 

[130], 

[200] 

CFAR, CDR, CFAR 

and CDR 

 

 In order to improve the 

throughput, the combination of 

both CFAR and CDR is employed 

to choose the threshold.   

 

 Achieved higher throughput at low SNR. 

  However, the desired value of both sensing 

parameters (𝑃𝑓< 0.1 and 𝑃𝑑> 0.9) at low SNR 

has not been achieved simultaneously. 

  Noise uncertainty and cooperative spectrum 

sensing is also not considered. 

[74] 

 

MEP, Covariance 

based spectrum 

sensing 

 Threshold selection is performed 

to provide protection to PU from 

CU signal. 

 

 Improved the sensing performance under noise 

uncertainty scenario.                

 At low SNR, the proposed approach is 

performing better than the ED however could 

not achieve the targeted detection probability.           

[215] 

 

Threshold is selected 

for efficient spectrum 

utilization. 

 Improved the sensing 

performance by jointly optimizing 

the detection threshold and sensing 

time. 

 Improved the spectrum utilization at low SNR.   

 Spectrum utilization is increased in single PU 

and CU scenario. However, single PU and CU 

is not a practical scenario. 

[207] Threshold is selected 

on the basis of prior 

channel state 

information. 

 Detection probability has been 

improved by employing the 

channel statistical information. 

 This approach is more effective when large 

number of samples is employed for sensing.  

[209] Variance of received 

signal energy over 

group of samples are 

defined and used for 

PU detection.  

 Detection of PU is fast with 

higher detection probability as 

compare to      conventional energy 

detection approach. 

 Sensing is fast and is generally employed when 

there is noise uncertainty in the channel.  

  Approach work effectively only when signal 

energy over a group of samples remains 

constant. 

[210] Employ Ljung-Box 

test for detection of 

PU, Covariance 

based SS. 

 Improved the sensing 

performance when there are low-

correlated antennas present at the 

CU. 

 It is a blind detection method.      

 The proposed method attains a significant 

detection performance improvement compared 

with the existing covariance-based methods in 

fading channel. 
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[134] 

 

Threshold selection 

to maximize the 

throughput. 

 Developed an approach to 

maximize the throughput by jointly 

optimizing the threshold value for 

sensing, sensing time, and selection 

of sensing and data transmission.  

 Improved the throughput and energy efficiency 

of cognitive radio under cooperative spectrum 

scenario.  

[198] 

 

CFAR 

 

 Applied the concept of 

simultaneous spectrum sensing and 

data transmission with single 

antenna to improve the throughput.  

 Successive interference 

cancellation (SIC) is employed to 

sense the channel state and 

decoding error effects on the 

sensing reliability is observed.   

 Detection performance is better as compare to 

conventional energy detector. 

 Employ single antenna at CR terminal 

 Cooperation among CU transmitter and CU 

receiver is required to employ this approach. 

[211] Random spectrum 

sensing strategy 

 By employing PU traffic pattern, 

an adaptive spectrum sensing 

strategy is proposed to determine 

the channel to be sensed which has 

high possibility of being idle.   

 Hardware requirement problem of multiband 

spectrum sensing is overcome by employing 

adaptive spectrum sensing. 

[212] 

 

Embedded Markov 

chain with full-

duplex 

 Analyzed the effect of sensing 

frequency on energy efficiency, 

throughput and probability of 

collision. 

 

 By considering proper sensing frequency, 

energy efficiency in full-duplex cognitive radio 

is improved without loss in throughput as 

compare to contiguous sensing. 

 For this approach, primary user’s arrival rate 

and departure rate on a channel should be 

known to the CU. 

Proposed 

approach 

CFAR, CDR, MEP 

 

 Optimal threshold is computed at 

low SNR which has jointly 

satisfied the sensing matrices i.e. 

detection probability ≥ 0.9 and 

false alarm probability ≤ 0.1. 

Further, the throughput is 

computed for the CR user. 

 

 Even at low SNR, the desired value of both the 

sensing parameters has been achieved by 

employing the adaptive threshold and optimal 

number of samples (ONS). 

  Throughput improvement is achieved in the 

proposed threshold selection approach in 

comparison to CDR however, less than CFAR 

approach. 

 

2.4    System Model 

In CRN, the key challenge is the incorporation of lesser priority CUs on the licensed channel 

which is not detrimentally affecting the communication of PU. Therefore, to recognize the actual 

state of PU before allowing the CU to access the licensed channel is a critical aspect of CRN 

system model. We have presented the proposed system model in Fig. 2.2(a), where single pair of 

PU and CU transceiver is considered. Further, we have assumed the unchanged state (active or 

idle) of PU activity during sensing process of CU [216], [217] and CU is executing periodical 

spectrum sensing in which sensing process repeats after T units of time and frame structure of CU 

is shown in Fig. 2.2(b). The frame structure of CU consists of P frames and each frame comprises 

sensing phase (𝑇𝑠) and transmission phase (𝑇 − 𝑇𝑠). 
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(a) 

 

(b) 

Figure 2.2: The proposed (a) system model and (b) frame structure of cognitive user [153]. 

 

The transmitted modulated signals and noise are assumed which are  Gaussian random variables 

with independent and identically distribution (IID). The phase shift keying (PSK) based complex-

valued signal and circularly symmetric complex Gaussian (CSCG) noise samples are assumed for 

the proposed system. Further, the received signal 𝑋 𝑛  at CU is represented in equation (1.1) of 

Chapter 1 and the test statistics (𝑇 𝑥 ) for EDSS is given below [218]: 

𝑇 𝑥 =
1

𝑁
 |𝑋 𝑛 |2𝑁−1
𝑛=0           (2.1) 

where, N is the total number of samples of the received signal at CU used for determining the 

energy. Under the binary hypothesis, the probability density function (PDF) of test statistics T x  

follows a Chi-square distribution with N degree of freedom for real valued noise. When we 

consider N>250, the PDF of T x  under binary hypothesis (𝐻0 and 𝐻1) followed the Gaussian 
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distribution [219]. In this context, 𝐻0 and 𝐻1 under the Gaussian approximation is represented as 

[153]: 

𝐻0: Ɲ 𝑁𝜎𝑛
2,𝑁𝜎𝑛

4 &𝐻1: Ɲ 𝑁𝜎𝑛
2 1 + 𝛾 ,𝑁𝜎𝑛

4 1 + 𝛾 2 , 

where 𝜎𝑛
2 is the noise power or noise variance and 𝛾 is the SNR received at CU due to PU. 

Moreover, the false-alarm and detection probabilities (𝑃𝑓  and 𝑃𝑑 )  are presented as follows [185]: 

𝑃𝑓=
1

2
 E𝑟𝑓𝑐  

𝜆−𝑁𝜎𝑛
2

 2𝑁𝜎𝑛
4
                      (2.2) 

𝑃𝑑=  
1

2
 E𝑟𝑓𝑐  

𝜆−𝑁𝜎𝑛
2 1+𝛾 

 2𝑁𝜎𝑛
4 1+𝛾 2

           (2.3) 

 𝑃𝑚 = 1 − 𝑃𝑑                                             (2.4) 

𝑃𝑒 = 𝑃𝑓 + 𝑃𝑚            (2.5)                                                               

where, Erfc(.) is the error function. 

2.5    Performance Analysis 

False-alarm, detection, and sensing error probabilities are the key performance parameters to 

determine the spectrum sensing results and these values can be computed with the help of 

equation (2.2), (2.3) and (2.5), respectively. Further, the desired values of the false-alarm, 

detection probability and number of samples affect the threshold value in EDSS as detailed in 

Section 2.5.2. Moreover, from Fig. 2.1 it is clear that, to achieve the preferred values of both the 

metrics i.e. 𝑃𝑓  and 𝑃𝑑 , is difficult because there exists a trade-off between these two with the 

selection of threshold. Therefore, optimal threshold selection is required which provide required 

value of 𝑃𝑓  and 𝑃𝑑 , concurrently. Consequently, optimal threshold condition is analyzed and 

satisfied the optimal threshold condition by employing optimal number of samples (N*) at low 

SNR. Further, optimal threshold condition and threshold selection approach, thresholds 

computations with CFAR, CDR and MEP approaches, critical SNR computation and throughput 

analysis have been illustrated in the next subsequent section of this chapter.  
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2.5.1 Optimal threshold condition 

It is observed from Fig. 2.1, that there is a direct and an inverse relation in 𝑃𝑓  and 𝑃𝑚  with the 

threshold (λ). Since in CFAR and CDR approaches, the threshold 𝜆𝑓  and 𝜆𝑚  are computed for the 

desired values of false-alarm and miss detection probabilities, respectively. Further, from Fig. 

2.1, it is obvious that 𝜆𝑓  needs to be as high as possible in order to minimize the 𝑃𝑓  while 𝜆𝑚  

needs to be as low as possible to minimize the 𝑃𝑚 . Therefore, we have concluded that single 

optimal threshold exist to achieve both the desired 𝑃𝑓  and 𝑃𝑚  values simultaneously, only when 

𝜆𝑓≤ 𝜆𝑚  (optimal threshold condition) [220]. 

2.5.2 Computation of different thresholds 

In CFAR approach, the threshold (𝜆𝑓) is computed with the help of equation (2.2) for the targeted 

or desired value of false-alarm probability (𝑃𝑓  or 𝑃𝑓_𝑓𝑖𝑥𝑒𝑑 ) and given as follows: 

𝜆𝑓 =   
2

𝑁
𝐸𝑟𝑓𝑐−1 2𝑃𝑓  + 1 𝑁𝜎𝑛

2         (2.6) 

In CDR approach, the threshold (𝜆𝑚 ) is computed with the help of equation (2.3) and equation 

(2.4) for the targeted or desired value of detection probability (𝑃𝑑   ) and given as follows 

𝜆𝑚 =    
2

𝑁
 1 + 𝛾 𝐸𝑟𝑓𝑐−1 2(1− 𝑃𝑚    ) +  1 + 𝛾  𝑁𝜎𝑛

2       (2.7) 

Further in MEP approach, the threshold (𝜆𝑒) is computed by minimizing the 𝑃𝑒  with respect to the 

threshold and given as follows [220]: 

𝜆𝑒 =  
𝑁𝜎𝑛

2

2
 1 + 1 +

2 2+𝛾 𝑙𝑛  1+𝛾 

𝑁𝛾
  

1+𝛾

1+
𝛾

2

                                     (2.8) 

2.5.3 Proposed optimal threshold selection approach 

As mentioned in Section 2.5.1, the optimal threshold value is selected only when the optimality 

condition for the threshold is satisfied. Firstly, we have found the threshold values 𝜆𝑓  and 𝜆𝑚  

with the help of equation (2.6) and equation (2.7) and all possible conditions of 𝜆𝑓  and 𝜆𝑚  are 

shown in Fig. 2.3. It is obvious from Fig. 2.3(a), 𝜆𝑓<𝜆𝑚  (the threshold value with CDR approach 
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is greater than the CFAR approach) and optimal threshold condition is fulfilled. Hence, any 

threshold value considered as optimal threshold which is in between λf  and  λm . 

 

    (a)𝜆𝑓 < 𝜆𝑚               (b)𝜆𝑓 = 𝜆𝑚         (c)𝜆𝑓 > 𝜆𝑚  

Figure 2.3: The optimal threshold selection. 

Moreover in Fig. 2.3(b), 𝜆𝑓 =  𝜆𝑚  and here again, the optimal threshold condition is fulfilled, and 

either 𝜆𝑓  or 𝜆𝑚  can be considered as an optimal threshold. However, in Fig. 2.3(c), 𝜆𝑓 > 𝜆𝑚 , the 

optimal threshold condition is not satisfied. Therefore with the help of equation (2.9), we have 

found the optimal number of samples (𝑁∗) to satisfy the optimal threshold condition and achieved 

the desired 𝑃𝑓  and 𝑃𝑑  simultaneously.  𝜆𝑓
∗
, 𝜆𝑚

∗
 and λe

∗
are the threshold values with CFAR, CDR 

and MEP approaches when N is replaced by 𝑁∗ in equation (2.6), (2.7), and (2.8), respectively. 

Further, the value of optimal number of samples is given as: 

𝑁∗ =
1

𝛾2  𝑄
−1 𝑃𝑓  − 𝑄

−1 𝑃𝑑     2𝛾 + 1 
2
        (2.9) 

where 𝑄−1(. ) is the inverse complementary distribution function of the standard Gaussian 

distribution. Further, in Fig. 2.4 we have presented the flow diagram of the proposed optimal 

threshold scheme. 

2.5.4 The condition for critical SNR  

The critical SNR (𝛾𝑐) is defined as the SNR at which 𝜆𝑓  = 𝜆𝑚  and below which optimality 

threshold condition will not be fulfilled. We have computed the minimum 𝑆𝑁𝑅 (𝛾) called critical 

SNR (𝛾𝑐), at which the optimality threshold condition is fulfilling and this value is computed by 

comparing equation (2.6) with equation (2.7): 

𝛾𝑐 =  
 

2

𝑁
 𝐸𝑟𝑓𝑐 −1 2𝑃𝑓     −𝐸𝑟𝑓𝑐

−1 2𝑃𝑑      

1+ 
2 

𝑁
𝐸𝑟𝑓𝑐 −1 2𝑃𝑑     

        (2.10) 

λf

λm

λm

λf

λopt λ f = λm 

= λopt
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Start

If λf  ≤ λm ?

define N, σn
2

 , 

γ, Pf_fixed ,  

Pd_fixed

find the value     

     of λf, λm , λe  at  

N for  

corresponding 

value of γ       

No optimum 

value of λ for 

predefined 

value of N

No

Compute the 

value of N*

Find the value     

     of λf*, λm* ,λe* at 

N*  for 

corresponding value 

of γ              

 λopt  =   λf* = λm* = λe*

End

λf* = λm* = λe*

If λf  ≤ λe ≤ λm ?

 λopt =   λe

If λe < λf ?

No

 λopt =   λf

Yes

 λopt =   λm

No

Yes

Yes

 

Figure  2.4: Flow chart for optimal threshold selection. 

2.5.5 Throughput computation 

We have considered following two cases for throughput computation of CU. In Case-1, the PU is 

missing on the licensed channel and no false-alarm is generated by the CU while in Case-2, the 

PU is there on the licensed channel and it is not perceived by the CU. Moreover, 𝑅0(𝑇𝑠) and 

𝑅1(𝑇𝑠), are the throughput in first and second case, respectively. Further, 𝑃 𝐻0  and 𝑃 𝐻1  are 

considered probabilities of channel being idle and active respectively in a specified frequency 

band therefore, average throughput, R 𝑇𝑠  of CU has been computed as follows [153]. 
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𝑅0 𝑇𝑠 =  
𝑇−𝑇𝑠

𝑇
  1 − 𝑃𝑓 𝑙𝑜𝑔2 1 + 𝛾𝑠       (2.11) 

𝑅1 𝑇𝑠 =  
𝑇−𝑇𝑠

𝑇
  1− 𝑃𝑑 𝑙𝑜𝑔2  1 +

𝛾𝑠

1+𝛾
       (2.12) 

    R 𝑇𝑠 = 𝑃 𝐻0 𝑅0 𝑇𝑠 + 𝑃 𝐻1 𝑅1 𝑇𝑠       (2.13) 

where 𝛾𝑠 is the CU SNR.  

2.6    Result and Discussion 

This section presents the performance results of spectrum sensing performance parameters 

namely the false-alarm, detection and sensing error probability. In addition, the values of 

threshold and throughput through CFAR, CDR, and MEP approaches have been shown in 

numerically simulated results and are judged against the proposed optimal threshold selection 

approach. MATLAB 2010 has been used for the simulation and the simulation parameter’s values 

are chosen as per IEEE 802.22 wireless regional area network (WRAN) standard. Theses 

simulation parameters along with their values are presented in Table 2.2. We have assumed 250 

minimum number of samples based on which the computed upper limit of SNR will be -8dB 

[219]. Further, the frame duration (T) and the sensing time (Ts)  are assumed to be of 100 msec. 

and 2.5 msec. respectively. We have selected the parameters based on reference papers from 

which we have compared our results and these are standard value which is considered by 

researchers in their research articles. 

Table 2.2: The simulation parameters for the proposed CRN. 

Parameter Value Parameter Value 

N 15000 P(𝐻0) 0.8 

𝛾𝑠  20dB P(𝐻1) 0.2 

𝑇𝑠 2.5msec 𝑃𝑓    0.1 

T 100msec 𝑃𝑑    0.9 

 

The analytical results presented in Fig. 2.5 shows the threshold value variations in the CFAR 

(𝜆𝑓), CDR (𝜆𝑑), and MEP (𝜆𝑒) approaches with the received SNR of the primary user (γ). It is 

clear that with change in γ in CFAR approach, the threshold is constant however its value is 

augmented with increase in 𝛾 through CDR and MEP approaches. We have stated the term 

critical SNR (𝑆𝑁𝑅𝑐  or 𝛾𝑐) as that PU SNR value (𝛾) below which 𝜆𝑓>𝜆𝑚 .  Further, it is illustrated  
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in Fig. 2.5 that at higher SNR values i.e. at SNR ≥ 𝑆𝑁𝑅𝑐 , the optimal threshold condition 

(𝜆𝑓 < 𝜆𝑚 ) is already true, moreover the threshold value is in between 𝜆𝑓  and 𝜆𝑚  for MEP 

approach.  

 

Figure 2.5: The variation of threshold value with SNR (γ) for CFAR, CDR and MEP approaches at N=15000. 

 

Figure 2.6: Sensing performance parameters (𝑃𝑓  ,𝑃𝑑  ,𝑃𝑒  ) variation with SNR (γ) for CFAR, CDR and MEP 

approaches at N =15000. 
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However, it is obvious from Fig. 2.5 that the optimal threshold condition is not satisfied in the 

low SNR values i.e. at SNR<𝑆𝑁𝑅𝑐 , since this region has following measurement: 𝜆𝑓 > 𝜆𝑚 . In 

addition, the transformation of sensing performance parameters (𝑃𝑓 ,𝑃𝑑 ,𝑃𝑒) with SNR for CFAR, 

CDR and MEP approaches is presented in Fig. 2.6. For CFAR approach at each value of 𝛾, the 𝑃𝑓  

is fixed (0.1), however the 𝑃𝑑  value is less (<0.9) for 𝑆𝑁𝑅 ≤ 𝑆𝑁𝑅𝑐  and shows an increased 

variation till the point where 𝛾 becomes equal to 𝑆𝑁𝑅𝑐 . Further, CDR approach fixed the 𝑃𝑑  

value to 0.9 for all values of 𝛾 as is clear from Fig. 2.6 however the 𝑃𝑓  value is significantly more 

(i.e >0.1) for 𝑆𝑁𝑅 ≤ 𝑆𝑁𝑅𝑐 . Also, it is illustrated from Fig. 2.6 that in CFAR and CDR 

approaches, the probability of error (𝑃𝑒) is approximately same. Moreover, MEP approach has 

given a better error probability (𝑃𝑒) in comparison to the CFAR and CDR approaches at all 𝛾. 

However MEP approach, has again not achieved the desired of 𝑃𝑓  and 𝑃𝑑   values simultaneously 

in 𝑆𝑁𝑅 ≤ 𝑆𝑁𝑅𝑐  region. Fig. 2.6 draws the conclusion that the probability of error (𝑃𝑒) decreases 

with primary received SNR (𝛾) in all the threshold selection approaches and out of above three 

mentioned threshold selection approaches, MEP is providing least value of sensing error (𝑃𝑒). 

Hence, any approach among CFAR, CDR and MEP does not fulfill the sensing parameter’s 

requirements of CR i.e. 𝑃𝑓<0.1 and 𝑃𝑑>0.9, simultaneously at 𝑆𝑁𝑅 ≤ 𝑆𝑁𝑅𝑐 . Further, the 

throughput variation of CU with SNR, in CFAR, CDR and MEP approaches with preset number 

of samples (N=15000) is shown in Fig. 2.7.  

 

Figure 2.7: Throughput variation of CU with SNR (𝛾) for CFAR, CDR and MEP approaches at N=15000. 
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From Fig. 2.7, it is clear that the throughput value decreases in CFAR approach with SNR from 

5.812 bps/Hz to 4.674bps/Hz and afterward becomes constant. However in CDR and MEP 

threshold selection approaches, its value increases from 0.7684bps/Hz and 3.414bps/Hz to 

5.319bps/Hz and 5.194bps/Hz, respectively and remains constant thereafter. It is observed from 

the results that at 𝑆𝑁𝑅 ≤ 𝑆𝑁𝑅𝑐 , the throughput is high with CFAR approach, however its value is 

more in CDR approach for 𝑆𝑁𝑅 > 𝑆𝑁𝑅𝑐 . Therefore in context of above results, we have 

proposed a method in Section 2.5.3 to attain the optimal threshold condition in 𝑆𝑁𝑅 < 𝑆𝑁𝑅𝑐  

region for which the optimal number of samples (N*) are computed to get the required 𝑃𝑓  and 𝑃𝑑  

values, simultaneously. Further, the sensing parameters (𝑃𝑓 , 𝑃𝑚 ) performance for the proposed 

approach is compared with [200] and presented in Fig. 2.8.  

 

Figure 2.8: Sensing performance parameters (𝑃𝑓  , 𝑃𝑑  ) variation with SNR (γ). 

From the results of the proposed approach, it is illustrated that both the desired 𝑃𝑓  = 0.1 and 𝑃𝑑  = 

0.9 values are achieved, simultaneously in 𝑆𝑁𝑅 ≤ 𝑆𝑁𝑅𝑐  region however in [200], the authors 

have first fixed any one of the sensing performance parameter (either 𝑃𝑓  or 𝑃𝑑 ) and then have 

tried to improve the other (𝑃𝑑  or 𝑃𝑓), as is clear from Fig. 2.8.  Further, the authors in [200] have 

failed to achieve the required spectrum sensing performance improvement in 𝑆𝑁𝑅 ≤ 𝑆𝑁𝑅𝑐  

region. Moreover, the comparative results of the achieved throughput are presented in Fig. 2.9 for 
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different SNR with fixed and optimal number of samples (FNS & ONS) through CFAR, CDR 

and MEP approaches.  

 

Figure 2.9: Variation of throughput with for the fixed and optimal number of samples (ONS) for CFAR, CDR and 

MEP approaches. 

For further analysis, four possible cases are considered in the system as: a) Case-1 𝑆𝑁𝑅<𝑆𝑁𝑅𝑐  

with fixed numbers of samples (FNS): the throughput in this case is more with CFAR approach 
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have adapted the samples as per SNR (ONS when 𝑆𝑁𝑅<𝑆𝑁𝑅𝑐  and FNS when 𝑆𝑁𝑅 ≥𝑆𝑁𝑅𝑐), is 

shown in Fig. 2.10 and compared with [200]. 

 

Figure 2.10: Throughput variation with SNR (γ) for the proposed approach. 

It is observed from Fig. 2.10 that the significant performance improvement is achieved in the 

proposed approach in contrast to the CDR approach when SNR<𝑆𝑁𝑅𝑐 . It is seen that the 

proposed approach has approximately 24.63% improvement in the throughput, at SNR equals to -

18 dB (near to 𝑆𝑁𝑅𝑐), in comparison to the CDR approach. The percentage improvement in the 

proposed approach throughput is significantly high compare to the CDR when SNR is decreased. 

This is because the throughput is reducing in the CDR approach with decrease in the SNR as is 

clear from Fig. 2.10. It is obvious from the results that the CFAR throughput is better than the 

proposed method but at the cost of lower protection of PU, due to its significantly less detection 

probability value shown in Fig. 2.8.  

Table 2.3: The comparison table of the simulation results. 

 CFAR CDR MEP Proposed 

SNR 

(dB) 

𝑷𝒇 𝑷𝒅 Throughput 

(bits/sec/Hz) 

𝑷𝒇 𝑷𝒅 Throughput 

(bits/sec/Hz) 

𝑷𝒇 𝑷𝒅 Throughput 

(bits/sec/Hz) 

𝑷𝒇 𝑷𝒅 Throughput 

(bits/sec/Hz) 

-17 0.1 0.872 4.776 0.127 0.9 4.659 0.109 0.516 4.776 0.1 0.9 4.947 

-21 0.1 0.379 5.478 0.628 0.9 2.077 0.307 0.569 4.013 0.1 0.9 4.935 

-25 0.1 0.186 5.730 0.815 0.9 1.088 0.415 0.679 3.592 0.1 0.9 4.925 

-30 0.1 0.123 5.812 0.877 0.9 0.768 0.468 0.883 3.390 0.1 0.9 4.874 
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Further, the analysis and comparison of the different results of the threshold selection approaches 

is presented in Table 2.3. 

2.7    Conclusion 

In this chapter, CFAR, CDR and MEP approaches are explored for threshold computation and to 

achieve the desired values of 𝑃𝑓  and 𝑃𝑑  simultaneously, optimality condition for threshold 

selection is analyzed. Further, the computation of SNR as a critical SNR (𝑆𝑁𝑅𝑐) below which the 

optimality condition is not satisfied, has been performed. Afterwards, we have proposed an 

approach for low SNR (𝑆𝑁𝑅<𝑆𝑁𝑅𝑐  or  𝛾 < 𝛾𝑐 ) region in order to satisfy the optimal threshold 

condition and achieved the desired values of 𝑃𝑓  and 𝑃𝑑  . Further the throughput comparison with 

our proposed approach is done with reported literature and perceived that at low SNR, throughput 

for the proposed approach is greater than the MEP and CDR approaches however, lower than that 

of CFAR approach. Moreover, the throughputs achieved using MEP, CDR, and CFAR 

approaches are not fulfilling the desired 𝑃𝑓  and 𝑃𝑑  values when compared with the proposed 

approach. Hence with our proposed approach, we have attained the maximum throughput while 

accomplishing the desired 𝑃𝑓  and 𝑃𝑑  simultaneously at all considered SNR. Further at 𝛾 equals to 

-18 dB (near to SNRc), there is  approximately 24.63% improvement in throughput with our 

proposed approach when compared with CDR approach. However, the proposed method 

presented in this chapter considered only AWGN and non-cooperative scenario. Therefore, in 

Chapter 3 we have considered the cooperative spectrum sensing in fading channels. 
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CHAPTER 3  

THRESHOLD SELECTION EFFECTS IN FADING CHANNEL 

UNDER COOPERATION 

 

3.1     Introduction  

The sensing results in non-cooperative spectrum sensing may be inaccurate under real wireless 

scenario i. e destructive channel conditions (multipath fading, shadowing and non-line-of-sight 

communication) between the target-under-detection and the cognitive radios. Therefore, to 

increases the reliability under real wireless scenario, individual sensing results of multiple CUs 

are shared among each other through CSS by exploiting spatial diversity among cognitive users 

[221]. CSS can be applied between homogeneous or heterogeneous network and across the OSI 

layers. In CSS, voting rule is commonly employed by researchers [221] in which the number of 

cognitive user that vote for the presence of the licensed channel are counted and compared 

against a given threshold. For hard based CSS, each CU sends the one bit sensing decision to FC, 

while in soft decision based CSS, a quantized version of local sensing decision is sent to the FC. 

Moreover, it is reported in the literature that the soft decision combination provides better gain 

over hard decision combining but at the cost of high reporting bandwidth. Therefore, in this 

chapter, we have employed centralized cooperative spectrum sensing (C-CSS) technique in which 

hard voting rules (AND, OR and Majority) are employed. Several researchers have considered 

different fading environments and selected the threshold by employing CFAR, CDR or MEP 

approaches in CSS and their key contributions are described in related work section of this 

chapter.  

3.2     Related Work and Problem Formulation 

The closed-form expressions of detection probability for the Rayleigh and Nakagami-m fading 

channels are presented and the effect of diversity schemes on sensing performance of CR while 

employing CFAR threshold approach is analyzed in  [222]. Further, the selection of threshold by 

minimizing the error probability is computed by Atapattu et.al. [185], [220] for AWGN, Rayleigh 

and Nakagami-m fading channels and they have analyzed the sensing performance of the CR with 
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diversity and cooperation [220]. However, the sensing performance of cooperative spectrum 

sensing for other fading channels such as Rician, Hoyt, Weibull and Lognormal fading is 

discussed by Nallagonda et. al. [111]. Several researchers employed CSS [111], [223]–[227] 

approach to improve the sensing performance of CR under different fading channels however, at 

the cost of increased overhead bits for cooperation [224]. In addition, Vien et.al. [225], [226] 

have proposed an approach to select the CU in cooperation to reduce the power consumption by 

employing reduced overhead bits and improved the throughput. Moreover, Sun et.al. [228] 

computed the approximation of detection probability over slow fading channel but the 

computation of detection probability has some truncation errors due to infinite numbers in the 

summation part. This problem is resolved by Patil et.al. [229] for different fading channels. The 

throughput analysis for noise plus generalized 𝐾 − 𝜇 and 𝜂 − 𝜇 fading channels is performed in 

[223] by using CFAR approach under cooperative spectrum sensing scenario. Most of the 

researchers have employed the threshold selection with CFAR approach [200], [222], where as 

Atapattu et.al. [185], [220] have used MEP approach. In conclusion, Table 3.1 presents the work 

of various researchers with considered channel models and threshold selection approaches in 

EDSS for cooperative and non-cooperative spectrum sensing techniques.  

Several researchers have employed the threshold selection techniques in spectrum sensing using 

CFAR or MEP approach and analyzed the sensing performance of CU. Gaurav and Sahu [200] 

have considered the threshold with CFAR approach and computed the throughput for AWGN 

channel in a non-cooperative scenario. Further, Atapattu et.al. [220] have computed the threshold 

with MEP approach for AWGN, Rayleigh and Nakagami channels by considering cooperative 

scenario, however they have applied individual OR fusion rule. Further, the sensing performance 

of CRN under several fusion (AND, OR, Majority) rules for different fading environments is 

analyzed by Nallagonda et.al. [111]  and have employed threshold with CFAR. To the  best of the 

author’s knowledge, none of the literatures have presented the effect of threshold selections 

approaches on throughput for different fading channels under cooperative and non-cooperative 

scenarios. Therefore, in this chapter, we have presented throughput as well as total error (sensing 

error) probability analysis of CRN using CFAR and MEP approaches for cooperative and non-

cooperative scenario under different fading channels. Further, the author’s potential contributions 

in this chapter are as follows. 
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 We have analyzed the effect of SNR and variations in number of samples of the received 

signal on ROC curve of CRN under different fading channels for non-cooperative and 

cooperative scenario while employing fixed threshold approach. In this context, we have 

investigated the dominant parameter affecting the ROC curve.  

 Further, the sensing performance of CRN is analyzed under ROC curve with different 

cooperation rules and its consequences have been observed over spectrum sensing and 

throughput. 

 Afterwards, we have analyzed the need of dynamic threshold in energy detector which is 

function of SNR and is providing more accuracy at low SNR than that of the fixed threshold 

approach in terms of less sensing error. 

 In addition, we have compared the effect of selection of threshold using fixed (CFAR) and 

dynamic (MEP) threshold selection approaches on non-cooperative and cooperative (Majority 

rule) CRN under AWGN, Rayleigh and Nakagami-m fading channels. Since the earlier 

literature lacks the computation of throughput and total error probability with MEP approach 

in CSS under different fading channels, therefore this chapter has provided throughput and 

total error probability computation with MEP as well as with CFAR approaches under CSS 

(Majority rule) in fading environment. 

Table 3.1: Summary of the related work of spectrum sensing employing energy detection techniques in multipath 

fading environments. 

 [Ref. 

No.] 

Channels Key approaches Contribution 

[222], 

[230] 

 

Rayleigh and 

Nakagami-m fading 

channels 

 CFAR 

 Various diversity techniques 

 Computed closed form expressions for 

detection probability.  

 Sensing performance comparison with and 

without diversity techniques. 

[111] Rician, Hoyt, 

Weibull and 

Lognormal fading 

channels 

 CFAR 

 CSS 

 

 Shown the impact of different fading 

parameters and number of cooperative users on 

sensing performance of CR.  

 Sensing performance comparison between 

cooperative and non-cooperative scenario. 

[224] Rayleigh fading 

channel 

 CSS 

 Optimal selection of sensing time 

and number of CUs. 

 Throughput analysis is presented by 

considering the overhead of CSS. 

 Two-stage sensing performed to improve the 

sensing performance. 

[225], 

[226] 

AWGN, Rayleigh, 

and Nakagami-m 

fading channels 

 Hybrid double threshold 

 CSS 

 Algorithm for selection of CUs in 

CSS.   

 Improved the sensing performance of CUs.                              

 Minimized the power consumption of CRN by 

reducing the cooperative overhead bits.   
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[231] Nakagami fading 

channel 

 CSS  

 Formulation of threshold in terms 

of SNR 

 

 Shown the trade-off between sensing time and 

achievable throughput. 

 Global false alarm probability was found in 

terms of SNR limit in the threshold expression 

below which outage on detection probability 

occurs. 

[232] Nakagami-m 

channel 

 Noise uncertainty  

 Double threshold 

 Improved the sensing performance with double 

threshold.         

 Analyzed the effect of noise uncertainty at low 

SNR. 

[233] Rayleigh fading 

channels 

 Hybrid spectrum sensing and 

spectrum monitoring 

 Analyzed the problem of spectrum monitoring 

in fading channels while CUs apply different 

diversity combining methods,          

 Reduced the sensing time and improved the 

channel utilization of CUs 

[234] 𝐾 − 𝜇 shadowed 

fading channel 

 Derived the detection probability 

in terms of sum of Gauss hyper-

geometric functions,  

 Dynamic spectrum sensing cycle 

(SSC) to reduce the system 

latency 

 Shows the detector performance improvement 

with dynamic SSC as compare to fixed SSC. 

[235] 𝐾 − 𝜇 fading 

channels under 

moderate and severe 

fading condition 

 Derived the expression for 

average probability of detection, 

 Square-law selection (SLS) 

diversity  

  Collaborative detection scenarios. 

 Sensing performance is improved with increase 

in number of CR or by increasing the diversity 

combining branches.    

[227] Nakagami-m and 

Nakagami-q, 

 Improved energy detector 

 CSS 

 Mobility of CU 

 Analyzed the sensing performance of CR by 

considering CU mobility. 

[223] 𝐾 − 𝜇 and 𝜂 − 𝜇 

fading 

 CFAR  

 CSS 

 An expression of detection probability of a 

single CU is derived over noise, 𝐾 − 𝜇 and  

𝜂 − 𝜇 fading channels. 

[185], 

[220] 

AWGN, Rayleigh 

and Nakagami-m 

fading channels 

 MEP 

 Diversity  

 Cooperative spectrum sensing 

(CSS) 

 Computed optimal threshold to minimize the 

error probability. 

 Improvement in sensing performance of CR 

with different diversity combining or 

cooperation techniques. 

[200] AWGN  CFAR  

 CDR 

 Analyzed the throughput of CR with CFAR 

and CDR threshold selection approaches. 

Proposed 

 

AWGN, Rayleigh 

and Nakagami-m 

 CFAR 

 MEP 

 CSS 

 The effect of SNR and variation of number of 

samples is analyzed on sensing performance of 

CR. 

 Investigated the sensing performance of CR 

with ROC curve under non-cooperative and 

cooperative scenario,  

 Examined the need of dynamic threshold 

which is the function of SNR for accurate 

detection of licensed users.  

 Throughput analysis of CR using CFAR and 

MEP approaches with cooperative and non-

cooperative scenario. 

 

3.3    System Model and Performance Analysis  

In the proposed system model, we have considered a PU transmitter with M number of CR nodes 

and one fusion center (FC). The fading environment is considered between PU transmitter and 
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CR as shown in Fig. 3.1. Further, the cooperation among CUs is considered where CU transmits 

their local decision to FC then several cooperation rules (AND, OR & Majority) are applied at FC 

to take final decision about the PU’s presence or absence on the channel [83], [236]. However, 

we have considered that each CR is employing the periodical spectrum sensing scheme in which 

the frame repeats itself after T units of time and each frame comprises sensing and reporting 

phase of 𝑇𝑠 and transmission phase of duration (𝑇 − 𝑇𝑠)  as shown in Fig. 2.2(b) of Chapter 2. 

 

Figure 3.1: Schematic of the proposed cognitive radio network system model  [111]. 

Further, the performance of spectrum sensing in cognitive radio network is measured in terms of 

the false-alarm and detection probabilities. For the additive white Gaussian noise (AWGN) 

channel, these values are computed using equation (2.2) and (2.3), respectively. Further, the false-

alarm probability is independent on the signal-to-noise (SNR) value, therefore its value remains 

same for all the fading channels [220]. However, the average detection probability (𝑃𝑑
𝑓    
) over any 

fading channel is computed by averaging the detection probability over all SNR as shown in 

equation (3.1) [111]. 

𝑃𝑑
𝑓    

=  𝑃𝑑 𝛾, 𝜆 
∞

0
𝑓 𝛾 𝑑𝛾          (3.1) 

 

where𝑓 𝛾 , 𝑃𝑑 𝛾, 𝜆 and 𝑃𝑑
𝑓    
  are the SNR distribution of fading channel, detection probability and 

average value of detection probability in the considered CRN fading channels. The detection 

probability for different fading channels (Rayleigh and Nakagami-m) is presented as follows: 

PU-Tx

CU 

1

CU 
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CU 
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3.3.1 Detection probability 

This section illustrates the expressions for the detection probability of CR over different fading 

channels as follows. 

3.3.1.1    Rayleigh fading channel 

The Rayleigh fading mainly occurs when there is no dominant path between PU and CU and the 

received signal amplitude at CU follows the Rayleigh distribution. Further, the SNR distribution 

for Rayleigh fading channel and its detection probability at CR is expressed by equation (3.2) and 

(3.3), respectively [185] . 

 

𝑓𝑟𝑎𝑦  𝛾 =  
1

𝛾 
𝑒
− 

𝛾

𝛾 
 
                                 (3.2) 

𝑃𝑑
𝑟𝑎𝑦      = 1 − 𝑃𝑚
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𝛾  2𝑁
 

 

 
 
 

 
 
 
 
 
 

     (3.3) 

3.3.1.2   Nakagami-m fading channel 

The Nakagami-m fading is the general multipath fading scenario which mainly depends on the 

value of m (shape parameter) [237]. It is considered as Rayleigh fading when m = 1 and AWGN 

for m =∞. The SNR distribution and detection probability for Nakagami-m fading channel is 

given by equation (3.4) and (3.5), respectively [185], [229]: 

 

𝑓𝑁𝑎𝑘𝑎  𝑥 =
 
𝑚

𝛾 
 

𝛤 𝑚 

𝑚

 𝑥𝑚−1 𝑒
−
𝑚

𝛾 
𝑥

      𝑚 ≥ 0.5                   (3.4) 

𝑃𝑑
𝑁𝑎𝑘𝑎        = 1 − 𝑃𝑑

𝑁𝑎𝑘𝑎        = 1 −
 
𝑚

𝛾 
 
𝑚

2𝛤 𝑚 
 (𝑥𝑚−1)  𝑒

−
𝑚𝑥

𝛾  𝐸𝑟𝑓𝑐
∞

0
  

𝑁

2
𝑥 + 

𝑁𝜎𝑛
2−𝜆

 2𝑁𝜎𝑛
2       (3.5) 

 

where, Γ (.) is the complete gamma function. 
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3.3.2 Selection of threshold 

The sensing performance of CRN is affected with the selection of threshold as already shown in 

Fig. 2.1. As is clear from Fig. 2.1 that the increase in the threshold (λ), the 𝑃𝑓  decreases while 𝑃𝑚  

increases, therefore the sensing performance is optimal when threshold is selected at the 

intersection of probability density function (PDF) of binary hypothesis 𝐻0 and 𝐻1 [238]. Though 

employing CFAR approach, the threshold value (𝜆𝑓) remains same for all channels and it is 

expressed by equation (3.6), however the selection of threshold with MEP approach (𝜆𝑒) for the 

Rayleigh and Nakagami-m fading channel is given by equation (3.7) and (3.8) [220]. 

𝜆𝑓(𝐴𝑊𝐺𝑁 𝑜𝑟 𝑅𝑎𝑦 𝑜𝑟 𝑁𝑎𝑘𝑎) =   
2

𝑁
𝐸𝑟𝑓𝑐−1 2𝑃𝑓_𝑓𝑖𝑥𝑒𝑑  + 1 𝑁𝜎𝑛

2       (3.6) 

𝜆𝑒 𝑅𝑎𝑦 =  1 +
1

𝑁𝛾 
− 

2

𝑁𝜋
+ 

2

𝑁
 

1

𝜋
+ 

2𝑁

𝜋
𝛾 − 1  𝑁𝜎𝑛

2        (3.7) 

𝜆𝑒 𝑁𝑎𝑘𝑎 =  1 +
2

𝑁𝛾 
−

1

2 2𝑁
  𝜋 −  𝜋 − 8 + 2𝑁𝛾 2  𝑁𝜎𝑛

2                   (3.8) 

In the result section of this chapter, we have illustrated the effect of selection of threshold along 

with cooperation of cognitive users spectrum sensing in the fading environment over sensing 

performance of ED. 

3.3.3 Cooperative spectrum sensing 

In CRN, the multipath fading is prominent phenomenon due to which the received signal at CR 

deteriorates. In the deep-fade scenario, the signal at CR user is deteriorated by the surrounding 

environment, which results the degradation of sensing performance. For this environment, the 

cooperation among CUs is useful to enhance the sensing performance of deep-faded CRN [83], 

[220]. Several researchers have worked on cooperative spectrum sensing (CSS) scenarios in 

which the FC receives the local decision of CUs and combine all the sensing results to yield the 

final decision about the status of the PU on the channel. In general, three cooperative rules (AND, 

OR and Majority rule) are employed to take the decision, and the overall false-alarm (𝑄𝑓) and 

detection probability (𝑄𝑑 ) at the FC is given as [83]: 

𝑄𝑓 =    
𝑀
𝑙
 𝑀

𝑙=𝑘  𝑃𝑓 
𝑙
 1 − 𝑃𝑓 

𝑀−𝑙
          (3.9) 
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𝑄𝑑 =    
𝑀
𝑙
 𝑀

𝑙=𝑘  𝑃𝑑 
𝑙 1− 𝑃𝑑 

𝑀−𝑙         (3.10) 

𝑄𝑒 = 𝑄𝑓 + (1− 𝑄𝑑)         (3.11) 

where, 𝑄𝑑 ,𝑃𝑑 ,𝑀 and k are the total detection probability at FC, detection probability of each 

CUs, number of CUs and the number of CR terminals employed for cooperation, respectively. In 

the expressions (3.9) or (3.10) at k=1, M/2 and M, FC follows OR, Majority & AND cooperative 

rules, respectively. 

3.3.4 Throughput computation 

The perspective performance evaluation parameter that is the throughput of CRN is defined as the 

number of bits received through the channel in a given time period per unit band width. We have 

considered following two cases for throughput computation of CU. In the First case, no false-

alarm is generated and the PU is missing on the channel (represented as 𝑅0). However, the 

throughput for the Second case is computed for the assumption that PU is present on the channel 

but not detected by the CU (represented as 𝑅1). Therefore, the average total throughput for CU in 

both cases is denoted by R which is described as follows [153]. 

𝑅0 =  
𝑇−𝑇𝑠

𝑇
  1 − 𝑃𝑓 𝑙𝑜𝑔2 1 + 𝛾𝑠        (3.12) 

𝑅1 =  
𝑇−𝑇𝑠

𝑇
  1− 𝑃𝑑 𝑙𝑜𝑔2  1 +

𝛾𝑠

1+𝛾
        (3.13) 

𝑅 = 𝑃 𝐻0 𝑅0   +    𝑃 𝐻1 𝑅1        (3.14) 

where, T is the total duration of frame, 𝑇𝑠 is the sensing and reporting time of CR, 𝛾𝑠 is the SNR 

for secondary link. However, the throughput in case of CSS is computed by replacing  𝑃𝑓  with 𝑄𝑓   

and 𝑃𝑑  with 𝑄𝑑   in equation (3.12) and (3.13), respectively. Further, the algorithm for 

computation of throughput and error probability with CFAR and MEP approach are presented as 

follows. 
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Algorithm-1: Throughput & total error probability with CFAR Approach 

 

 1    Input: N, 𝜎𝑛
2, 𝑃𝑓 , 𝛾𝑠, 𝛾, M, T, 𝑇𝑠, 𝑃 𝐻0 , 𝑃 𝐻1 , 

 2    Output: R, 𝑄𝑒  

         BEGIN { 

3    Compute 𝜆𝑓 , for AWGN, Rayleigh and Nakagami-m channel using equation (3.6) 

4    Find 𝑃𝑓  from equation (2.2) and 𝑃d  using equation (2.3), (3.3) and (3.5) for AWGN, Rayleigh and Nakagami     

      channels, respectively 

5    Select the Majority rule {round (M/2)} for cooperation   

6    Compute 𝑄𝑓  and  𝑄𝑑  from equation (3.9) and (3.10), respectively 

7   Find 𝑅0and 𝑅1 from equation (3.12) and (3.13), respectively.  

8   Compute 𝑄𝑒  and R from equation (3.11) and (3.14), respectively. 

     } END  
 

 

Algorithm-2: Throughput & total error probability with MEP Approach 
 

  1    Input: N, 𝜎𝑛
2, 𝑃𝑓  , 𝛾𝑠, 𝛾, M,T, 𝑇𝑠, 𝑃 𝐻0 , 𝑃 𝐻1 , 

  2    Output: R, 𝑄𝑒  

         BEGIN{ 

  3    Compute 𝜆𝑒 , for AWGN, Rayleigh and Nakagami-m channel using equation (2.8), (3.7) and (3.8), respectively 

  4     if 𝜆𝑒  > 0 

  5       Find 𝑃𝑓  from equation (2.2) and 𝑃d  using equation (2.3), (3.3) and (3.5) for AWGN, Rayleigh and Nakagami    

           channel, respectively. 

 6       Select the Majority rule {round (M/2)} for cooperation   

 7       Compute 𝑄𝑓  and  𝑄𝑑  from equation (3.9) and (3.10), respectively 

 8       Find 𝑅0 and 𝑅1 from equation (3.12) and (3.13), respectively.  

 9         Compute 𝑄𝑒  and R from equation (3.11) and (3.14), respectively. 

10    else   

11            𝑁∗          N 

12           go to (step-3) 

13   end 

      }END 

where, 𝑁∗ is the value of N at which 𝜆𝑒> 0. 
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3.4     Result and Discussion 

In this section, we have illustrated the numerically simulated results of the proposed CRN system 

model. The parameters employed for simulation are the same as presented in Table 2.2 of Chapter 

2 except N=25000. The selection of N is performed in such a way that 𝜆𝑓  and 𝜆𝑒  are positive for 

all the considered channels [220].We have illustrated the effect of variations in SNR and number 

of samples on ROC curve (plot between 𝑃𝑑  and 𝑃𝑓) for AWGN channel in Fig. 3.2(a), and 

Rayleigh as well as Nakagami-m fading channels in Fig. 3.2(b).  

 

(a)  

 

(b) 

Figure 3.2: ROC curve without cooperation for (a) AWGN channel and (b) Rayleigh and Nakagami-m (m =2) fading 

channel. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False alarm probability (P
f
 )

D
e
te

c
ti

o
n

 P
r
o

b
a

b
il

it
y

 (
P

d
 )

 

 

N=18000,SNR = - 20dB

N= 25000,SNR = - 20dB

N=18000,SNR = - 15dB

N= 25000,SNR = - 15dB

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False alarm probability (P
f
 )

D
e
te

c
ti

o
n

 P
r
o

b
a

b
il

it
y

 (
P

d
 )

 

 

N=18000,SNR = -20dB, Rayleigh

N= 25000,SNR = -20dB, Rayleigh

N=18000,SNR = -15dB, Rayleigh

N= 25000,SNR = -15dB, Rayleigh

N=18000,SNR = -20dB, Nakagami-m

N= 25000,SNR = -20dB, Nakagami-m

N=18000,SNR = -15dB, Nakagami-m

N= 25000,SNR = -15dB, Nakagami-m



60 

 

As shown in Fig. 3.2(a) and Fig. 3.2(b), for a particular value of false-alarm probability, detection 

probability increases with increase in the number of samples and also with increase in SNR. 

 

Table 3.2: The effects of SNR over 𝑃𝑑  at 𝑃𝑓= 0.1 with CFAR approach for AWGN, Rayleigh and Nakagami-m 

channels. 

SNR(dB) N 
𝑷𝒅 

AWGN Rayleigh Nakagami-m 

-20 dB 
18000 0.52 0.45 0.49 

25000 0.61 0.50 0.54 

-15 dB 
18000 0.99 0.74 0.97 

25000 1.0 0.77 0.98 

 

Further, at the fixed value of false-alarm probability (𝑃𝑓=0.1) and N=25000, the percentage 

enhancement in detection probability are 63.93%, 54% and 81.48%, respectively for AWGN, 

Rayleigh and Nakagami-m fading channels at SNR=-20dB. The enhancement in 𝑃𝑑  is because it 

depends on Erfc function and Erfc(.) value decreases with increase in (.) and vice-versa. Further, 

as shown in Equation (2.3), (3.3) and (3.5), Erfc(.) is showing dependency on N or SNR or on 

both, therefore with increase in N and SNR, 𝑃𝑑  increases. Moreover, the variation in detection 

probability (𝑃𝑑 ) with SNR for AWGN, Rayleigh and Nakagami-m (m = 2) fading channel is 

shown in Fig. 3.3.  

 

Figure 3.3: Detection probability variation with SNR for fading channels at N=25000 without cooperation. 
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It is illustrated in Fig. 3.3 that the detection probability (𝑃𝑑) has increased with increase in SNR 

for all fading channels. The 𝑃𝑑  is highest for AWGN and lowest for Rayleigh fading channels. 

However, the ROC curve (𝑄𝑑verses 𝑄𝑓  or 𝑃𝑑  verses 𝑃𝑓) for CR under the non-cooperative as well 

as different cooperative rules in AWGN, Rayleigh and Nakagami-m fading environments is 

shown in Fig. 3.4(a), Fig. 3.4(b) and Fig. 3.4(c), respectively. 
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(c)  

Figure 3.4: ROC curve with cooperation for (a) AWGN channel, (b) Rayleigh channel and (c) Nakagami-m channel 

at SNR= -20 dB and N = 25000 with cooperation. 

From Fig. 3.4(a)- Fig. 3.4(c), it is clear that after the cognitive user cooperation, the ROC curve 

has improved due to increase in the total detection probability and hence sensing performance of 

CRN has enhanced. From Fig 3.4(a), it is clear that in AWGN channel, the Majority rule 

outperforms the other cooperative AND as well as OR rule. However, from Fig. 3.4(b) and Fig. 

3.4(c) it is shown that in the Rayleigh and Nakagami-m fading channel, the Majority rule and OR 

rules provide nearly same performance. It is clear from Table 3.3 that at total false-alarm 

probability (𝑃𝑓  or 𝑄𝑓) of 0.1 and SNR= -20 dB, we have achieved 62.29%, 86%, and 76.36% 

enhancement in total detection probability while applying majority cooperative rule over non-

cooperative scenario for AWGN, Rayleigh and Nakagami channels, respectively.  

Table 3.3: Comparative analysis of false-alarm probability versus detection probability at N= 25000, SNR= -20 dB, 

CFAR approach for AWGN, Rayleigh and Nakagami-m channels. 

𝑷𝒇  

or 

𝑸𝒇 

𝑷𝒅 or 𝑸𝒅 

AWGN Rayleigh Nakagami-m 

Non-

coop 

Cooperative Non-

coop 

Cooperative Non-

coop 

Cooperative 

OR Majority AND OR Majority AND OR Majority AND 

0.1 0.61 0.93 0.99 0.92 0.50 0.96 0.93 0.57 0.55 0.96 0.97 0.69 

0.3 0.85 0.99 0.99 0.97 0.70 0.99 0.98 0.76 0.75 0.99 0.99 0.84 
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Further, the need of dynamic threshold for AWGN channel is shown in Fig. 3.5 with the help of 

PDF curve of hypothesis 𝐻0 and 𝐻1. The PDF curve of hypothesis 𝐻1 depends on the value of 

SNR, however it is independent of SNR for 𝐻0. It is clear from Fig. 3.5, that PDF curve of 𝐻1 

shifted to rightside with the increase in SNR value from -20dB to -10dB. 

 

Figure 3.5: PDF of H0 and H1 under AWGN channel. 

As we have already discussed in Section 3.3.2, the threshold is selected at the intersection of PDF 

of 𝐻0 and 𝐻1 for optimal miss-detection and false-alarm probabilities. Therefore, with the 

variation in SNR, the intersection of aforementioned PDF curves of hypothesis is different as is 

clear from Fig. 3.5 (𝜆1at SNR= -20dB and 𝜆2 at SNR= -10dB). Hence, it is required that the 

selection of threshold must depend on the SNR values and in MEP approach, this requirement is 

fulfilled. Thus, based on the above discussion and simulation results, we have further analyzed 

the sensing performance of CR under majority cooperative rules by employing MEP threshold 

selection in AWGN, Rayleigh and Nakagami-m fading channels.  

It is clear from Fig 3.6(a) to Fig. 3.6(c) that by employing either CFAR or MEP, the detection 

probability is improved after cooperation with respect to the non-cooperative scenario in above 

mentioned channels. However, at low SNR, in the cooperative scenario the detection probability 

is more with MEP approach, while at high SNR its value is more with CFAR approach except for 
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AWGN channel. It is because with CFAR approach threshold is fixed even with the variation in 

SNR, while in MEP approach its value increases with increase in SNR. Therefore, at high SNR, 

the threshold increases in MEP approach and its 𝑃𝑑  decreases however it remains same 

throughout all SNR for CFAR approach. Further, high SNR region in different channels are 

considered when SNR>SNRcwhere, SNRc is defined as the value of SNR at which threshold with 

CFAR and MEP approaches are equal. Moreover, at SNR= -20 dB with N=25000, there is 

15.11%, 31.74%, and 28.76%  enhancement in detection probability as illustrated in Fig. 3.6 and 

Table 3.4 and 3.6 while employing MEP over CFAR in CSS(majority)for AWGN, Rayleigh and 

Nakagami channel, respectively. 
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(c) 

Figure 3.6: Variation of SNR with detection probability in cooperative (Majority rule) and non-cooperative 

(a)AWGN channel (b) Rayleigh fading channel and (c) Nakagami-m fading channel for CFAR and MEP (dynamic) 

threshold selection approach at, M=10, N= 25000. 

Table 3.4: Comparative analysis of detection probability with non-cooperative and cooperative scenario at N= 

25000, SNR= -20 dB for AWGN, Rayleigh and Nakagami-m channels. 

SNR 

(dB) 

𝑷𝒅 or 𝑸𝒅 

AWGN Rayleigh Nakagami-m 

CFAR MEP CFAR MEP CFAR MEP 

Non-

Coop 

Coop 

(Majority) 

Non-

Coop 

Coop 

(Majority) 

Non-

Coop 

Coop 

(Majority) 

Non-

Coop 

Coop 

(Majority) 

Non-

Coop 

Coop 

(Majority) 

Non-

Coop 

Coop 

(Majority) 

-20 0.61 0.86 0.78 0.99 0.50 0.63 0.59 0.83 0.54 0.73 0.69 0.94 

-15 0.99 1.0 0.99 1.0 0.77 0.98 0.68 0.94 0.88 1.0 0.77 0.98 

-10 1.0 1.0 1.0 1.0 0.92 1.0 0.77 0.98 0.98 1.0 0.76 0.98 

-5 1.0 1.0 1.0 1.0 0.97 1.0 0.85 0.99 0.99 1.0 0.74 0.97 

 

Further, the variation in throughput and total error probability of CU with SNR, for CFAR and 

MEP approaches under the non-cooperative and cooperative scenario in different fading 

environment is presented in Fig 3.7(a) to Fig. 3.7(c). It is clear from Fig. 3.7(a) to Fig. 3.7(c) that 

the throughput in CFAR approach reduces with increase in SNR however in MEP approach it 

increases. It is well illustrated by equation (3.14) that the total throughput R depend on 𝑅0 and 𝑅1, 

and in CFAR approach 𝑅0 remains fixed due to fixed 𝑃𝑓  or 𝑄𝑓at all SNR and 𝑃𝑑  or 𝑄𝑑  increases 

with increase in SNR which reduces the value of 𝑅1as per equation (3.13). Hence, the overall 

effect is the reduction in throughput of CFAR approach with increase in SNR. However, in MEP 

approach, both 𝑃𝑓  or 𝑄𝑓  and 𝑃𝑑  or 𝑄𝑑  improve with increase in SNR, and the enhancement in 𝑅0 
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is more dominant than that of 𝑅1which results an increase in throughput with increased SNR. 

Moreover, for CFAR approach, the throughput increases after cooperation in all considered 

channels. 

 

(a) 

 

(b)  
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(c) 

Figure 3.7: Variation of SNR with throughput and total error probability in the cooperative (Majority rule) and non-

cooperative for (a) AWGN channel (b) Rayleigh fading channel and (c) Nakagami-m fading channel, for CFAR and 

MEP (dynamic) threshold selection approach at, M=10, N=25000. 

 

This is because for CFAR approach, with cooperation both total detection and total false-alarm 

probability has improved in comparison to that of the non-cooperative scenario and resulting 

enhancement in 𝑅0 is more compared to reduction in 𝑅1 which leads to the increased throughput. 

However, in MEP approach, only at low SNR its value increases with cooperation. At high SNR, 

in MEP non-cooperative approach, the throughput is more due to high total error probability 

(sensing error probability) with respect to cooperative scenario. 

Table 3.5: Comparative analysis of throughput and sensing error probability with non-cooperative v/s cooperative 

scenario and CFAR v/s MEP approach at N= 25000, for AWGN, Rayleigh and Nakagami-m channels. 

SNR 

(dB) 

AWGN Rayleigh Nakagami-m 

Throughput Sensing  error probability Throughput Sensing error probability Throughput Sensing error probability 

CFAR MEP CFAR MEP CFAR MEP CFAR MEP CFAR MEP CFAR MEP 

Non-

coop. 
Coop. 

Non-

coop. 
Coop. 

Non-

coop. 
Coop. 

Non-

coop. 
Coop. 

Non-

coop. 
Coop. 

Non-

coop. 
 Coop. 

Non-

coop. 
Coop. 

Non-

coop. 
Coop. 

Non-

coop. 
 Coop. 

Non-

coop. 
Coop. 

Non-

coop. 
Coop. 

Non-

coop. 
Coop. 

-20 5.17 5.36 4.36 4.98 0.48 0.13 0.42 0.05 5.31 5.66 4.77 5.29 0.59 0.37 0.58 0.18 5.25 5.52 4.44 5.01 0.55 0.26 0.52 0.10 

-15 4.67 5.19 5.16 5.19 0.10 0.00 0.01 0.00 4.95 5.19 5.47 5.27 0.32 0.01 0.33 0.05 4.82 5.18 5.39 5.20 0.21 0.00 0.23 0.01 

-10 4.67 5.19 5.19 5.19 0.10 0.00 0.00 0.00 4.77 5.18 5.48 5.21 0.17 0.0 0.22 0.01 4.69 5.18 5.49 5.21 0.11 0.00 0.23 0.01 

-5 4.67 5.19 5.19 5.19 0.10 0.00 0.00 0.00 4.70 5.18 5.37 5.19 0.12 0.0 0.14 0.00 4.67 5.18 5.50 5.22 0.10 0.00 0.25 0.02 
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Moreover, it is clear from Fig. 3.7(a) to Fig. 3.7(c) that generally the sensing error probability is 

least in the cooperative scenario in comparison to that of the non-cooperative spectrum sensing.  

Further, the percentage improvement in throughput and total error probability in different 

scenario is presented in Table 3.6. 

Table 3.6: Comparative table of percentage improvement in detection probability, throughput and sensing error 

probability with different scenario for AWGN, Rayleigh and Nakagami-m channels at N= 25000, SNR= -20 dB. 

Parameters Channel 

% Improvement with Coop. 

over Non-coop. Scenario 

% Improvement with MEP over 

CFAR approach 

CFAR MEP Non-coop. Coop. 

Pd 

AWGN 40.98 26.92 27.86 15.11 

Rayleigh 26 40.67 18 31.74 

Nakagami-m 35.18 36.23 27.77 28.76 

Throughput 

AWGN 3.67 14.22 -15.66 -7.08 

Rayleigh 6.59 10.90 -10.16 -6.53 

Nakagami-m 5.14 12.83 -15.42 -9.23 

Sensing Error 

Probability 

AWGN 72.91 88.09 12.5 61.53 

Rayleigh 37.28 68.96 1.69 51.35 

Nakagami-m 52.72 80.76 5.45 61.53 

 

3.5     Conclusion 

In this chapter, we have illustrated the effect of variation in number of samples and SNR on 

sensing performance of CRN under AWGN, Rayleigh, and Nakagami-m fading environment in 

the non-cooperative scenario. The numerical analysis and simulation results reveal that the effect 

of variation in SNR is more dominant on sensing performance of CRN in comparison to that of 

the variation in number of samples. Further, we have also illustrated the need of dynamic 

threshold to enhance the sensing performance at low SNR. The ROC curve has provided best 

performance with Majority rule in the cooperative spectrum sensing environment therefore, we 

have shown the comparison between fixed CFAR and dynamic threshold MEP selection 

approach with Majority rule in different environment (AWGN, Rayleigh, and Nakagami-m). In 

addition, it has been observed that at low SNR, MEP approach provides better detection 

probability in comparison to that of CFAR approach. Further, the throughput computation has 

been performed for proposed environment employing CFAR and MEP approach under the 
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cooperative and non-cooperative scenarios. Finally, we have concluded that at low SNR, the 

throughput is maximized by CFAR with cooperative rule while at high SNR its value is 

maximized with MEP in the non-cooperative scenario for the all mentioned fading channels. In 

addition, for the least sensing error (total error) probability, the cooperative rule outperformed the 

non-cooperative rule and in AWGN channel, the sensing error is minimum while employing 

MEP. However, in the Rayleigh and Nakagami-m fading environment, MEP approach provides 

least sensing error at low SNR while at high SNR, CFAR approach is outperforming. Moreover, 

in the cooperative spectrum sensing scenario with MEP approach, the improvement in detection 

probability, throughput, and total error probability in AWGN channel are: 15.11%, -7.08%, and 

61.53%, respectively; in Rayleigh channel are 31.74%, -6.53%, and 51.35 %, respectively; and in 

Nakagami-m channel  are 28.76%, -9.23 %, and 61.53%, respectively at SNR=-20dB. However 

the main challenging issue is the selection of threshold computation approach at different SNR 

since from the analysis it is observed that the single threshold selection approach with 

cooperative and non-cooperative spectrum sensing scenario is unable to provide maximum 

throughput and minimizing sensing error probability. These challenging issues are explored in the 

Chapter 4 of the thesis. 
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CHAPTER 4  

IMPROVEMENT IN SENSING ERROR PROBABILITY AND 

THROUGHPUT 

 

4.1     Introduction  

It is reported in the literature that the threshold selection with CFAR approach is suitable from 

CU point of view only and has improved the throughput of CU however, it is unable to provide 

enough protection to the primary user (PU) [200]. In order to protect the PU from the CU’s 

transmission, CDR approach is more appropriate but at the cost of throughput [130]. Liang et. al. 

[153] have employed CDR approach and formulated the spectrum sensing and throughput trade-

off problem. However, the spectrum sensing performance in a non-cooperative scenario results 

false (incorrect) sensing decisions due to multipath fading and shadowing effects faced by CUs. 

Therefore, the cooperation between CUs is used to improve the credibility of sensing results. 

Jafarian and Hamdi [131]have employed double threshold selection approach to improve the 

detection probability of EDSS in the cooperative spectrum sensing environment. In the double 

thresholding approach, each CU employ two thresholds 𝜆1 and 𝜆2 (𝜆2>𝜆1) and when the energy 

of test statistics of received signal (T(x)) at each CU is ≥ 𝜆2(/≤ 𝜆1), the decision is in favour of 

PU presence (/absence) on the channel. Nevertheless, when the test statistics lies between two 

thresholds 𝜆2 and 𝜆1, CU is not able to take any sensing decision [131] and send the sensing 

information (observed energy value) to the FC for decision. Further, the closed-form expressions 

for threshold selection with CFAR, CDR and MEP approaches in the fading environment have 

been presented by Attapattu et. al. [220] and the optimal threshold selection criterion has been 

provided in the non-cooperative and cooperative (OR rule) spectrum sensing scenario to reduce 

the error probability without considering its effect on throughput of CU. Further, the effect of 

threshold selection on throughput while satisfying the optimal threshold condition under AWGN 

channel for the non-cooperative scenario is analyzed in [239]. Since, the effect of threshold 

selection with CFAR and MEP approaches in cooperative spectrum sensing scenario under the 

Majority rule for fading channel is presented in Chapter 3. However, from the previous results 

which are presented in Chapter 3, we have analyzed that under the fading channels, the single 
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threshold selection approach with cooperative and non-cooperative spectrum sensing scenario is 

unable to provide maximum throughput and minimizing sensing error at all SNR. Therefore, in 

this chapter, we have framed the objectives as follows by taking into consideration 

aforementioned points. 

 We have illustrated that when the number of cooperative cognitive users are high (M≥10), 

the Majority cooperative rule outperform the OR cooperative rule at FC. 

 We have computed the value of critical SNR (𝛾𝑐) which provided the efficient threshold 

selection approach at different SNR to optimize the throughput and sensing error. Further, 

we have proposed algorithms to maximize the throughput and reduce the sensing error 

probability at all (low and high) SNR for Rayleigh and Nakagami-m fading channels. 

4.2    System Model and Proposed Performance Analysis 

We have considered same system model which is employed in Chapter 3 with the assumption of 

perfect reporting channels. Further, we have considered that there is no uncertainty in the noise 

and the activity of PU remains constant during the sensing period. The activity of PU remains 

constant means that if at the starting of spectrum sensing frame of CU, PU is present on the 

channel then it will not change its state and remains on the channel for the whole sensing duration 

or if the channel is unoccupied by the PU at the starting of frame then it will remain idle for the 

whole sensing duration.   

4.2.1 Computation of critical SNR 

Further, with the help of computed value of threshold with CFAR (λf) and MEP (λe) approaches, 

we have determined the critical SNR (γc) and its numerical value is computed by finding the 

SNR value at which the threshold with CFAR approach is same as that of MEP approach (𝜆𝑓=𝜆𝑒) 

for respective channels which is shown in Fig. 4.1 (Note: In Chapter 2, the critical SNR (𝛾𝑐) is 

computed with CFAR and CDR approaches). Subsequently on the basis of γc , we have divided 

the received SNR range in the low SNR and high SNR region. The low SNR region is considered 

when γ ≤ γc  while, the high SNR region is considered when γ > γc  and γcwill be different for 

AWGN, Rayleigh and Nakagami-m channels as shown in Fig. 4.1. 
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4.2.2 Cooperative spectrum sensing and throughput computation with majority rule 

When FC follow Majority rule, the overall false-alarm (𝑄𝑓
𝑀), miss-detection (𝑄𝑚

𝑀) and total 

spectrum sensing error probability (𝑄𝑒
𝑀) is given as [83]: 

𝑄𝑓
𝑀  =    

𝑀
𝑙
 𝑀

𝑙=𝑀/2  𝑃𝑓 
𝑙
 1− 𝑃𝑓 

𝑀−𝑙
        (4.1) 

𝑄𝑚
𝑀  =    

𝑀
𝑙
 𝑀

𝑙=𝑀/2  𝑃𝑚 
𝑙 1− 𝑃𝑚  

𝑀−𝑙         (4.2) 

𝑄𝑒
𝑀  = (𝑄𝑓

𝑀) + (𝑄𝑚
𝑀)                (4.3) 

Further, the throughput under cooperative spectrum sensing scenario (𝑅𝑐) is computed by simply 

replacing the 𝑃𝑓  with 𝑄𝑓
𝑀  and 𝑃𝑑  with 𝑄𝑑

𝑀in equation (3.14) and given as: 

𝑅𝑐 = 𝑃(𝐻0)  
𝑇−𝑇𝑠

𝑇
  1 − 𝑄𝑓

𝑀 𝑙𝑜𝑔2 1 + 𝛾𝑠   + 𝑃(𝐻1)  
𝑇−𝑇𝑠

𝑇
  1− 𝑄𝑑

𝑀 𝑙𝑜𝑔2  1 +  
𝛾𝑠

1+𝛾
      (4.4) 

With this context, the Algorithm-1 and Algorithm-2 are proposed for maximizing the throughput 

and minimizing the total error probability of CU, respectively under the Rayleigh and Nakagami-

m fading environments at all SNR.  

Algorithm-1: Throughput Computation  

1. Input: N, 𝜎𝑛
2, 𝑃𝑓_𝑓𝑖𝑥𝑒𝑑

 , 𝛾𝑠 , 𝛾, M, T, 𝑇𝑠 , P(𝐻0), P(𝐻1), 

2. Output: R or 𝑅𝑐  
BEGIN { 

3. Compute  𝜆𝑓 from (3.6) and  𝜆𝑒  from (3.7) and (3.8) for Rayleigh and Nakagami-m fading channel, respectively. 

4. Find the value of 𝛾𝑐  for respective fading channels 

5. If 𝛾 ≤ 𝛾𝑐  
6.  λ         𝜆𝑓  

7. Find 𝑃𝑓  from (2.2) and 𝑃m  using (3.3) and (3.5), for Rayleigh and Nakagami-m channels, respectively. 

8. Find Qf
M  and Qm

M  from (4.1) and (4.2), respectively.  

9. Compute 𝑅𝑐  from (4.4) (Throughput after cooperation) 

10. else 

11.       λ        𝜆𝑒  

12. Find 𝑃𝑓  from equation (2.2) and 𝑃m  using (3.3) and (3.5), for Rayleigh and Nakagami-m channel, respectively 

13. Compute R from (3.14) 

} END  

 

 Algorithm-2: Total Error Probability Computation 

 

1. Input: N, 𝜎𝑛
2, 𝑃𝑓_𝑓𝑖𝑥𝑒𝑑

 , 𝛾𝑠  , 𝛾, M , N 

2. Output: 𝑄𝑒  

BEGIN { 

3. Compute  𝜆𝑓 from equation (3.6) and 𝜆𝑒   from equation (3.7) and (3.8) for Rayleigh and Nakagami-m fading channels, 

respectively. 

4. Find the value of 𝛾𝑐  for respective fading channels 

5. If 𝛾 ≤ 𝛾𝑐  
6.             λ            𝜆𝑒  
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7. else 

8.              λ           𝜆𝑓  

9. Find 𝑃𝑓from (2.2) and 𝑃m  using (3.3) and (3.5), for Rayleigh and Nakagami-m channel, respectively. 

10. Find 𝑄𝑓
𝑀  and 𝑄𝑚

𝑀  from (4.1) and (4.2), respectively. 

11. Compute 𝑄𝑒
𝑀  from (4.3) 

            } END  

 

4.3     Result and Discussion 

In this section, we have illustrated the numerically simulated results of the proposed system 

model. The parameters employed for simulation are as follows: N=25000, 𝛾𝑠=20 dB, 𝑇𝑠 =2.5ms, 

T=100ms, 𝑃(𝐻0) = 0.8, 𝑃(𝐻1) = 0.2, Pf_fixed = 0.1, M=10, 𝜎𝑛
2=1, and m = 2. In Fig. 4.1, we 

have illustrated the variation of normalized threshold  𝜆∗ = 𝜆
𝑁  [220]with SNR for different 

channels while employing CFAR and MEP approaches. It is clear from Fig. 4.1 that the 

normalized threshold (𝜆∗) with CFAR approach remains constant for AWGN as well as for the 

considered fading channels while it increases with increase in SNR for MEP approach in all 

considered channels. The constant nature and same value of  𝜆∗ with CFAR approach for all the 

channels is due to the fact that false-alarm probability remains unchanged with SNR as already 

described in Chapter 3. Moreover, since the intersection point of threshold for CFAR and MEP 

approaches are different for the considered channels therefore, γc  is different for these channels. 

 

Figure 4.1: Variation of normalized threshold curve with SNR for AWGN, Rayleigh and Nakagami-m fading 

channels. 
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Moreover, in Fig. 4.2(a) to Fig. 4.2(c), we have depicted the variation of CU throughput with 

SNR, while employing CFAR and MEP approaches under the cooperative and non-cooperative 

spectrum sensing scenario in AWGN, Rayleigh and Nakagami-m fading environment, 

respectively.  

 

(a)  

 

(b)  
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(c) 

Figure 4.2: Throughput versus SNR curve for (a) AWGN (b) Rayleigh and (c) Nakagami-m fading channels. 

The throughput under AWGN channel is maximized with CFAR threshold selection in the 

cooperative spectrum sensing scenario as compare to that of the other approaches. Moreover, the 

analytical and simulated results of the proposed approach for the throughput with Algorithm-1 are 

shown in Fig. 4.2(b) and Fig. 4.2(c). The simulation results have been obtained from Monte Carlo 

simulation for 10000 iterations by adding the ambiguity of 5% around the considered analytical 

𝑃(𝐻0) value of 0.8 which also support the proposed analytical results. We have observed from 

Fig. 4.2(b) and Fig. 4.2(c) that with CFAR approach, the throughput is higher at low SNR region 

with the cooperation of CUs however at high SNR region, its value is higher with MEP approach 

in the non-cooperative environment. Also, it is illustrated that the single threshold selection 

approach (CFAR or MEP) at all (low and high) SNR region is not suitable to maximize the 

throughput in the Rayleigh and Nakagami-m fading environment. 

Further, the response of SNR over the throughput for all the considered channels (AWGN, 

Rayleigh, and Nakagami-m) has been discussed as follows. With the increase of SNR, the value 

of 𝑄𝑑
𝑀  (or 𝑃𝑑 ) is increasing initially and then becoming constant for CFAR approach as shown in 

Fig. 4.2. Since from equation (4.4), it is obvious that the throughput is high for low values of 

𝑄𝑓
𝑀(or 𝑃𝑓) and 𝑄𝑑

𝑀(or 𝑃𝑑), therefore the throughput is initially reducing with increase in SNR and 

then remains constant in Fig. 4.2. However, with the MEP approach, 𝑄𝑓
𝑀  (or 𝑃𝑓) is decreasing and 
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𝑄𝑑
𝑀(or 𝑃𝑑 ) is increasing with increase in SNR and then remains constant, however the effect of 

reduction in 𝑄𝑓
𝑀(or 𝑃𝑓) is significantly more at most of the SNR values in comparison to 

enhancement in 𝑄𝑑
𝑀  (or 𝑃𝑑 ), therefore overall effect is increase in throughput with increase in 

SNR initially and then it is remains constant. 

Further, we have described the nature of the throughput characteristics of each channel for 

various threshold selection approaches. In the AWGN channel, as observed from the 

mathematical analysis of equation (4.1) to equation (4.4) as well as Fig. 4.2(a), the maximum 

throughput is achieved with only single threshold selection approach (CFAR) at all SNR (𝛾 ≤ 𝛾𝑐  

or 𝛾 > 𝛾𝑐). As shown in Fig. 4.2(a), the cooperation in CFAR approach has enhanced the 

throughput as compare to that of the MEP approach at low SNR (𝛾 ≤ 𝛾𝑐 ) because in this region, 

the value of 𝑄𝑓
𝑀  and 𝑄𝑑

𝑀of CFAR is less in comparison to that of MEP, however for 𝛾 > 𝛾𝑐 , its 

values are remaining constant for both the approaches. Since from equation (4.4), it is obvious 

that the throughput is high for low values of 𝑄𝑓
𝑀(or 𝑃𝑓) and 𝑄𝑑

𝑀  (or 𝑃𝑑 ), hence for 𝛾 ≤ 𝛾𝑐 , the 

CFAR approach provides better throughput in comparison to that of the MEP approach and its 

value is almost constant for 𝛾 > 𝛾𝑐  when considering AWGN channel. Further, similar behavior 

for the Rayleigh and Nakagami-m fading channels are achieved for low values of SNR, however 

for 𝛾 > 𝛾𝑐  the 𝑄𝑑  of both CFAR and MEP is not constant due to fading channels. 𝑄𝑑  value of the 

CFAR and MEP are increasing with 𝛾 for 𝛾 > 𝛾𝑐  which result degradation of throughput with 𝛾 

in both CFAR and MEP because through the results we have obtained that the value of 𝑄𝑓  for 

𝛾 > 𝛾𝑐  is also remaining constant. 

Further, Fig. 4.3 have enlightened the effect of N on the total error probability under OR and 

Majority cooperative rules for CFAR and MEP threshold selection approaches for the Rayleigh 

fading environment. We have observed that at SNR= -20 dB with OR cooperative rule, the error 

probability increases when the number of cooperative users increases from M = 2 to M =10 [220] 

and hence instead of that, Majority cooperative rule can be employed. Therefore, we have 

analyzed CFAR and MEP threshold selection approaches under the Majority cooperative rule and 

observed that the proposed approach is suitable to reduce the sensing error probability which is 

presented in Fig. 4.5 where results of the proposed approach with Algorithm-2 is shown. 
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Figure 4.3: Variation in sensing error probability with number of samples (N) for Rayleigh channel at SNR= -20 dB. 

Moreover, we have presented the variation in sensing error probability with SNR while 

employing CFAR and MEP approaches under CSS scenario for AWGN, Rayleigh and 

Nakagami-m fading environment and compared its performance with proposed approach in Fig. 

4.4. Since the sensing error probability reduces after cooperation when compared with non-

cooperative spectrum sensing scenario therefore, we have considered the CSS scenario.  

 

Figure 4.4: Variation in sensing error probability with SNR for AWGN, Rayleigh and Nakagami-m fading channels. 
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It is clear that MEP cooperative approach provides least sensing error probability as compare to 

that of the other approaches in AWGN environment. Moreover, at low SNR region, the sensing 

error probability is low with MEP approach while at high SNR region its value is low with CFAR 

approach for Rayleigh and Nakagami-m fading channel. However, in the proposed approach, we 

have selected the threshold with CFAR and MEP approaches at different SNR therefore we have 

achieved least spectrum sensing error probability at all SNR as illustrated in Fig. 4.4. At higher 

SNR values, the spectrum sensing error probability is nearly same in all channels while at low 

SNR its value is least with AWGN and highest for Rayleigh fading in the proposed approach. 

Further, as it is clear from above discussion that the major objective is to select the appropriate 

threshold selection technique among various approaches for better performance (throughput and 

sensing error probability). However, for AWGN channel, Fig. 4.2(a) and Fig. 4.4 shows the 

mathematical analysis of equation (4.1) to equation (4.4), and it is observed that the highest 

throughput (/and minimum sensing error probability) is achieved with only single threshold 

selection approach i.e. CFAR (/and MEP) at all SNR (γ ≤ γ
c
or γ > γ

c
). In addition, Fig. 4.2(b) 

and Fig. 4.2(c) shows that the single threshold selection approach (either CFAR or MEP) at all 

SNR is not suitable for maximizing the throughput or minimizing the sensing error probability in 

Rayleigh and Nakagami-m fading channels.  

Further, Fig. 4.5 shows the trade-off between throughput and spectrum sensing error probability 

which we have obtained from the proposed Algorithm-1 and Algorithm-2. It is clear from Fig. 4.5 

that the Algorithm-1 provides higher throughput at the cost of high sensing error probability and 

Algorithm-2 offers less sensing error at the cost of degraded throughput. As per the IEEE 802.22 

standard, the false-alarm and miss-detection probability requirement in CRN is ≤ 0.1 or sensing 

error should be≤0.2. The results presented for Rayleigh fading channel in Fig. 4.5 shows that the 

above quality-of-service (QoS) requirement of CRN is only achieved by Algorithm-2 for the 

given SNR values and similar behavior can be achieved for Nakagami-m fading channel.   

The trade-off between sensing error and throughput occurs because in the proposed system 

model, the total throughput computation is performed with the help of following two cases which 

have been also presented earlier in Section 3.3.4 of Chapter 3. In the first case, the 

communication channel is assumed to be free and no false-alarm is generated while in the second 
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case, the channel is considered to be occupied by the PU, and CU has missed the detection of PU. 

Moreover, when the sensing error is less due to less miss-detection probability then the chances 

of CU to transmit the data in second case is also reduced, therefore the total throughput decreases 

with decrease in sensing error. In Fig. 4.5, we have illustrated the effect of SNR on both the 

throughputs and sensing error probabilities of Algorithm-1 and Algorithm-2. It is clear from Fig. 

4.5 that when the Algorithm-2 is employed, we have achieved least sensing error along with 

decent value of throughput at all considered SNR. However, if higher sensing error probability is 

tolerable by the user, then the high value of throughput could be achieved by Algorithm-1 in 

comparison to that of the Algorithm-2. 

 

Figure 4.5: The trade-off between throughput and total error probability in Algorithm-1 and Algorithm-2 for the 

Rayleigh fading channel. 

 

4.4    Conclusion 

In this chapter, we have considered the AWGN, Rayleigh and Nakagami-m fading channels 

environment and computed the critical SNR (γ
c
).We have attained low and high SNR regions on 

the basis of critical SNR however its value is different for aforementioned fading environments. 

Further, it is shown that the individual selection of CFAR or MEP approach under the 

cooperative and non-cooperative spectrum sensing scenario provides high throughput or least 
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sensing error probability either at low SNR region or at high SNR region. However, in the 

proposed approach, we have achieved high throughput and least sensing error probability at both 

the low and high SNR region. Since in this chapter, we have analyzed the performance of CRN 

perfect reporting channels, however the imperfect reporting channel is a practical scenario, which is 

presented in Chapter 5.  
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CHAPTER 5  

CENSORING WITH IMPERFECT REPORTING IN CRN 

 

5.1    Introduction 

In CSS technique, the sensing decision of each CU is sent to the fusion center (FC) via reporting 

channels where FC apply different cooperative rules [111] to take global decision about the status 

of primary user channel. In practice, the reporting channels are imperfect which leads to 

inaccurate sensing decisions by the FC [97]. However, in CSS technique, the energy consumption 

increases due to cooperation overhead bits [224], therefore to reduce the energy consumption and 

to save the bandwidth of reporting channels, the censoring approach [240], [241] is commonly 

employed by several  researchers in which sensing results of only limited number of CUs are sent 

to the FC. Numerous researchers have worked in this context which is briefed below along with 

the limitations of their proposed work, which are presented in the related work section of this 

chapter. 

 In [214], the authors suggested that to improve the throughput of CU, CFAR threshold 

selection approach is better, however to provide sufficient protection to PU from CU, the 

threshold selection with CDR approach is better.  

 As the threshold selection effect on both the throughput and error probability of CU is 

analyzed in Chapter 2 already, however only for non-cooperative AWGN environment. 

Further, in previous Chapters 3 and 4, we have considered the fading environment and 

analyzed the effect of threshold selection on both the throughput and error probability of CU 

under Majority cooperative rule at FC. However, the proposed analysis was limited to only 

perfect reporting channels. 

  Recently, Li et al.  [241] have assumed the predefined value of threshold in EDSS and 

observed the individual effect on both the false alarm and detection probabilities (𝑃𝑓  and 𝑃𝑑 ) of 

CU at high SNR under CSS technique (OR rule) in the Rayleigh fading environment. The 

censoring approach with imperfect reporting channel is considered, and the effect of number of 

CUs and antennas on the false-alarm probability and throughput of Rayleigh fading channel is 
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analyzed. However, Li et al. [241] lacks the method for computation of threshold in different 

fading channels and its effect on the total sensing error and throughput for different channels at 

low SNR.      

Therefore, based on the limitations of above mentioned work, we have attempted to overcome 

these issues. In this context, the author’s contributions are stated as follows. 

 In this chapter, we have considered more realistic low SNR scenario for sensing in AWGN, 

Rayleigh and Nakagami-m channels.  

 The imperfect reporting channel is employed which has affected the sensing decision at FC 

and two scenarios are considered in such a manner where the sensing decision of CUs are sent 

to the FC with and without the censoring approach. The comparison among censoring and 

non-censoring approach is further described.  

 Further, we have derived the expressions of total sensing error  probability and throughput for 

the fading channels while employing perfect/imperfect reporting channel in the censoring and 

non-censoring approaches. 

 In addition to this, we have also analyzed the effect of threshold selection approaches on the 

throughput and total sensing error probability in above mentioned scenario.  

5.2    Related Work 

In CSS technique, the advantages of spatial diversity are employed in CRN to enhance the 

sensing performance of CUs when the sensing channels suffer from fading. Moreover, in CSS 

technique two phases, namely, the spectrum sensing and reporting are considered. Various 

researchers have considered perfect reporting (PR) or/and imperfect reporting (IR) channels and 

have employed censoring/non-censoring approaches to analyze the performance of CRN which is 

described below.  

5.2.1 Perfect reporting channels 

In the perfect reporting channels, Zhang et al. [186] have minimized the total sensing error 

probability by employing Majority rule at FC when 𝑃𝑓  (probability of false-alarm) and 𝑃𝑚  

(probability miss-detection) are nearly same. Moreover, the authors in [220] illustrates the effect 

of number of samples (N) on the total spectrum sensing error probability for perfect reporting 
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channel under OR and Majority fusion rules for MEP threshold selection approach in fading 

environment. It has already been observed in Fig. 4.3 of Chapter 4 that at SNR= -20 dB, the 

Majority cooperative rule provides less total sensing error probability as compare to that of OR 

cooperative rule for same number of CUs (M=10). Moreover, the optimal spectrum sensing time 

and number of cooperative CUs are reported by Peh et al. [154] as well as Liu and Tan [136] to 

improve the throughput of CU. Further, the throughput enhancement is performed by Lu et al. 

[242] while considering adaptive spectrum sensing window for CR. Furthermore, the multi-

objective optimization models are employed by Li and Liu [243] to maximize the throughput of 

CU by addressing joint CSS and power allocation technique in CRN. However, to maximize the 

throughput in multi-channel CSS, Fan and Jiang [244] have computed the total sensing duration 

in the CU’s frame structure and have proposed the approach to allocate this optimal total sensing 

duration among different channels. Moreover, Tang et al. [245] have considered both the perfect 

and imperfect spectrum sensing channels and achieved the closed-form expression for normalized 

throughput in multi-PU cognitive radio network. In addition, they analyzed the effect of frame 

duration of CU and traffic pattern of PU on the normalized throughput. Moreover, Yadav et al. in 

[246] and Sharifi et al. in [247] have considered the multi-level hypothesis in CSS technique to 

improve the sensing accuracy of CU under the primary user emulation attack (PUEA). Since the 

energy consumption increases with the number of cooperative users therefore, Althunibat et al. 

[179], [248] have enhanced the energy efficiency (EE) by obtaining the optimal detection 

threshold at FC. Further, as EE is enhanced, there is degradation in the spectral efficiency (SE) 

and this trade-off between SE and EE is shown by Hu et al. in [249].  

5.2.2 Imperfect reporting channels 

In CRN, the CSS is promising technique to mitigate the effect of fading, shadowing and hidden 

node problems on sensing performance of CR however, it leads to degradation in EE of the CRN. 

In the context of energy efficiency, Bhowmick et al. [250] have presented the trade-off between 

the spectrum sensing time and throughput of CU while considering the imperfect sensing along 

with imperfect reporting channels under the Rayleigh fading environment. Further, in CSS, 

Najimi [251]has proposed a scheme to improve the energy efficiency of multichannel, multi-

antenna CRN by optimizing the sensing time and node selection strategy in the imperfect 

reporting channel. Moreover, Zhao et al. [252] have considered multichannel CSS with imperfect 
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reporting and has maximized the throughput of CU under the constraints on PU interference and 

sensing overhead without considering the mobility of CUs. In this context, Gahane et. al. [253] 

have shown the effect of CU mobility on the sensing performance in multi-antenna environment 

at CU in improved energy detector spectrum sensing (IEDSS). Moreover, the consideration of 

reporting time is of great importance as it affects the throughput of CRN therefore, Firouzabadi 

and Rabiei [254] have considered the multi-channel spectrum sensing and maximized the 

throughput of CRN by optimizing the sensing time, reporting time, sensing threshold and overall 

sensing plus reporting time in each sub-band. 

5.2.3 Censoring approach 

One of the main advantages of CSS technique is to increase the sensing performance of CU 

however, the energy consumption also increases with number of cooperative users. Therefore, 

this issue is more critical for battery powered users. In order to reduce the energy consumption in 

CSS technique, several researchers [240], [241] have employed censoring approach where the 

sensing decision of some limited CUs are transmitted over the reporting channels for energy 

saving point of view. However, Nallagonda et. al. [240] have suggested that when the reporting 

channels are deeply faded, the decision received at FC due to these channels will be erroneous, 

therefore the authors have employed censoring approach by preventing the reporting of sensing 

results through these erroneous reporting channels. However, Li et al. [241] have used censoring 

approach by transmitting decisions of only those CUs which has sensed active PUs on the 

channel. Subsequently, the authors in [255] have improved the throughput of network by 

reducing the signaling cost with censoring based CSS. Further, Sun et al. [97], Jiang et al [256], 

have employed censoring approach under the perfect/imperfect reporting channels and analyzed 

the detection performance of CU. However, in [241], Li et. al. have considered that each CU 

perform spectrum sensing through multiple antennas and send sensing results to FC through 

single antenna in imperfect sensing and reporting channel environment. Further, they have 

derived the expressions for false-alarm probability, detection probability and normalized 

throughput in the Rayleigh fading channels. In addition, Li et al. [241] have presented the 

variation in detection probability of CU with predefined threshold for different number of 

cooperative CUs and number of antennas (L) while employing censoring and non-censoring 

approaches. Further, they concluded that for the same number of CUs and number of antennas, 
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the non-censoring approach outperformed censoring approach in terms of detection probability. 

However, in the non-censoring approach, degradation in detection probability (sensing tail 

problem) occurs due to high error probability in the reporting channel. Therefore, based on the 

above literature survey on censoring and perfect/imperfect reporting channel, in the the proposed 

work, we have derived the expressions for the total sensing error and throughput in the fading 

environment while employing perfect/imperfect reporting with the censoring and non-censoring 

approaches. In addition to this, we have analyzed the effect of CFAR and MEP threshold 

selection approaches.   

In summary, the comparative analysis of various researchers’ reported works with the proposed 

CRN system model in terms of CUs performance parameters has been presented in Table 5.1. 

Table 5.1: Comparative study between different threshold selection approaches under different scenario. 

Ref.e No. Channel Threshold Selection 

Approach 

CSS Reporting 

Channels 

Censoring 

Approach 

Throughput Sensing 

Error 

Probability 

[246] Rayleigh CDR ✓ ✘ ✘ ✓ ✘ 

[247] Rayleigh Predefined ✓ ✘ ✘ ✘ ✓ 

[257] --- CDR ✓ (K out of M) ✘ ✘ ✓ ✘ 

[258] --- CFAR+CDR ✓ (OR) ✘ ✘ ✓ ✘ 

[244] --- CFAR+ CDR ✓ (AND) ✘ ✘ ✓ ✘ 

[231] Nakagami-m CDR ✓ (Soft decision) ✘ ✘ ✓ ✘ 

[179] --- MEP ✓ (K out of M) Imperfect ✘ ✘ ✓ 

[160] --- Selected threshold 

maximized the 

throughput 

✓ ✘ ✘ ✓ ✘ 

[259] AWGN, Double threshold ✓(OR) Imperfect ✘ ✓ ✘ 

[260] Rayleigh Double threshold ✓(OR) Imperfect ✘ ✓ ✓ 

[254] --- ----- ✓(OR) Imperfect ✘ ✓ ✘ 

[250] Rayleigh Predefined ✓(OR, AND, 

Majority) 

Imperfect ✘ ✓ ✘ 

[241] Rayleigh Predefined ✓ (OR rule) Perfect, 

Imperfect 

✓ ✓ ✘ 

Proposed AWGN, 

Rayleigh, 

Nakagami-m 

CFAR, MEP ✓(Majority) Perfect, 

Imperfect 

✓ ✓ ✓ 
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5.3    Proposed System Model and Performance Analysis 

In the proposed interweave based CRN system model, we have considered one PU transmitter, M 

cognitive users nodes and one fusion center (FC) as shown in Fig. 5.1(a). Each CU employs 

EDSS and sends the sensing results to FC via the reporting channels where the sensing results of 

CUs are affected due to different types of sensing channels (AWGN, Rayleigh or Nakagami-m 

fading). Further, the reporting channels are considered imperfect with different reporting error 

probabilities (𝑃𝑒
𝑟 ) and at FC, Majority cooperative rule is applied to take the global final decision 

about the presence/absence of PU on the channel. Moreover, the periodic frame structure of CU is 

assumed as shown in Fig. 5.1(b) where each CU senses the channel after T frame duration in 

which sensing plus reporting time (𝑇𝑠𝑟 ) is fixed. 

 

(a) 

 

(b) 

Figure 5.1: Schematic of the proposed cognitive radio network (a) system model and (b) frame structure. 

The false-alarm and detection probabilities of i
th

 CU is assumed to be 𝑃𝑓𝑖  and 𝑃𝑑𝑖 , where 

i=1,2…M. In addition, the sensing decision of each CU is sent to the FC via imperfect reporting 

channels. The censoring effect has been considered in the system model and comparison with the 

non-censoring based system has been made in the further sections of this chapter. In the non-

censoring approach, the sensing results of all M cognitive users are sent to the FC for which the 

PU

-

Tx

CU 1

CU 2

CU M

FC

Sensing channels           

(Fading)

Imperfect reporting

channels

Non 

Censoring

Censoring

df QQ ,

1

1

2

2

cM

M

11
, df PP

22
, df PP

MM df PP ,

r

d

r

f PP
11

,

r

d

r

f MM
PP ,

r

d

r

f PP
22

,

rc

d

rc

f PP
11

,

rc

d

rc

f PP
22

,

rc

d

rc

f MM
PP ,



87 

 

received false-alarm and detection probabilities of i
th

 CU at FC due to the imperfect reporting is 

presented as: 𝑃𝑓𝑖
𝑟  and 𝑃𝑑𝑖

𝑟 , respectively. However, for the censoring approach (where limited 

number of CUs send their sensing results to FC), FC receives sensing decision of only 𝑀𝑐  (where, 

𝑀𝑐 ≤M) CUs for which the received false-alarm and detection probability of CU at FC with 

imperfect reporting is presented as: 𝑃𝑓𝑖
𝑟𝑐  and 𝑃𝑑𝑖

𝑟𝑐 ,  respectively. In the proposed analysis presented 

further, we have assumed that each CU has same false-alarm and detection probability due to 

particular considered threshold detection approach and sensing decision of each CU is affected 

equally at FC in the reporting channel. Therefore, for simplicity, we have removed the subscript i 

e.g. 𝑃𝑓𝑖  and 𝑃𝑑𝑖are represented simply as: 𝑃𝑓  and 𝑃𝑑  in further analysis and same for the other 

symbolic representations. The detailed discussion about the censoring approach and method for 

the computation of 𝑀𝑐  is presented in Section 5.3.1.3. 

5.3.1 Effect of reporting error and censoring on the sensing and throughput performance 

5.3.1.1 Imperfect reporting channels 

When the imperfect reporting channel is considered between CUs and FC, then spectrum sensing 

results of CUs received at FC is affected with the amount of error probability in the reporting 

channel (𝑃𝑒
𝑟 ). Each CU sends the sensing decision to FC in favor of either PU is active or idle on 

the channel. Moreover, following four possible scenarios are considered in Table 5.2 for which 

FC receives active status of PU either due to perfect/imperfect sensing at CU or due to 

perfect/imperfect reporting at FC.  

Table 5.2: Detection and false alarm probabilities received at FC by CU for censoring and non-censoring approach. 

Actual 

Status of 

PU  

Status of PU 

detected by 

CU  

PU status 

received at FC 

(due to perfect 

/imperfect 

reporting) 

Test 

statistics 

Detection / false alarm 

probability of CU at FC 

(non-censoring) 

 

Detection /false 

alarm probability 

of CU at FC 

(censoring) 

Active 

 

Active 

 

Active 

 

𝑃𝑑=(T>λ/𝐻1) 

 

𝑃𝑑 1− 𝑃𝑒
𝑟  

 

𝑃𝑑 1− 𝑃𝑒
𝑟  

Active Idle Active (1− 𝑃𝑑)𝑃𝑒
𝑟  0 

Idle Active Active  

𝑃𝑓=(T>λ/𝐻0) 

𝑃𝑓 1− 𝑃𝑒
𝑟  𝑃𝑓 1 − 𝑃𝑒

𝑟  

Idle Idle Active 

 
(1− 𝑃𝑓)𝑃𝑒

𝑟  0 
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From Table 5.2, the false-alarm and detection probabilities received at FC by each CU under 

imperfect reporting channel, are given as: 

𝑃𝑓
𝑟 = (1− 𝑃𝑓)𝑃𝑒

𝑟 + 𝑃𝑓 1− 𝑃𝑒
𝑟          (5.1) 

𝑃𝑑
𝑟 = (1− 𝑃𝑑)𝑃𝑒

𝑟 + 𝑃𝑑 1− 𝑃𝑒
𝑟          (5.2) 

where, 𝑃𝑓
𝑟  and 𝑃𝑑

𝑟  are received false-alarm and detection probability at FC by each CU under the 

imperfect reporting channels as already described in system model of the proposed scheme. 

Afterwards FC applies cooperative rules to take the global single decision about the status of 

licensed channel sensed by multiple CUs. Since the individual CU has particular false-alarm (𝑃𝑓) 

and detection probability (𝑃𝑑 ), and the FC measures the collective (total) false-alarm (𝑄𝑓
𝑟) and 

detection probability (𝑄𝑑
𝑟 ) by taking into account 𝑃𝑓

𝑟  and 𝑃𝑑
𝑟  of each CUs, which is represented as 

follows:  

𝑄𝑓
𝑟 =    

𝑀
𝑙
 𝑀

𝑙=𝑘  𝑃𝑓
𝑟 
𝑙
 1 − 𝑃𝑓

𝑟 
𝑀−𝑙

         (5.3) 

𝑄𝑑
𝑟 =    

𝑀
𝑙
 𝑀

𝑙=𝑘  𝑃𝑑
𝑟 𝑙 1− 𝑃𝑑

𝑟 𝑀−𝑙          (5.4) 

 

𝑄𝑒
𝑟 = 𝑄𝑓

𝑟 + (1− 𝑄𝑑
𝑟)          (5.5) 

 

where, 𝑀 and k are the total number of CUs and the number of CU terminals employed for 

cooperation, respectively. In the expressions (5.3) or (5.4), FC follows Majority cooperative rule 

at k = M/2. In addition, the total spectrum sensing error probability (𝑄𝑒
𝑟) provides the measure for 

sensing performance of CU. Moreover, the throughput of CU under the imperfect reporting 

channels (𝑅𝐼) after cooperation is given as:  

𝑅𝐼 = 𝑃 𝐻0  
𝑇−𝑇𝑠𝑟

𝑇
  1 − 𝑄𝑓

𝑟 𝑙𝑜𝑔2 1 + 𝛾𝑠 + 𝑃 𝐻1  
𝑇−𝑇𝑠𝑟

𝑇
  1− 𝑄𝑑

𝑟 𝑙𝑜𝑔2  1 +
𝛾𝑠

1+𝛾
      (5.6) 

where the 1
st
 and 2

nd
 terms are the throughput of the CU in Case 1 and Case 2, respectively (as 

discussed in Chapter 3) for the imperfect reporting scenario.      
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5.3.1.2 Perfect reporting channel 

In the perfect reporting channels, it is assumed that whatever the decision is sent by CUs over the 

reporting channel, is received same at FC. Therefore, it is a special case of imperfect reporting 

channel where 𝑃𝑒
𝑟=0. Further, the total error probability and throughput of perfect reporting 

channel can be computed with the help of equation (5.5) and (5.6), respectively by placing 𝑃𝑒
𝑟=0 

in equation (5.1) and (5.2). 

5.3.1.3 Censoring with imperfect reporting 

In the censoring approach, the sensing results of only those CUs are sent to the FC through 

reporting channel who has detected the presence of PU on the channel (i.e. PU is active on the 

channel). Therefore, the number of cooperative users (𝑀𝑐) who has sent the sensing results to FC 

with censoring approach are computed with the help of Table 5.2. 

𝑀𝑐 = ⌈ 𝑀 𝑃 𝐻0 𝑃𝑓 + 𝑃 𝐻1 𝑃𝑑  ⌉         (5.7) 

where, ⌈. ⌉ indicate the ceiling function. Further in the censoring approach, the received false-

alarm and detection probability at FC while considering imperfect reporting channels is computed 

from Table 5.2 and is given as: 

𝑃𝑓
𝑟𝑐 = 𝑃𝑓 1− 𝑃𝑒

𝑟           (5.8) 

𝑃𝑑
𝑟𝑐 = 𝑃𝑑 1− 𝑃𝑒

𝑟           (5.9) 

 

Moreover, the total false-alarm (𝑄𝑓
𝑟𝑐 ), detection (𝑄𝑑

𝑟𝑐 ) and error (𝑄𝑒
𝑟𝑐 ) probabilities with censoring 

under the imperfect reporting channel is given as: 

𝑄𝑓
𝑟𝑐 =    

𝑀𝑐

𝑙
 

𝑀𝑐
𝑙=𝑘  𝑃𝑓

𝑟𝑐  
𝑙
 1− 𝑃𝑓

𝑟𝑐  
𝑀𝑐−𝑙

      (5.10) 

𝑄𝑑
𝑟𝑐 =    

𝑀𝑐

𝑙
 

𝑀𝑐
𝑙=𝑘  𝑃𝑑

𝑟𝑐  𝑙 1− 𝑃𝑑
𝑟𝑐  𝑀𝑐−𝑙       (5.11) 

 

𝑄𝑒
𝑟𝑐 = 𝑄𝑓

𝑟𝑐 + (1− 𝑄𝑑
𝑟𝑐 )        (5.12) 

 

In this context, the throughput of CU after cooperation with censoring is computed with the help 

of equation (5.6) by replacing 𝑄𝑓
𝑟  with 𝑄𝑓

𝑟𝑐  and 𝑄𝑑
𝑟  with 𝑄𝑑

𝑟𝑐  and expressed as follows: 
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 𝑅𝐼𝐶 = 𝑃 𝐻0  
𝑇−𝑇𝑠𝑟

𝑇
  1− 𝑄𝑓

𝑟𝑐 𝑙𝑜𝑔2 1 + 𝛾𝑠   + 𝑃 𝐻1  
𝑇−𝑇𝑠𝑟

𝑇
  1− 𝑄𝑑

𝑟𝑐  𝑙𝑜𝑔2  1 +  
𝛾𝑠

1+𝛾
   (5.13) 

where the 1
st
 and 2

nd
 terms are the throughput of the CU in Case 1 and Case 2, respectively (as 

discussed in Chapter 3) for imperfect reporting with censoring scenarios.  

5.3.1.4 Censoring with perfect reporting 

It is a special case of censoring with imperfect reporting where 𝑃𝑒
𝑟=0. Further, in this scenario, 

the total sensing error probability and throughput of CU is computed with the help of equation 

(5.12) and equation (5.13), respectively, by placing 𝑃𝑒
𝑟=0 in equation (5.8) and (5.9). Further, we 

have presented an Algorithm-1 to compute the throughput and total sensing error probability in 

the above considered scenario.   

Algorithm-1: Total sensing error probability & throughput computation 

Input: Reporting channel (RC) ={Perfect, Imperfect}, Threshold selection approach (TSA) = {CFAR, MEP}, 

Sensing channel (SC) ={AWGN, Rayleigh, Nakagami-m},Event sequence (ES) = {Censoring, Non-censoring}, 𝛾 

Output: R and 𝑄𝑒  

1. Initialization: N, 𝜎𝑛
2,𝑃𝑓_𝑓𝑖𝑥𝑒𝑑

 , 𝛾𝑠, M , T, 𝑇𝑠𝑟  , P(𝐻0) ,𝛾𝑠𝑒𝑡 = [- 20,-8], p ϵ (0,1] 

2. if  𝛾𝜖 𝛾𝑠𝑒𝑡  
3.      if  RC = = Imperfect 

4.            𝑃𝑒
𝑟         p 

5.      else  

6.          𝑃𝑒
𝑟            0 

7.       end if 
8.    if  TSA = = CFAR  

9.              find the value of 𝜆𝑓  using (3.6) 

10.               λ         𝜆𝑓  

11.               Compute 𝑃𝑓  using (2.2) 

12.                if   SC = =AWGN 

13.                    compute 𝑃𝑑  using (2.3) 

14.                else if   SC = = Rayleigh 

15.                             compute 𝑃𝑑
𝑟𝑎𝑦       using (3.3) 

16.                else 

17.                            compute 𝑃𝑑
𝑁𝑎𝑘𝑎         using (3.5) 

18.                end if 

19.      else  

20.      if    SC = = AWGN 

21.              find out 𝜆𝑒(AWGN) using (2.8) 

22.                        λ        𝜆𝑒  

23.               compute 𝑃𝑓  and 𝑃𝑑  using (2.2) and (2.3) respectively 

24.       else if   SC = = Rayleigh 

25.                    find out 𝜆𝑒(Ray) using (3.7) 

26.                          λ          𝜆𝑒(𝑅𝑎𝑦) 

27.                     compute 𝑃𝑓  and 𝑃𝑑
𝑟𝑎𝑦       using (2.2) and (3.3) respectively 
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28.                else  

29.                        find out 𝜆𝑒(Naka) using (3.8) 

30.                           λ          𝜆𝑒(𝑁𝑎𝑘𝑎) 

31.                         compute 𝑃𝑓  and 𝑃𝑑
𝑁𝑎𝑘𝑎         using (2.2) and (3.5) respectively 

32.                 end if 

33.        end if   

34.      if  ES = = Censoring 

35.                   compute   𝑀𝑐  using (5.7) 

36.                   find 𝑃𝑓
𝑟𝑐  from (5.8) and 𝑃𝑑

𝑟𝑐  using (5.9) 

37.                   find 𝑄𝑒
𝑟𝑐  from (5.12) and 𝑅𝐼𝐶  using (5.13) 

38.       else 

39.                   find 𝑃𝑓
𝑟  from (5.1) and 𝑃𝑑

𝑟  using (5.2) 

40.                   find 𝑄𝑒
𝑟  from (5.5) and 𝑅𝐼 using (5.6) 

41.       end if 

42.     end if         

 

5.4    Result and Discussion 

In this section, we have illustrated numerically simulated results of the proposed CRN system 

model. In the proposed system model, we have considered CSS technique in which FC employed 

Majority cooperative rule. Further, the parameters employed for simulation of the results are 

considered same as that in Chapter 4. Moreover, the variation in total sensing error probability 

(𝑄𝑒
𝑟) of CU with different probability of error in reporting channel (𝑃𝑒

𝑟 ) while employing CFAR 

and MEP threshold selection approaches at different SNR is illustrated in Fig. 5.2(a), Fig. 5.2(b) 

and Fig. 5.2(c) for AWGN, Rayleigh and Nakagami-m channels, respectively.  
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(b) 

 

(c) 

Figure 5.2: Variation in total sensing error probability with probability of error in reporting channel for different 

threshold selection approaches under (a) AWGN (b) Rayleigh, and (c) Nakagami-m fading channel. 

Further, the variation in throughput of CU with probability of error in reporting channel while 

employing both CFAR and MEP threshold selection approaches at different SNR for AWGN, 

Rayleigh and Nakagami-m channels are presented in Fig. 5.3(a), Fig. 5.3(b) and Fig. 5.3(c), 

respectively. From Fig. 5.3, it is clear that under all channels for fixed SNR, the throughput of 

CU decreases with increases in 𝑃𝑒
𝑟  for both CFAR and MEP approaches. As already described in 

the proposed system model (presented in section 5.3.1), the total throughput is computed with the 
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combination of throughputs of two terms. With the increase in reporting error 𝑃𝑒
𝑟 , the throughput 

of Case-1 decreases and it increases for Case-2. However, the effect of decrease in throughput of 

1
st
 term of equation (5.6) is more dominating than that increase of throughput of 2

nd
 term, 

resulting in overall throughput reduction with increase in 𝑃𝑒
𝑟 . Further, under all the considered 

channels with increase in SNR, the throughput of CU decreases for CFAR and increases for MEP 

at a particular value of 𝑃𝑒
𝑟 .  
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(c) 

Figure 5.3: Variation in throughput with probability of error in reporting channel for different threshold selection 

approaches in CSS technique under (a) AWGN, (b) Rayleigh, and (c) Nakagami-m fading channel. 

It is further depicted that the increased SNR provide better total detection probability (𝑄𝑑
𝑟 ) and 

from equation (5.6) it is clear that the increase in 𝑄𝑑
𝑟  results reduction of throughput. In addition, 

it is illustrated from Fig. 5.3(a) to Fig. 5.3(c), under all the considered channels, the throughput is 

enhanced with CFAR approach for 𝛾 ≤ 𝛾𝑐  (𝛾= -20dB) while for 𝛾 > 𝛾𝑐  (𝛾 = -17dB or -14dB) it is 

maximized with MEP approach at a fixed 𝑃𝑒
𝑟 . The significantly high throughput with CFAR in 

comparison to MEP at 𝛾 ≤ 𝛾𝑐  is resulting due to increased value of 𝑅1 and 𝑅2, whereas increased 

𝑅1 with MEP results higher throughput at 𝛾 > 𝛾𝑐  as compare to that of CFAR. 

 Further, in Fig. 5.4(a) to Fig. 5.4(c),we have illustrated the variation in total sensing error 

probability with 𝛾 for AWGN, Rayleigh and Nakagami-m channels while employing CFAR/MEP 

threshold selection approaches in the non-censoring/censoring scenarios under perfect/imperfect 

reporting (PR/IR). For the non-censoring scenario, the effect of 𝛾 and reporting error on total 

spectrum sensing error probability is already presented in Fig. 5.2. Moreover, for the fixed value 

of 𝛾 while employing either CFAR or MEP approach, the total sensing error probability is high in 

censoring approach as compare to that of the non-censoring approach. This is because at FC, the 

false-alarm and miss-detection probability is high in censoring approach as compared to that of 

the non-censoring approach. Moreover, from Fig. 5.4 it is clear that there is switching between 

CFAR and MEP threshold approach to achieve less total sensing error probability with variation 
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in 𝛾 in censoring scenario under either PR or IR. This is because from equation (5.7)-(5.12), the 

total sensing error probability changes with number of cooperative CUs in censoring (𝑀𝑐) and 𝑄𝑓  

and 𝑄𝑚 , where 𝑀𝑐 , 𝑃𝑓  and 𝑃𝑚  varies with 𝛾 and threshold selection approaches. 
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(c) 

Figure 5.4: Variation in total sensing error probability with SNR for different threshold selection approaches at 

imperfect reporting error (𝑃𝑒
𝑟) of 0.1 for (a) AWGN, (b) Rayleigh and (c) Nakagami-m fading channel. 

Moreover, Fig. 5.5(a), Fig. 5.5(b) and Fig. 5.5(c) demonstrate the variation in throughput with 

SNR for AWGN, Rayleigh and Nakagami-m channels, respectively while employing CFAR/MEP 

threshold selection approaches under the non-censoring/censoring and perfect/imperfect reporting 

(PR/IR).  
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(b) 

 

(c) 

Figure 5.5: Variation in throughput with SNR for different threshold selection approaches under perfect and 

imperfect reporting (𝑃𝑒
𝑟 = 0.1)channel for (a) AWGN, (b) Rayleigh and (c) Nakagami-m fading. 

It is clear from Fig. 5.5 that in the non-censoring scenario, initially the throughput decreases with 

increase in SNR for CFAR approach however it increases in MEP approach and then becomes 
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Whereas in MEP approach, initially with increase in 𝛾, there is reduction in 𝑄𝑓
𝑟  and increase in 

𝑄𝑑
𝑟  causing throughput increase due to more prominent effect of decreased 𝑄𝑓

𝑟  and afterwards 

throughput is nearly constant due to minor change in 𝑄𝑓
𝑟  and 𝑄𝑑

𝑟  with change in 𝛾. When further 

comparison is made between CFAR and MEP approaches at 𝛾 ≤ 𝛾𝑐 , the throughput is higher with 

CFAR as compare to that of MEP approach since the false-alarm and miss-detection probabilities 

are less in CFAR. In addition, at 𝛾 ≤ 𝛾𝑐  in the non-censoring scenario, the throughput is higher 

with perfect reporting (PR) channel as compare to that of the imperfect reporting (IR) while 

employing MEP threshold selection approach. The higher throughput with perfect reporting in 

MEP approach is achieved because the throughput of Case-1 of equation (5.13) is more and of 

Case-2 is less in perfect reporting as compare to that of the imperfect reporting. However, the 

total throughput is affected more by Case-1 throughput, resulting in increased throughput with 

perfect reporting. Further, in the censoring scenario, the throughput of imperfect reporting is 

higher than that of the perfect reporting channel while employing any threshold selection 

approaches. It is because throughput of both cases are high in imperfect reporting as compare to 

that of the perfect reporting for censoring scenario. 

Moreover, from Fig. 5.5, it is clear that in the censoring scenario in order to yield high throughput 

for all 𝛾, there is need of switching between CFAR and MEP threshold selection approaches for 

both the perfect and imperfect reporting channels. This is because with variation in 𝛾 under the 

censoring scenario, CFAR and MEP threshold selection approaches varies with the number of 

CUs (𝑀𝑐) and hence accordingly 𝑄𝑓  and 𝑄𝑑  values are updated at FC. This requirement of 𝛾 and 

threshold selection approach on 𝑀𝑐 , 𝑄𝑓 , 𝑄𝑑  is also obvious from equation (5.7) - (5.12). 

5.5   Conclusion 

In this chapter, we have illustrated the effect of CFAR and MEP threshold selection approaches 

on the total sensing error probability and throughput of CU under the perfect/imperfect reporting 

and censoring/non-censoring based CRN. From the results of non-censoring and imperfect 

reporting channel scenario, we have concluded that in the Rayleigh and Nakagami-m fading 

channels when 𝛾 ≤ 𝛾𝑐 , the MEP approach has provided better total sensing error probability 

performance. However, for 𝛾 > 𝛾𝑐 , the CFAR approach is better. Further, for the throughput 
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enhancement, reverse is true i.e. for 𝛾 ≤ 𝛾𝑐 , the throughput is significantly higher with CFAR 

approach however for 𝛾 > 𝛾𝑐 , its value is higher with MEP approach. Hence, there exist a trade-

off between sensing error probability and throughput with threshold selection approaches. The 

censoring scenario has although reduced the sensing overhead information but at the cost of 

increased total sensing error probability as compare to that of the non-censoring scenario due to a 

smaller number of users’ reporting to FC. In the censoring scenario, we have to change the CFAR 

and MEP threshold selection approaches according to 𝛾 to enhance the throughput and decrease 

the sensing error probability as illustrated in the results. Further, in this chapter, we have only 

employed single cooperative rule at all SNR, however to minimize the sensing error, it is required 

to vary the cooperative rule according to SNR, which is explored in Chapter 6. 
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CHAPTER 6  

OPTIMIZING COOPERATIVE RULES WITH THRESHOLD IN 

CRN 

6.1    Introduction and Related Work 

Various researchers have tried to improve the spectrum sensing performance of CU in terms of 

throughput, sensing error and energy efficiency by employing different approaches. Firouzabadi 

and Rabiei [254] have optimized the spectrum sensing threshold (λ) along with sensing and 

reporting time in order to maximize the throughput. However, Zhang et. al. [186] have minimized 

the sensing error by adapting the cooperative rule at FC (i.e. finding the optimal value of K in K-

out of M rule) according to selected spectrum sensing threshold value. Further, their analysis is 

only limited to perfect reporting channel with single antenna without considering the licensed 

channel’s idle and active probability. Recently, Li et. al. [241] have analyzed the effect of 

multiple antennas, reporting error probability and number of CUs on probability of false-alarm 

(𝑃𝑓) and probability of detection (𝑃𝑑 ) individually at significantly higher SNR with OR 

cooperative rule for predefined value of threshold (λ). However, the proposed analysis was 

lacking in context of total sensing error [241].  

Moreover, in CSS, with increase in the number of CUs the sensing error is reduced but at the cost 

of increased energy consumption [224]. To increase the life time of battery powered CU in CRN, 

the energy consumption should be minimized. In this context, Maleki et.al. [164] have employed 

censoring and sleeping schemes simultaneously, Najimi et. al. in [172] initiated best sensing CU 

nodes, and Eryigit et.al. in [261]have minimized the energy consumed in sensing. Further, in the 

multi-antenna and imperfect reporting environment, the energy efficiency (EE) is maximized in 

[251] by properly selecting the duration of spectrum sensing time and afterwards selecting the 

best CUs to report to FC about sensing decision. Moreover, motivated by the above discussed 

related work performed by various researchers in the direction to minimizing the sensing error 

and maximizing the energy efficiency, the authors contributions in this chapter are as follows. 

 We came across the expressions for spectrum sensing error in CSS by considering the effect of 

multiple antennas, reporting error and idle/active channel’s probability while employing 
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different threshold selection approaches. Further, we have derived the expressions for optimal 

value of K in K-out-of-M fusion rule at FC to minimize the sensing error.  

 It is shown that by employing the optimal rule at FC, the sensing error is minimized with 

respect to Majority fusion rule. 

 Further, the censoring approach is employed to improve the energy efficiency, and the closed-

form expressions are derived for the optimal number of CUs at FC. 

 Moreover, the energy efficiency comparison is also illustrated under the non-censoring and 

censoring scenario for CFAR and MEP threshold selection approaches when the respective 

optimal value of K is employed at FC in order to reduce the sensing error. Further, from the 

results, it is depicted that the energy efficiency is significantly higher in the censoring scenario 

as compare to that of the non-censoring scenario.  

6.2    Proposed System Model 

In the proposed CRN system model, we have considered single PU transmitter (PU-Tx), M CU 

nodes and one fusion center (FC) as shown in Fig. 6.1. Each CU consists of 𝐿𝑎  number of 

antennas and has employed EDSS for spectrum sensing. Further, the spectrum sensing decision 

of each CU is sent to the FC via the censoring and non-censoring approaches. In the censoring 

approach, it is considered that only 𝑀𝑐  (≤ 𝑀) CUs send their sensing results to FC via the 

imperfect reporting channels where the imperfect reporting error probability is given by 𝑃𝑒
𝑟 . 

 

Figure 6.1: Schematic of the proposed cognitive radio network system model 
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Further, the description of censoring and the method for computation of 𝑀𝑐  is presented. 

Moreover, in the non-censoring scenario, all M CUs report their sensing decision to the FC via 

the imperfect reporting channels. Further, at FC, the optimal value of K is computed in K-out-of-

M rule to take the global final decision about the status of licensed/PU channels after reporting by 

CUs through the censoring or non-censoring approaches. In addition, we have assumed that each 

CU has same value of 𝑃𝑓𝑖
𝑆𝐿𝑆  and 𝑃𝑑𝑖

𝑆𝐿𝑆  and the spectrum sensing decision of each CU is affected 

equally in reporting channel via censoring or non-censoring approaches. Therefore, we have 

removed the subscript i e.g. 𝑃𝑓𝑖
𝑆𝐿𝑆  and 𝑃𝑑𝑖

𝑆𝐿𝑆  are demonstrated simply as: 𝑃𝑓
𝑆𝐿𝑆  and 𝑃𝑑

𝑆𝐿𝑆 in further 

analysis and same for the other symbolic representations.  

 

6.3    Performance Analysis of Proposed System Model 

In this section, we have derived the expressions for spectrum sensing error and energy efficiency 

in CSS technique under the non-censoring and censoring approaches in AWGN channel. The 

analysis has been performed while taking into consideration following parameters: the number of 

antennas of CUs, sensing threshold approach, reporting error, and idle/active state probability of 

the licensed channel. The spectrum sensing threshold approaches which are employed in this 

section for computation of λ (𝜆𝑓  or 𝜆𝑒)  are considered to be CFAR and MEP. 

6.3.1 Multiple antennas 

It is reported in the available literature [220], [241], [262] that the multiple antennas are 

employed at CU for receiver diversity in order to yield the detection performance improvement. 

Atapattu et. al. in [220] have employed the square law combining (SLC) and square law selection 

(SLS) receiver diversity techniques for SS in CRN. In the proposed analysis, we have assumed 

SLS based combining schemes due to its least complexity. In SLS, the maximum SNR branch 

(γj) of multiple antennas is selected by each CU such as: 

𝛾𝑆𝐿𝑆 = 𝛾𝑗𝑗=1,2,…𝐿𝑎
𝑚𝑎𝑥                (6.1) 

where, 𝐿𝑎  denotes the number of antennas at each CU. Therefore, the false-alarm probability and 

detection probability at each CU under SLS can be computed with the help of equation (6.1) and 

is given as [241]: 
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𝑃𝑓
𝑆𝐿𝑆 = 1 − 𝑃𝑟𝑜𝑏.  𝛾𝑆𝐿𝑆 < 𝜆|𝐻0          (6.2) 

𝑃𝑑
𝑆𝐿𝑆 = 𝑃𝑟𝑜𝑏.  𝛾𝑆𝐿𝑆 ≥ 𝜆|𝐻1           (6.3) 

Further, the equations (6.2) and (6.3) can also be written as: 

𝑃𝑓
𝑆𝐿𝑆 = 1−  1 − 𝑃𝑓 

𝐿𝑎
          (6.4) 

𝑃𝑑
𝑆𝐿𝑆 = 1−  1− 𝑃𝑑 

𝐿𝑎           (6.5) 

where 𝑃𝑓  and 𝑃𝑑  are the false-alarm and detection probabilities, respectively of CU when CU 

employed single antenna.  

6.3.2 Non-censoring approach with imperfect reporting 

The spectrum sensing results of each CU which is transmitted through imperfect reporting 

channels can be received at FC with sensing error. Moreover, there are four probable scenarios 

considered as presented in Table 6.1 where FC receives the sensing results from CUs in favour of 

active state of PU channel.  

Table 6.1: The false-alarm and detection probabilities of CU received at FC under the non-censoring and censoring 

approaches. 

True state of 

PU channel 

State of PU channel 

detected by CU  

PU 

channel 

state   

received at 

FC  

Detection / false-alarm 

probability of CU at FC 

under imperfect reporting 

with non-censoring 

Detection / false-alarm 

probability of CU at FC under 

imperfect reporting with 

censoring 

Busy Busy Busy 𝑃𝑑
𝑆𝐿𝑆 1− 𝑃𝑒

𝑟  𝑃𝑑
𝑆𝐿𝑆 1− 𝑃𝑒

𝑟  

Busy Free Busy (1-𝑃𝑑
𝑆𝐿𝑆)𝑃𝑒

𝑟  0 

Free Busy Busy 𝑃𝑓
𝑆𝐿𝑆 1− 𝑃𝑒

𝑟  𝑃𝑓
𝑆𝐿𝑆 1− 𝑃𝑒

𝑟  

Free Free Busy (1− 𝑃𝑓
𝑆𝐿𝑆)𝑃𝑒

𝑟  0 

These scenarios are either due to the perfect or imperfect spectrum sensing and reporting. The 

false-alarm (𝑃𝑓
𝑟 ,𝑆𝐿𝑆

) and detection probabilities (𝑃𝑑
𝑟 ,𝑆𝐿𝑆

) received at FC due to each CU under the 

imperfect reporting channel can be computed with the help of Table 6.1 and are expressed as: 

𝑃𝑓
𝑟 ,𝑆𝐿𝑆 = (1− 𝑃𝑓

𝑆𝐿𝑆)𝑃𝑒
𝑟 + 𝑃𝑓

𝑆𝐿𝑆 1− 𝑃𝑒
𝑟          (6.6) 

𝑃𝑑
𝑟 ,𝑆𝐿𝑆 = (1− 𝑃𝑑

𝑆𝐿𝑆)𝑃𝑒
𝑟 + 𝑃𝑑

𝑆𝐿𝑆 1− 𝑃𝑒
𝑟          (6.7) 

𝑃𝑚
𝑟 ,𝑆𝐿𝑆 = 1− 𝑃𝑑

𝑟 ,𝑆𝐿𝑆
          (6.8) 
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where, 𝑃𝑒
𝑟  is the reporting error probability, 𝑃𝑓

𝑟 ,𝑆𝐿𝑆
,𝑃𝑑
𝑟 ,𝑆𝐿𝑆

and 𝑃𝑚
𝑟 ,𝑆𝐿𝑆

are the false-alarm, detection 

and miss-detection probabilities received at FC due to the imperfect reporting channels when 

each CU employed multiple antennas. Afterwards, FC applies K-out-of-M cooperative rules to 

take the global decision about the status of PU channel. Since in the non-censoring approach, all 

M CUs report to the FC therefore, the total false-alarm (𝑄𝑓
𝑟 ,𝑆𝐿𝑆

) and detection probabilities 

(𝑄𝑑
𝑟 ,𝑆𝐿𝑆

) at FC is represented as follows:  

𝑄𝑓
𝑟 ,𝑆𝐿𝑆 =    

𝑀
𝑙
 𝑀

𝑙=𝑘  𝑃𝑓
𝑟 ,𝑆𝐿𝑆 

𝑙
 1 − 𝑃𝑓

𝑟 ,𝑆𝐿𝑆 
𝑀−𝑙

        (6.9) 

𝑄𝑑
𝑟 ,𝑆𝐿𝑆 =    

𝑀
𝑙
 𝑀

𝑙=𝑘  𝑃𝑑
𝑟 ,𝑆𝐿𝑆 

𝑙
 1 − 𝑃𝑑

𝑟 ,𝑆𝐿𝑆 
𝑀−𝑙

      (6.10) 

𝑄𝑒
𝑟 ,𝑆𝐿𝑆 = 𝑃(𝐻0)𝑄𝑓

𝑟,𝑆𝐿𝑆 + 𝑃(𝐻1)(1− 𝑄𝑑
𝑟 ,𝑆𝐿𝑆)      (6.11) 

where, 𝑀 is the total number of CUs, k is the number of CU terminals employed for cooperation, 

and 𝑄𝑒
𝑟 ,𝑆𝐿𝑆

 is the sensing error after cooperation in CSS. 

6.3.3 Censoring approach with imperfect reporting 

In the censoring scenario, the spectrum sensing results of only reliable CUs are sent to the FC 

[240]. In the proposed analysis, we have assumed that the CUs detecting the active state of PU 

channel send their sensing results to FC. Therefore, firstly we compute the number of cooperative 

CUs (𝑀𝑐
𝑆𝐿𝑆) sending the spectrum sensing results to FC with the help of Table 6.1 as given below 

[241]: 

𝑀𝑐
𝑆𝐿𝑆 = ⌈ 𝑀 𝑃 𝐻0 𝑃𝑓

𝑆𝐿𝑆 + 𝑃 𝐻1 𝑃𝑑
𝑆𝐿𝑆  ⌉       (6.12)  

where, ⌈. ⌉ indicate the ceiling function and 𝑀𝑐
𝑆𝐿𝑆 ≤ 𝑀. In addition, the received false-alarm and 

detection probabilities at FC while considering the imperfect reporting channels can be 

determined from Table 6.1 and are given as: 

𝑃𝑓
𝑟𝑐 ,𝑆𝐿𝑆 = 𝑃𝑓

𝑆𝐿𝑆 1− 𝑃𝑒
𝑟          (6.13) 

𝑃𝑑
𝑟𝑐 ,𝑆𝐿𝑆 = 𝑃𝑑

𝑆𝐿𝑆 1− 𝑃𝑒
𝑟          (6.14) 

𝑃𝑚
𝑟𝑐 ,𝑆𝐿𝑆 = 1 − 𝑃𝑑

𝑟𝑐 ,𝑆𝐿𝑆
         (6.15) 
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Moreover, the false-alarm (𝑄𝑓
𝑟𝑐 ,𝑆𝐿𝑆

), detection (𝑄𝑑
𝑟𝑐 ,𝑆𝐿𝑆

) and error probability (𝑄𝑒
𝑟𝑐 ,𝑆𝐿𝑆

) at FC with 

censoring approach under the imperfect reporting channels are computed as: 

𝑄𝑓
𝑟𝑐 ,𝑆𝐿𝑆 =    𝑀𝑐

𝑆𝐿𝑆

𝑙
 

𝑀𝑐
𝑆𝐿𝑆

𝑙=𝑘  𝑃𝑓
𝑟𝑐 ,𝑆𝐿𝑆 

𝑙
 1 − 𝑃𝑓

𝑟𝑐 ,𝑆𝐿𝑆 
𝑀𝑐−𝑙

     (6.16) 

𝑄𝑑
𝑟𝑐 ,𝑆𝐿𝑆 =    𝑀𝑐

𝑆𝐿𝑆

𝑙
 

𝑀𝑐
𝑆𝐿𝑆

𝑙=𝑘  𝑃𝑑
𝑟𝑐 ,𝑆𝐿𝑆 

𝑙
 1 − 𝑃𝑑

𝑟𝑐 ,𝑆𝐿𝑆 
𝑀𝑐−𝑙

     (6.17) 

𝑄𝑒
𝑟𝑐 ,𝑆𝐿𝑆 = 𝑃(𝐻0)𝑄𝑓

𝑟𝑐 ,𝑆𝐿𝑆 + 𝑃(𝐻1)(1− 𝑄𝑑
𝑟𝑐 ,𝑆𝐿𝑆)      (6.18) 

Further, for the perfect reporting channels, the spectrum sensing error under non-

censoring/censoring approaches at FC can be computed from equations (6.11) and (6.18), 

respectively by placing 𝑃𝑒
𝑟=0 in equations (6.6)-(6.7) and (6.13)-(6.14). 

6.3.4 Energy efficiency 

For the computation of energy efficiency (EE), we have presented the frame structure of CRN for 

CSS in Fig. 6.2. In a chosen band of spectrum, all CUs (M) sense the channel simultaneously for 

𝑇𝑠 sensing duration. Subsequently, the sensing decision of each CU is reported to the FC during 

𝑇𝑅  with time division multiple access scheme. 

 

Figure 6.2: Frame structure of CSS CRN. 

Therefore, the total reporting time equals to 𝛼𝑇𝑅 , where 𝛼 is the number of CUs reporting the 

spectrum sensing decision to FC. In the non-censoring scenario, 𝛼 will equate to M however, it is 

𝑀𝑐  for the censoring scenario. Consequently, the data transmission time will be: 𝑇 − 𝑇𝑠 − 𝛼𝑇𝑅. 

Further, EE is computed as the ratio of average number of bits transmitted successfully (C) to the 

average energy consumed (𝐸𝑇𝑜𝑡𝑎𝑙 ) [263].         

With the help of Fig. 6.2, we observed that CRN frame structure has following three phases: the 

spectrum sensing, reporting, and transmitting phases. There will be power consumption by the 

circuit components and by the terminal in the idle phase also, which we have neglected in 

ST RT*
Rs TTT *

Sensing Time Data Transmission Time

T

RT

1 2 α
RT RT

Reporting Time



106 

 

proposed analysis. Therefore, the energy is consumed only in the spectrum sensing, reporting and 

transmission which are expressed as: 𝐸𝑆, 𝐸𝑅 , and 𝐸𝑇 , respectively. Moreover, these values can be 

computed as: 𝐸𝑠 = 𝑃𝑆𝑇𝑆, 𝐸𝑅 = 𝑃𝑅𝑇𝑅 , 𝐸𝑇 = 𝑃𝑇(𝑇 − 𝑇𝑆 − 𝑇𝑅), where, 𝑃𝑆, 𝑃𝑅  and 𝑃𝑇  are the power 

consumed in the spectrum sensing, reporting and data transmission phases of the single frame 

structure of CRN. Further, in Table 6.2 we have considered four cases on the basis of actual and 

predicted states by CU of licensed channels.  

Table 6.2: Energy efficiency metric 

From Table 6.2, it is clear that the successful data transmission occurs only in Case-1, however 

CU consumed energy in all four cases. Therefore, from the frame structure of Fig. 6.2, it is clear 

that all M CUs sense the channels for 𝑇𝑆 duration therefore the total energy consumed in spectrum 

sensing is: 𝑀 ∗ 𝐸𝑠 , and the total energy consumed in reporting phase is: 𝛼 ∗ 𝐸𝑅  where α CUs 

report to the FC. Further, in Case-2 and Case-4 of the predicted state by CU of the licensed 

channel is active therefore, CU will not transmit the data and hence no energy is consumed in 

transmission for Case-2 and Case-4. Therefore, 𝐸𝑇𝑜𝑡𝑎𝑙  can be computed as: 

𝐸𝑇𝑜𝑡𝑎𝑙 = 𝑝1𝐸1 + 𝑝2𝐸2 + 𝑝3𝐸3 + 𝑝4𝐸4       (6.19) 

and average number of successfully transmitted bits are: 

𝐶 = 𝑃 𝐻0  1− 𝑃𝑓  𝑇 − 𝑇𝑠 − 𝛼 ∗ 𝑇𝑅 𝑅      (6.20) 

 

Case 

Actual 

state of 

licensed 

channel 

Predicted 

state of 

licensed 

channel by 

CU 

Probability of 

respective case being 

true (p) 

Data 

transmis

sion Successful transmitted 

data (Bits) 

Energy consumed in 

Joule (with/without 

censoring) 

 

1 Idle Idle 𝑝1 = 𝑃 𝐻0  1− 𝑃𝑓  Yes 𝐶 = 𝑝1 𝑇 − 𝑇𝑠 − 𝛼 ∗ 𝑇𝑅 𝑅 𝐸1=𝑀 ∗ 𝐸𝑠 + 𝛼 ∗ 𝐸𝑅 + 𝐸𝑇  

2 Idle Busy 𝑝2 = 𝑃 𝐻0  𝑃𝑓  No 0 𝐸2=𝑀 ∗ 𝐸𝑠 + 𝛼 ∗ 𝐸𝑅  

3 Busy Idle 𝑝3 = 𝑃 𝐻1  1− 𝑃𝑑  Yes 0 𝐸3=𝑀 ∗ 𝐸𝑠 + 𝛼 ∗ 𝐸𝑅 + 𝐸𝑇  

4 Busy Busy 𝑝4 = 𝑃 𝐻1  𝑃𝑑  No 0 𝐸4=𝑀 ∗ 𝐸𝑠 + 𝛼 ∗ 𝐸𝑅  
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where, R is the throughput of secondary link and can be computed as: 𝑅 = 𝑙𝑜𝑔2 1 + 𝛾𝑠 , where 

𝛾𝑠 is the SNR of the link between CU transmitter and CU receiver. Further, EE can be computed 

as: 

𝐸𝐸 =
𝑃 𝐻0  1−𝑃𝑓  𝑇−𝑇𝑠−𝛼∗𝑇𝑅 𝑅

𝑝1𝐸1+𝑝2𝐸2+𝑝3𝐸3+𝑝4𝐸4
        (6.21) 

6.3.5 Optimization of voting rule in CSS  

In this section, we have presented the optimal value of K to minimize the sensing error when K-

out-of-M rule is employed at FC under the non-censoring and censoring approaches. Zhang et. al. 

[186] have also presented the optimal value of K for predefined value of threshold, however 

without considering the effect of licensed channel’s idle/active probability, multi-antenna effect, 

and reporting error probability. However, we have computed threshold values at different SNR 

with CFAR and MEP threshold selection approaches and achieved the optimal K at different SNR 

by considering all above parameters with censoring, which is significant contribution with respect 

to Zhang et. al.  [186]. 

6.3.5.1 Non-censoring scenario with multiple antennas under imperfect reporting 

In this scenario, the spectrum sensing error with CSS technique is given as:𝑄𝑒
𝑟 ,𝑆𝐿𝑆

 from (6.11). 

The main objective is the computation of optimal K: Kopt = arg Qe
r,SLS (𝐾)K

min  which is achieved 

when  
∂Qe

r ,SLS (K)

∂K
= 0. Therefore, 

∂Qe
r ,SLS (K)

∂K
= Qe

r,SLS  K + 1 − Qe
r,SLS  K                   (6.22) 

After finding the value of   Qe
r,SLS  K + 1  and Qe

r,SLS  K  from (6.11), we get: 

Qe
r,SLS  K + 1 =  P H0   

M
l
 

M

l=k+1

 Pf
r,SLS  

l
 1− Pf

r,SLS  
M−l

+  P H1  1−   
M
l
 

M

l=k+1

 Pd
r,SLS  

l
 1− Pd

r,SLS  
M−l

  

               (6.23) 

Qe
r,SLS  K =  P H0   

M
l
 M

l=k  Pf
r,SLS  

l
 1− Pf

r,SLS  
M−l

+ P H1  1−   
M
l
 M

l=k  Pd
r,SLS  

l
 1− Pd

r,SLS  
M−l

      (6.24) 

            

Compute (6.22) by using (6.23) and (6.24), we get: 
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𝜕𝑄𝑒
𝑟 ,𝑆𝐿𝑆

(𝐾)

𝜕𝐾
=  

𝑀
𝐾
  𝑃 𝐻1  1− 𝑃𝑚

𝑟 ,𝑆𝐿𝑆 
𝐾
 𝑃𝑚

𝑟,𝑆𝐿𝑆 
𝑀−𝐾

− 𝑃 𝐻0  𝑃𝑓
𝑟,𝑆𝐿𝑆 

𝐾
 1− 𝑃𝑓

𝑟 ,𝑆𝐿𝑆 
𝑀−𝐾

                     (6.25) 

 

For finding the value of K at which sensing error is minimize, put 
𝜕𝑄𝑒

𝑟 ,𝑆𝐿𝑆 (𝐾)

𝜕𝐾
= 0, i.e.  

             

 
𝑀
𝐾
  𝑃 𝐻1  1− 𝑃𝑚

𝑟 ,𝑆𝐿𝑆 
𝐾
 𝑃𝑚

𝑟,𝑆𝐿𝑆 
𝑀−𝐾

− 𝑃 𝐻0  𝑃𝑓
𝑟,𝑆𝐿𝑆 

𝐾
 1− 𝑃𝑓

𝑟 ,𝑆𝐿𝑆 
𝑀−𝐾

 = 0      (6.26)

            

After solving (6.26) we get the solution for K, which is given as: 

𝐾 =

𝑀∗𝑙𝑜𝑔 
𝑃𝑚
𝑟 ,𝑆𝐿𝑆

1−𝑃
𝑓
𝑟 ,𝑆𝐿𝑆  +𝑙𝑜𝑔  

𝑃 𝐻1 

𝑃 𝐻0 
 

𝑙𝑜𝑔
 𝑃
𝑓
𝑟 ,𝑆𝐿𝑆

  𝑃𝑚
𝑟 ,𝑆𝐿𝑆

 

 1−𝑃
𝑓
𝑟 ,𝑆𝐿𝑆

  1−𝑃𝑚
𝑟 ,𝑆𝐿𝑆

 

       (6.27) 

 

𝐾𝑜𝑝𝑡  =⌈𝐾⌉         (6.28) 

where, 𝐾𝑜𝑝𝑡 is the optimal K value for non-censoring approach.  

6.3.5.2 Censoring approach with multiple antennas under imperfect reporting 

In this scenario, the spectrum sensing error with CSS is given as:𝑄𝑒
𝑟𝑐 ,𝑆𝐿𝑆

 from (6.18) and 

appropriate value of K is computed by putting 
𝜕𝑄𝑒

𝑟𝑐 ,𝑆𝐿𝑆 (𝐾)

𝜕𝐾
= 0 which is presented below and is 

computed on the same manner as that for the non-censoring scenario:  

𝐾 =

𝑀𝑐
𝑆𝐿𝑆 ∗𝑙𝑜𝑔 

𝑃𝑚
𝑟𝑐 ,𝑆𝐿𝑆

1−𝑃
𝑓
𝑟𝑐 ,𝑆𝐿𝑆  +𝑙𝑜𝑔  

𝑃 𝐻1 

𝑃 𝐻0 
 

𝑙𝑜𝑔
 𝑃
𝑓
𝑟𝑐 ,𝑆𝐿𝑆

  𝑃𝑚
𝑟𝑐 ,𝑆𝐿𝑆

 

 1−𝑃
𝑓
𝑟𝑐 ,𝑆𝐿𝑆

  1−𝑃𝑚
𝑟𝑐 ,𝑆𝐿𝑆

 

         (6.29)  

𝐾𝑜𝑝𝑡  =⌈𝐾⌉           (6.30) 

where, 𝐾𝑜𝑝𝑡  is the optimal K value in censoring scenario. 

Further, the computation of 𝐾𝑜𝑝𝑡  in perfect/imperfect reporting with CFAR/MEP threshold 

selection under the censoring and non-censoring approaches is presented with algorithm. 
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Algorithm: Computation of optimal K at FC 

Input: Threshold selection approach (TSA) = {CFAR, MEP}, Reporting channel (RC) ={ Imperfect, Perfect}, Event 

sequence (ES) = {Censoring, Non-censoring},𝛾 

Output: 𝐾𝑜𝑝𝑡  

1. Initialization: N, 𝜎𝑛
2, M ,P(𝐻0),  p ϵ (0,1], 𝛾𝑠𝑒𝑡 = [-20,-8], 𝐿𝑎  

2.  if  𝛾 𝜖 𝛾𝑠𝑒𝑡  
3.      if  TSA = = CFAR  

4.               λ          𝜆𝑓  

5.      else  

6.               λ          𝜆𝑒  

7.      end if 

8.      compute 𝑃𝑓  and 𝑃𝑑  using (2.2) and (2.3) respectively 

9.      compute 𝑃𝑓
𝑆𝐿𝑆  and 𝑃𝑑

𝑆𝐿𝑆  using (6.4) and (6.5) respectively 

10.    if  RC = = Imperfect 

11.        𝑃𝑒
𝑟              p 

12.    else  

13.        𝑃𝑒
𝑟           0 

14.     end if 
15.   if  ES = = Censoring 

16.        compute   𝑀𝑐
𝑆𝐿𝑆  using (6.12) 

17.       find 𝑃𝑓
𝑟𝑐 ,𝑆𝐿𝑆

 from (6.13) and 𝑃𝑑
𝑟𝑐 ,𝑆𝐿𝑆

 using (6.14) 

18.       find 𝑄𝑒
𝑟𝑐 ,𝑆𝐿𝑆

 from (6.18)  

19.      compute 𝐾𝑜𝑝𝑡  from (6.30) 

20.   else 

21.      find 𝑃𝑓
𝑟 ,𝑆𝐿𝑆

 from (6.6) and 𝑃𝑑
𝑟 ,𝑆𝐿𝑆

 using (6.7) 

22.      find 𝑄𝑒
𝑟𝑐 ,𝑆𝐿𝑆

 from (6.18)  

23.      compute 𝐾𝑜𝑝𝑡  from (6.28) 

24.    end if 

25.  end if 

 

6.4    Simulation Results 

In this section, we have demonstrated the MATLAB simulated results of the proposed CRN 

system. The parameters employed for simulation of the results are presented in Table 6.3.  

Table 6.3: The parameters for simulation. 

Parameter Value Parameter Value 

N 25000 𝑇𝑅 0.001Sec. 

𝑃𝑓    0.1 𝑃𝑆 0.02 Watt 

M 10 𝑃𝑅 0.1 Watt 

T 0.1Sec. 𝑃𝑇 0.1 Watt 

𝑇𝑆 .0025Sec 𝛾𝑠  20 dB 
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The variations in spectrum sensing error with threshold (λ) for different values of K in K-out-of-

M rule which has been presented by Li et.al. in [241] and Zhang et.al. in [186] is shown in Fig. 

6.3. It is clear from Fig. 6.3 that for any value of K, the sensing error is a convex function of λ 

which provides a minimum value of sensing error. Therefore, at different selected threshold, the 

value of K is different to minimize the sensing error.  

 

Figure 6.3: Variation in sensing error with threshold for different values of  K, 𝐿𝑎=1, 𝑃𝑒
𝑟=0 [186], [241] 

Further, we have illustrated the optimal value of K at different SNR to minimize the sensing error 

while considering the combined effect of multiple antennas (𝐿𝑎 ) employed by CU, reporting error 

probability (𝑃𝑒
𝑟 ) and licensed channel’s idle/active probability (𝑃 𝐻0 / 𝑃 𝐻1 ). Therefore, in Fig. 

6.4(a) and Fig. 6.4(b), we have employed CFAR and MEP threshold selection approaches and 

achieved the optimal K at different SNR to minimize the sensing error in the non-censoring 

approach, respectively. Further, Fig. 6.4(a) and Fig. 6.4(b) demonstrated that at fixed SNR under 

perfect reporting channel (𝑃𝑒
𝑟=0), as 𝑃 𝐻0  or 𝐿𝑎  increases, the optimal K also increases due to 

increment in 𝑃𝑓  and decrement in 𝑃𝑚 . However, for same value of 𝑃 𝐻0  and 𝐿𝑎 , the optimal K 

decreases when 𝑃𝑒
𝑟  increases due to increment in both 𝑃𝑓  and 𝑃𝑚 . 
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(a)                                                                        (b) 

Figure 6.4: Variation in optimal number of CU at FC (𝐾𝑜𝑝𝑡 ) with SNR at different values of 𝑃 𝐻0 , 𝐿𝑎  and 𝑃𝑒
𝑟  under 

non-censoring scenario with (a) CFAR, and (b) MEP threshold selection approaches. 

Moreover, in Fig. 6.5, we have presented the variation in spectrum sensing error with γ while 

employing Majority rule and optimal K at FC using CFAR and MEP threshold selection 

approaches. From Fig. 6.5, it is clear that the proposed approach with optimal K provides less 

spectrum sensing error as compare to that of the Majority rule applied in [264] when CFAR 

approach is employed. However, the MEP approach provides nearly same sensing error with both 

the schemes.  

 

Figure 6.5: Variation in sensing error with SNR at𝑃 𝐻0 =0.8, 𝐿𝑎=1, and 𝑃𝑒
𝑟=0.1. 
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In addition, the effect of variation in reporting error probability and number of antennas 

employed at each CU on the sensing error at different SNR is presented in Fig. 6.6, while 

employing optimal value of K under the CFAR and MEP threshold selection approaches.  

 

Figure 6.6: Variation in sensing error with SNR for different values of  𝐿𝑎  and 𝑃𝑒
𝑟  at 𝑃 𝐻0  = 0.8. 

From Fig. 6.6, it is illustrated that for the imperfect reporting channel (𝑃𝑒
𝑟=0.1 or 0.2), at fixed 

value of SNR, the spectrum sensing error increases with increase in 𝐿𝑎  due to enlarged false-

alarm and detection probability values in both CFAR and MEP approaches. However, at high 

SNR, increase in the false-alarm probability with MEP approach is less as compare to that of the 

CFAR approach. Therefore, at high SNR, the MEP approach provides less spectrum sensing error 

when CU has employed multiple antennas. Further, Fig. 6.7(a) and Fig. 6.7(b) show the variation 

in optimal value of K for censoring scenario with SNR in CFAR and MEP threshold selection 

approaches. It is obvious from comparison of Fig. 6.4 and Fig. 6.7 that the optimal K value 

required in censoring approach is less in comparison to that of the non-censoring scenario for 

both CFAR and MEP threshold selection. 

Moreover, Fig. 6.8 has presented the variation in sensing error with SNR while employing 

optimal K in CFAR and MEP threshold selection approaches for different values of 𝐿𝑎  and 𝑃𝑒
𝑟  

under the censoring approach.  From Fig. 6.8, it is clear that with the censoring approach, for 

fixed value of 𝐿𝑎  and 𝑃𝑒
𝑟 , the spectrum sensing error is nearly constant with variation in SNR due 

to constant value of optimal K in CFAR. Moreover, for the fixed value of 𝐿𝑎  and 𝑃𝑒
𝑟 , the 
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spectrum sensing error is less in MEP approach as compare to that of the CFAR approach due to 

minimum value of false-alarm and miss-detection probabilities achieved. 

 

(a)                                                                             (b) 

Figure 6.7: Variation in optimal number of CU at FC (K) with SNR at different value of  𝑃 𝐻0 , 𝐿𝑎 , and 𝑃𝑒
𝑟under 

censoring scenario with (a) CFAR and (b) MEP. 

 

Figure 6.8: Variation in sensing error with SNR for different value of  𝐿𝑎  and 𝑃𝑒
𝑟   at 𝑃 𝐻0 =0.8, in the censoring 

scenario. 

Further, the variation in energy efficiency with SNR with the censoring and non-censoring 

approaches with CFAR and MEP threshold selection techniques are presented in Fig. 6.9.  
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Figure 6.9: Variation in energy efficiency with SNR for CFAR and MEP threshold selection in censoring and non-

censoring approaches at 𝑃 𝐻0 = 0.8, 𝐿𝑎=1 and 𝑃𝑒
𝑟 = 0.1. 

We have employed optimal K for all SNR to yield the energy efficiency with both the censoring 

and non-censoring approaches. In Fig. 6.9, it is illustrated that in the non-censoring approach, the 

performance of CFAR and MEP techniques are nearly same however with the censoring 

approach, MEP threshold selection approach slightly outperformed CFAR. Further, the energy 

efficiency achieved in censoring approach is significantly higher as compare to that of the non-

censoring for both the threshold selection approaches (CFAR or MEP). This is due to the smaller 

number of CUs reporting to FC in censoring, resulting energy consumption reduction in the 

reporting phase. From the results illustrated in Fig. 6.9, it is computed that the percentage 

enhancement in energy efficiency during censoring is 19.53 % and 19.9% with CFAR and MEP 

approaches, respectively in comparison to that of the non-censoring. Since MEP threshold 

selection technique in censoring approach has provided higher energy efficiency as compare to 

CFAR, therefore Fig. 6.10 depicts the variation in energy efficiency with SNR and number of 

antennas for MEP threshold selection under the censoring. It is illustrated from Fig. 6.10 that at 

high SNR, the effect of variation in number of antennas on energy efficiency is nearly constant. 

However, the energy efficiency decreases with increase in the number of antennas at low SNR 

due to increase in the value of 𝐾𝑜𝑝𝑡 .  
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Figure 6.10: Variation in energy efficiency with SNR and 𝐿𝑎    with MEP threshold selection under censoring 

approach at 𝑃𝑒
𝑟 = 0.1, 𝑃 𝐻0  = 0.8. 

 

6.5    Conclusion 

In this chapter, we have computed the optimal value of K at FC to reduce the spectrum sensing 

error with the censoring and non-censoring based cooperative spectrum sensing approach. We 

have employed CFAR and MEP threshold selection methods to yield the optimal K while 

considering the effect of variation of number of antennas and reporting error probability. It has 

been illustrated that the optimal K selection at different SNR has provided minimum sensing error 

in comparison to that of the single selection rule (e.g. Majority) at FC. Further, we have achieved 

the significant improvement in EE in censoring approach with both CFAR and MEP based 

threshold selection approaches as compare to that of the non-censoring.   
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CHAPTER 7  

CONCLUSION AND FUTURE PERSPECTIVES 

 

This chapter concludes the thesis as follows. The proposed research work is focused on optimal 

threshold selection for the energy detection based spectrum sensing technique to improve the 

performance of CRN. We have broadly considered three parameters for measuring the 

performance of CRN which are the sensing error, throughput and energy efficiency. In this thesis, 

first, we have exploited the energy detection based spectrum sensing in the non-cooperative 

scenario of CRN with AWGN to propose the optimality condition for threshold selection to 

achieve the desired values of 𝑃𝑓  and 𝑃𝑑 . Further, the computation of SNR (𝛾) as a critical SNR 

(𝛾𝑐) below which the optimality condition is not satisfied, has been performed. Moreover, we 

have proposed an approach in order to satisfy the optimality condition at all SNR and have 

computed the throughput for the proposed approach. It has been perceived that at low SNR, the 

throughput for proposed approach is higher than CDR and MEP approaches however, less than 

that of CFAR approach. Moreover, it has been observed that the throughputs computed using 

CDR, CFAR and MEP approaches are not satisfying the desired 𝑃𝑓  and 𝑃𝑑  values when compared 

with the proposed approach. Hence, in the proposed approach, we have achieved the maximum 

throughput while achieving the desired 𝑃𝑓  and 𝑃𝑑  simultaneously at all SNR (𝛾). The proposed 

approach has shown approximately 24.63% improved throughput when compared with CDR at 𝛾 

equals to -18 dB (near to 𝛾𝑐).  

Further, we have also presented the effect of variation in number of samples and SNR on the 

spectrum sensing performance of CRN when the threshold is selected using CFAR approach in 

the non-cooperative scenario for the AWGN and fading channels. For the fading channels 

(Rayleigh, and Nakagami-m), we have analyzed the effects of threshold selection as well as 

different cooperative rules on spectrum sensing performance. The numerical analysis and 

simulation results reveal that the effect of variation in SNR is more dominant on the spectrum 

sensing performance of CRN in comparison to that of the variation in number of samples. In 

addition, we have also illustrated the need of dynamic threshold selection to enhance the sensing 

performance at low SNR. Subsequently, we have shown the improvement of sensing results after 
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the cognitive user cooperation and performance of different cooperative rules (AND, OR, 

Majority) is analyzed in terms of ROC curve. It is observed that the performance with Majority 

rule is better than that of other cooperative rules in AWGN and Nakagami-m however in 

Rayleigh fading channel the performance with OR and Majority rule is nearly same. Therefore, 

we have selected the Majority rule for cognitive user cooperation for further analysis in the thesis. 

The throughput computation has been performed for the proposed environment by employing 

CFAR and MEP approaches for the cooperative and non-cooperative spectrum sensing scenarios. 

The results concludes that the throughput is maximized by CFAR with cooperative rule at low 

SNR while at high SNR its value is maximum with MEP in non-cooperative scenario. In 

addition, for the least spectrum sensing error (total error probability), the cooperative rule 

outperforms the non-cooperative rule and in AWGN channel sensing error is minimum while 

employing MEP. However, in the Rayleigh and Nakagami-m fading environment, the MEP 

approach provides least spectrum sensing error at low SNR while at high SNR, the CFAR 

approach is outperforming. Moreover, in the cooperative spectrum sensing with MEP approach, 

the improvement in detection probability, throughput, and total error probability in AWGN 

channel are: 15.11%, -7.08%, and 61.53%, respectively; in the Rayleigh fading channel are: 

31.74%, -6.53%, and 51.35 %, respectively; in the Nakagami-m channel: 28.76%, -9.23 %, and 

61.53%, respectively at SNR=-20dB. Further, it is illustrated that the individual selection of 

CFAR or MEP approach for the cooperative and non-cooperative spectrum sensing scenario 

provides significantly higher throughput or least total spectrum sensing error probability either at 

low SNR or high SNR region. Therefore, we have employed the concept of critical SNR to select 

the threshold intelligently and proposed the algorithms to maximize the throughput and to 

minimize the spectrum sensing error. Afterwards, we have achieved high throughput and least 

total sensing error probability at both the low and high-SNR region. 

 Moreover, the perfect reporting channels are considered to yield the spectrum sensing results, 

however the sensing results degrade with imperfect reporting channel and cooperation may 

increase the energy consumption. Therefore, the censoring concept is employed to reduce the 

energy consumption. Further, we have illustrated the effect of CFAR and MEP threshold 

selection approaches on the total spectrum sensing error probability and throughput of CU under 

the perfect/imperfect reporting channels and censoring/non-censoring based CRN environment. 
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From the results of non-censoring and imperfect reporting channel scenario, we have concluded 

that in the Rayleigh and Nakagami-m fading channels when 𝛾 ≤ 𝛾𝑐 , the MEP approach has 

provided better total spectrum sensing error probability performance however for 𝛾 > 𝛾𝑐 , CFAR 

approach is better. Further, for the throughput enhancement, reverse is true i.e. for 𝛾 ≤ 𝛾𝑐 , the 

throughput is significantly higher with CFAR approach however for 𝛾 > 𝛾𝑐 , its value is higher 

with MEP approach. Hence there exist a trade-off between sensing error probability and 

throughput with threshold selection approaches. The censoring scenario has although reduced the 

sensing overhead information but at the cost of increased total spectrum sensing error probability 

as compare to that of the non-censoring scenario due to  smaller number of users’ reporting to 

FC. In the censoring scenario, we have to switch among the CFAR and MEP threshold selection 

approaches according to 𝛾 to enhance the throughput and decrease the spectrum sensing error 

probability as illustrated in the results.  

In the considered cooperative spectrum sensing scenario, we have employed only single 

cooperative rule at all SNR, however to minimize the spectrum sensing error, it is required to 

vary the cooperative rule according to SNR. Therefore, we have computed the optimal value of K 

at FC to reduce the spectrum sensing error under the censoring and non-censoring based 

cooperative spectrum sensing scenarios. We have employed CFAR and MEP threshold selection 

methods to compute optimal K while considering the effect of variation of number of antennas 

and the reporting error probability. It has been illustrated that the optimal K selection at different 

SNR has provided minimum spectrum sensing error in comparison to that of the single rule 

selection (e.g. Majority) at FC. Further, we have achieved the significant improvement in EE in 

the censoring approach with both CFAR and MEP based threshold selection technique as 

compared to that of the non-censoring.  

Finally, we can summarize the work of our thesis in following points: 

• Proposed an optimal threshold condition and selected the optimal threshold which 

satisfied the sensing requirement under AWGN channel in non-cooperative scenario. 

• The cooperative rule has outperformed the non-cooperative rule to achieve least sensing 

error probability in both AWGN and fading channels. 



119 

 

• We have proposed the algorithms for threshold selection in fading channels in order to 

minimize the sensing error probability and maximize the throughput separately.  

• Threshold selection with optimal K at FC has provided least sensing error probability at 

different SNR under AWGN channel. 

• Significant improvement in EE is achieved in the censoring as compared to that of the 

non-censoring approach with both CFAR and MEP based threshold selection technique.  

In this thesis, we have illustrated the sensing-throughput tradeoff problem, in which the single 

proposed method is not providing high throughput and less sensing error at the same time. 

Therefore, it is to required to devise some method to avoid this problem which is the future scope 

of our work. In addition, the optimal K analysis in censoring/non-censoring scenario is provided 

for only AWGN environment in this thesis, which can be further done for the fading channels. 

Moreover, the effect of primary user activity during the spectrum sensing as well as noise 

uncertainty on the sensing performance can also be seen. Further, as we are moving towards 

Industry 4.0, in which we are employing Internet of Things (IoT), Industrial Internet of Things 

(IIoT), Internet of Vehicle (IoV), Cloud Computing etc. to provide better interconnection of the 

devices digitally, resulting into performance improvement of systems without human 

intervention. Therefore, another new direction of our work could be the integration of CR system 

with Industry 4.0 to take sensing decision on the spectrum automatically.  
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