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ABSTRACT 

________________________________________________________________________ 

The increasing growth of internet based information infrastructure consists of powerful 

computers and data centers has led to the development of personal/mobile computing devices. 

These datacenters are required to perform heavy data processing while ensuring quality of 

service. These highly powerful performance oriented computing platforms are used to model 

and analyze various complicated scientific problems and natural phenomenon. These 

computing devices are capable of providing high performance requirements of various complex 

applications only if they are facilitated with efficient memory system. The memory system 

stores data during and after execution and provides data to processing cores necessary to 

complete execution of applications. It is main memory system that stores data structure 

necessary for completion of a program. Main memory constitutes a major part in overall 

system’s power consumption. Researchers have reported that in mid-range IBM eServer 

machine, main memory contributed 40% of the total system’s power consumption. Many 

researchers have worked to make DRAM based main memory system efficient in terms of 

performance, energy and access locality.  

The prime factor that affects the efficiency of main memory system is its memory controller. 

Memory accesses constitute an important part of total applications energy consumption. It is 

memory controller of main memory system that is responsible for its efficient working. The 

decision regarding what command to issue and when, is dependent on main memory controller. 

Main memory controller makes this decision on the basis of memory access scheduler used. 

Based on utilized memory scheduling policy DRAM requests are serviced, the sequence of 

servicing requests targeted to Dynamic-RAM largely affects the performance as well as energy 

consumed by main memory sub-system.  

This thesis investigates the impact of memory scheduling policy on energy consumption and 

performance of main memory system in several situations. We propose four scheduling policies 

that try to service main memory requests in more energy efficient manner while maintaining 

the performance of main memory system. We have tried to rationalize main memory’s energy 

consumption by reducing its active power consumption and access latency. First, we have 

worked on, i) reducing DRAM’s active power consumption by optimizing row buffer hits and 

ensuring fairness among simultaneously running threads; ii) by optimizing read-write 

switching; iii) by reducing DRAM’s refresh induced energy and performance overheads. 
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Second, we have worked on reducing DRAM’s access latency by prefetching memory requests 

and issuing precharge and activate commands accordingly.   
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CHAPTER 1 

INTRODUCTION 

___________________________________________________________________________ 

 

Advancement in the performance of current computer systems is due to improvements in 

silicon process technology. As per Moore’s law due to improvement in silicon process 

technology, the count of transistors on a single chip can double in every two years. As a 

corollary to Moore’s law the increase in the performance of processor has also doubled in 

approximately every two years ( i.e., during same time period) due to increased switching speed 

of transistors. This increase in switching speed is observed because of increase in transistor 

count. However, solely improving the performance and energy consumption of processor does 

not always lead to reflect same performance and energy consumption gain while considering 

whole computer system. The reason for such disparity in performance and energy consumption 

advancement at processor level and whole computer system level is that performance of 

computer system and energy consumed by computer system is dependent on performance and 

energy consumption of processor, computer memory and interaction between processor and 

computer memory as well. Moreover, in passing years, in contrast to the rapid advancement 

for improving performance of processor and energy consumed by processor, computer memory 

has shown modest improvement. Imbalanced performance scaling and energy consumption 

trends shown by processor and memory results in restricted advancement of whole computer 

system. In order to gain benefits at whole computer system level, detailed prominence should 

be made on efficiently managing the performance as well as energy consumption of computer 

memory. As per [1], main memory contributes towards 40% of the total system’s power 

consumption. However, JEDEC [2] and different DRAM vendors are continuously working on 

DRAM memory sub-system [3-8], to make DRAM based main memory subsystem efficient in 

terms of bandwidth and energy. Due to increased requirement for more memory capacity and 

improved performance, larger and faster main memory system is incorporated with every new 

release, which further results in increased power consumption of main memory system [9], 

hence main memory sub-system is required to be improved day by day.   

With increase in operating frequency of processor, power dissipation is also increased. This 

“heat wall” is the main reason for shifting towards multicore processors, i.e., increasing the 

number of cores than to increase frequency in order to manage processor’s energy 
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consumption. On multicore processors multiple threads run simultaneously for fast execution. 

These concurrently executing threads share main memory resource for storing intermediate 

results or to retrieve data required to complete execution. So, main memory is the major 

resource that is being shared by all the running programs. Hence, main memory is the key 

contributor towards overall system’s performance and energy consumption [10]. DRAM being 

a crucial component for energy optimization in industries [10-14] as well as in academia [15-

27], many researchers are working on finding the solutions at system level down to circuit-

level for energy optimization. Researchers are trying to optimize active as well as idle power 

consumption of DRAM. So, in current scenario while designing a computer system two major 

goals are required to be met, i) To improve the performance of the main memory sub-system 

at same level of energy consumption, or ii) To decrease energy consumption of the main 

memory sub-system at same level of performance. 

1.1 Future’s Performance Requirement 

Demand for improved performance of the main memory is on rise. Various commercial 

applications like applications from the field of “Big Data” make extensive use of main memory 

resource. Applications related to Big data intend to find out useful and meaningful information 

from many thousands of petabytes of available data. In order to extract this information 

multiple threads run concurrently, thanks to multicore processors. This high degree of parallel 

execution of data results in extensive pressure on memory in terms of capacity (bandwidth) to 

fulfil processor’s demands. This aroused demand is accomplished by DRAM vendor by 

increasing frequency of DRAM pin. However, total available DRAM bandwidth is constrained 

by the number of pins available on socket. As per ITRS road map [28], over a period of 8 years, 

pin counts are estimated to increase by only 1.47 times unlike 16 times growth of transistor 

count of processor. With different growth trends observed for processor and memory, it is very 

important that queuing delay observed by requests generated by multiple core contending for 

limited memory pins is required to be reduced. The efficient utilization of main memory 

bandwidth is dependent on optimal use of DRAM banks, which can be achieved by efficient 

scheduling of memory requests, hence motivates to design efficient memory controller.  

1.2 DRAM Latency 

Over a period of time, in different DRAM generations a significant increment in DRAM pin 

count is observed, whereas, very less decrement in DRAM core latency is achieved.  tRCD and 

tRC are timing parameters that decides DRAM latency. On one hand, where the transmission 
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latency to transmit data to processor over DRAM interface has reduced but DRAM core latency 

is not scaled. This leads to a scenario where concurrently running threads contend with each 

other for accessing DRAM banks resulting increased overall latency. Increased overall latency 

not only increases the overall execution time of programs but also energy consumed by the 

program for completion. This issue further motivates to design efficient memory controller. 

1.3 Thesis Overview 

From the above discussion, it is very much clear that the memory latency wall and energy 

consumption is a major issue that requires to be addressed. In this thesis work, we look for the 

optimization of memory system that not only satisfy performance requirements of workloads 

but also provide increased performance level at less or same energy consumption, or reduced 

energy consumption constraints for same performance gain. In order to gain such benefits we 

chose memory controller which is most important part of main memory system and where 

changes can be made at minimum cost impact. Memory controller is responsible for issuing 

memory commands in every DRAM clock cycle and memory controller issues DRAM 

commands based on underlying memory access scheduler. Many studies [29-38] have been 

conducted to understand the influence of memory controller’s scheduling algorithms on 

performance and energy consumption of main memory system. These studies report that 

memory scheduling policies affect main memory subsystem’s performance and the amount of 

energy consumed in significant way. In this thesis, we try to find answers to the questions like, 

How to prioritize threads? What are those memory requests which are to be served first for 

improved performance and energy consumption? How to improve fairness among threads? 

Answers to these questions are provided through different memory scheduling policies. In this 

dissertation, we propose four memory scheduling policies that focus on improving 

performance, fairness among threads and energy consumption of main memory system.        

1.4 Problem Statement 

Main memory’s performance and energy consumption affects computer system’s performance 

and energy consumption in a significant way. Memory controller of the main memory system 

is a key component that have a major impact on main memory system’s performance and 

energy consumption. The key to design performance neutral, energy efficient main memory 

system lies in the formulation of intelligent as well as efficient memory controller policies that 

are aware of memory access scenarios and timing constraints and issues memory requests 

accordingly to maintain the balance between energy consumption and performance.  
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1.5 Proposed Solutions 

To address the issue of rationalizing energy consumption and performance gain of main 

memory sub-system, we propose following performance-neutral DRAM energy optimization 

strategies. 

1 To reduce DRAM’s power consumption while maintaining the performance level.  

2 To reduce DRAM access latency 

DRAM based main memory system’s power consumption can be managed by either reducing 

its active power consumption or by minimizing DRAM’s standby power consumption. 

DRAM’s active power consumption can be curtailed by, i) maximizing row-buffer hits, ii) 

reducing read-write switches, iii) managing DRAM refreshes while servicing memory 

requests. The downside of active power consumption optimizing strategy is that it reduces 

DRAM access time which leads to increased DRAM idleness. Also, these idle DRAM periods 

should be optimized in order to reduce overall DRAM energy consumption. Power consumed 

by DRAM system while in  standby (idle) mode can be curtailed by, i) exploiting power down 

modes, ii) curtailing power consumed during refresh operations when memory is idle, iii) 

frequency scaling to reduce memory’s idleness. The disadvantage of exploiting power down 

mode and frequency scaling is that they may result in increased latency and energy 

consumption to serve memory accesses caused because of additional power-up latency.  

1.6 Thesis Layout 

The thesis has seven chapters, out of which CHAPTER 1 presents Introduction. CHAPTER 2 

enlightens about fundamental building blocks of main memory system (DRAM based), basic 

terminologies and existing memory scheduling policies is provided. CHAPTER 3 presents the 

proposed energy efficient and fair memory scheduling algorithm to optimize row hits while 

maintaining fairness among threads during execution. CHAPTER 4 presents memory access 

scheduling policy proposed to reduce read write switches in order to minimize bus turn around 

delay and power consumed to switch the bus, hence serves to reduce thread’s execution time 

and energy consumption. CHAPTER 5 presents proposed memory access scheduling algorithm 

to minimize DRAM access latency. CHAPTER 6 includes scheduling approach proposed to 

manage DRAM refresh induced performance and energy overheads. Finally, CHAPTER 7 

presents the conclusion of the dissertation supported with the result of experiments and 

simulations. Conclusion is further followed by the future scope of the research work 

commenced in the thesis. 
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CHAPTER 2 

BACKGROUND AND LITERATURE REVIEW 

___________________________________________________________________________ 

2.1  Basic DRAM Device Architecture and Circuits    

In order to enlighten the researchers about DRAM based main memory system, this chapter 

provides an insight into basic architecture and circuits of DRAM devices. Though it is not 

possible to complete all aspects of DRAM based circuits and architectures in depth in one 

chapter, the fundamental aim of this chapter is to facilitate sufficient details about DRAM 

devices and their architecture and circuits to ensure basic understanding about DRAM devices. 

Only if basic understanding about fundamentals of DRAM devices is available to the 

researchers then only more advanced discussions about its architecture and circuits would be 

feasible. Current chapter begins with the description of basic DRAM device, i.e., Fast page 

mode (FPM) DRAM device. Then varied components like DRAM cell, sense amplifier are 

discussed separately.  

2.1.1 DRAM Device Organisation 

Figure 2.1, demonstrates the fundamental structure and basic details of DRAM device.  

 

Figure 2.1 Basic DRAM Device based Memory Organisation 

Figure 2.2 [39], illustrates that DRAM storage cells are organized as an array, consisting of 

4096 rows and 1024 columns in each row. In each column 16 bits of data is facilitated. In order 

Array of DRAM cells 

Banks with in single Rank 
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to access data stored in DRAM array, Row Access Strobe (RAS) occurs, in which 12-bit 

address is placed on address bus. Internally in DRAM device, the address inserted by external 

memory controller is stored in row address buffer which is further sent to row address decoder 

for decoding the address. The row decoder then decodes the address and selects the 

corresponding row out of 4096 rows available. The data stored in chosen row is then sensed 

and stored in sense amplifier. Each row contains 1024 columns, where each column is 16-bit 

wide, i.e., fundamental addressable unit of this memory device is 16-bit, and during column 

access strobe (CAS) 16-bits of data is either read or write from selected row of DRAM device. 

CAS can further be issued as column access strobe low (CASL) to access lower 8-bits and 

column access strobe high (CASH) to access higher 8-bits independently. External memory 

controller places 10-bit address to access specified column from chosen row on address bus, 

then asserts appropriate CASH or CASL signals. Then the data of the selected column is placed 

onto the bus.  

 

Figure 2.2 DRAM Cell Organisation 
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This basic organization is similar for all DRAM devices ranging from basic FPM DRAM to 

DDRx (Dual Data Rate) SDRAM devices. In all DRAM devices DRAM cells are organized as 

an array, i.e., as rows and columns. All DRAM devices contains one or more such DRAM cell 

arrays, where column is the basic addressable memory unit. All DRAM devices are enabled 

with some logic circuits to control timings and sequence of operation of device. The FPM 

DRAM device keeps track of the address of next row that is to be refreshed. Due to restricted 

pin usage on DRAM devices, dual-sided input-output pins are attached to the system for 

moving data into and out of the device. More innovative DRAM devices like ESDRAM, Direct 

RDRAM and RLDRAM contains more functionalities and logic circuitry but burden the die 

cost of Dynamic-RAM device. So, these advanced devices are not included as standard DRAM 

devices. 

2.1.2 DRAM Cell 

 Figure 2.3, illustrates the circuit diagram of basic DRAM cell, containing one transistor and 

one capacitor, which is the fundamental storage unit of DRAM device. Access transistor is 

activated by supplying voltage on the wordline gate of transistor. The data to be stored may be 

placed onto the bitline by applying voltage representing data value which is used to charge the 

storage capacitor. The capacitor then holds the charge for restricted duration after the removal 

of voltage from wordline. The transistor turns off when voltage supply from the wordline is 

removed. The charge stored on capacitor tends to leak over time, so, it becomes necessary to 

recharge (refresh) the cell after a regular intervals to retain the stored charge, or else the 

deposited charge will leak away and the value maintained on the device will vanish.  

 

Figure 2.3 DRAM cell 

2.1.3 Sense Amplifier 

In DRAM devices, sense amplifier perform three different functions. Out of these functions, 

primary function is to sense the minor variation in voltage that may occur when capacitor places 
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its charge on the bitline. The sense amplifier makes a comparison between voltage on bitline 

and a reference voltage. Sense amplifier then amplifies the voltage so that stored value can be 

read as zero or one. Another function of sense amplifier is to restore cell value after the value 

present on bitline is sensed and amplified. When capacitor places its charge on bitline, it gets 

discharged. As a result, its charge needs to be restored. The third function of sense amplifier is 

that sense amplifier also act as temporary storage in the DRAM array. After seeing and 

amplifying the data contained in storage cells, the sense amplifier continue to retain the data 

values until the precharge operation is not executed on DRAM array. This way, data in the row 

present in sense amplifier can be accessed without issuing RAS. For this array of sense 

amplifiers collectively act as a row buffer and hence sense amplifier is also addressed as row 

buffer. Researchers have worked on managing the state of sense amplifier, i.e., for how long 

row buffer would continue to retain data. These policies are referred to as row buffer 

management policies. Effective management of state of sense amplifier is very important for 

obtaining optimal balance between performance and energy consumption. Basic sense 

amplifier circuit diagram is shown in Figure 2.4[39]. 

 

Figure 2.4 Circuit diagram of Sense Amplifier 

2.1.4 DRAM Device Control Logic 

Movement of data onto, within and out of the DRAM device is controlled by basic logic circuit 

present in DRAM devices. Logic circuitry accepts signals and control that are fed externally 
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and then controls the data movement by properly sequencing the commands as per timing 

constraints. The issuing of control signal at proper time is controlled by logic circuitry. Figure 

2.5 [39], represents the logic circuitry of FPM DRAM device. External interface of DRAM 

device’s control logic consists of three signals: row access strobe (RAS), write enable (WE), 

and column access strobe (CAS). The device interface is asynchronous and memory controller 

controls the issue of command pertaining to timing constraints for regulating data movement 

into and out of DRAM device. Asynchronous nature of interface reveals that different memory 

controllers working at different frequencies can be implemented but the controller should be 

able to control different DRAM devices.  

 

Figure 2.5 Control Logic of DRAM Device 
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2.1.5 Data Input/Output 

 In DDRx SDRAM and SDRAM devices, variable number of columns are moved on issuing 

column read command. According to programing done on an SDRAM device, it can return a 

single burst of 1, 2, 4 or 8 columns of data in 1, 2, 4 or 8 cycles. In 2, 4 or 8 column burst of 

Synchronous-DRAM based device, each column is individually addressable, i.e., even if a 

column is provided in between burst, the Synchronous-DRAM device reorders the burst in 

order to at first facilitate data of requested address. This characteristic of device is called as 

critical-word forwarding. Each column in the burst is moved separately from the sense 

amplifier to external data bus. The individual control over each column and the operational 

data rate of DRAM device is constrained. To overcome this issue large number of bits are 

moved in parallel from DRAM and are then pipelined to external data bus through multiplexer. 

2.2 DRAM based Main Memory Organization  

In this section an insight about fundamental building blocks of main memory system (DRAM 

based), basic terminologies is provided. In previous section main focus was on single DRAM 

device, whereas, in this section details about whole main memory system is provided. In 

context with whole main memory system information about organisation, construction and 

working of multiple DRAM devices together is provided. The aim to include detailed 

information about DRAM based main memory system organisation and nomenclature in this 

chapter is to provide proper understanding about the building blocks and operations of memory 

system, so that the nomenclature used and discussions made in subsequent chapters can be 

better understood.  

2.2.1 Main Memory Subsystem 

In a computer system, main memory subsystem acts as an intermediate storage between caches 

and secondary memory. During processing, it is used for storing intermediate data that can be 

used by the processor in near future, or to store data expelled by the cache memory. In order to 

behave like an intermediate memory, it has to be faster than hard drives to accomplish better 

performance. For faster access to the data, memory should be randomly accessible, hence main 

memory is random access memory. Constant charge leaking behaviour of DRAM makes main 

memory volatile in nature, hence it requires periodic refreshes. The main memory subsystem 

is accessed through a hardware device called memory controller which is placed on 

motherboard, in recent computer system it is integrated on CPU die. Memory controller 

controls the access made to main memory through system buses, data buses and address buses.  
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Modern main memory system is made up of JEDEC style dual data rate (DDR) synchronous 

DRAM (SDRAM) [4, 5]. Dual data rate part of main memory reveals that the data bus operates 

two times faster than the address bus and command bus. Synchronous DRAM means on issue 

of RAS and CAS the DRAM device acts at falling edge of clock signal, not immediately upon 

access strobe signal change. Dynamic part of DRAM depicts its volatile nature. Constant 

charge leaking behaviour of DRAM makes main memory volatile, hence it requires periodic 

refreshes to retain the stored data. Main memory subsystem is organized hierarchically as 

channels, ranks and banks. Within a bank, DRAM devices are organized as an array of rows 

and columns. Memory controller is designated to manage one or more main memory channels. 

Each channel is provided with a data bus, an address bus and a command bus. Multiple Dual 

Inline Memory Module (DIMM) is provided at each channel. DIMM is a collection of multiple 

ranks. Ranks on same channel share common data bus, command bus and address bus. Within 

a memory module multiple ranks can work together in parallel to service different memory 

accesses. Figure 2.6 [39] shows the hierarchical organisation of main memory system. Rank is 

a collection of multiple DRAM chips. A particular rank is chosen by issuing chip-select signals. 

On selecting a rank all the DRAM chips that are part of rank receive signals (address signals 

and command signals) issued by memory controller on command system buses. A rank is 

further partitioned into multiple banks, (typically ranging from four to sixteen). Each bank can 

concurrently service different memory accesses but the data being transferred into or out of the 

bank through common data system has to be serialized. Each bank is logically thought to be 

arranged as a two-dimensional array of DRAM cells. Physically, each two-dimensional array 

is further divided into sub-arrays [39, 40] in order to manage factors like current draw and 

latency.

 

Figure 2.6 Main Memory Hierarchy 
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2.2.2 DRAM Commands  

 In main memory system DRAM cells are organized as rows and columns. This 2-D array 

arrangement of DRAM cells facilitates to address particular bit of information through 

addressing specific row and column. A row of sense amplifiers, one sense amplifier per column 

is also present in each array which act as a buffer for data management during cell refreshes. 

First of all PRECHARGE command is issued to access the data stored at row X and column 

Y. PRECHARGE command prepares the sense amplifier to receive data. PRECHARGE 

command is followed by activate command, which reads out data from DRAM cells to row 

buffer (sense amplifiers). Once sense amplifiers contain data, the corresponding row (row X) 

is said to be open. To access a particular column (column Y) from the row, column access 

strobe corresponding to read/write column Y is issued.  On completing a particular memory 

request after ACTIVATE command next PRECHARGE command prepares row buffer for 

storing next row being addressed. ACTIVATE and PRECHARGE operations on a row 

refreshes the DRAM cells. In addition to these, REFRESH command is issued on periodic 

intervals to refresh (recharge) the DRAM cells.  

Other than basic DRAM commands (PRECHARGE, ACTIVATE, COL-READ, COL-

WRITE, and REFRESH), DDR SDRAM supports many other commands to manage DRAM’s 

power state. PWR-DWN-FAST (Power Down Fast) can put rank in either activate power down 

mode or fast-power-down mode (precharge-power-down). While issuing power down if all the 

banks are in precharge state then chips enter in precharge-power-down mode, whereas, if even 

a single bank is active then chip enters in active-power-down mode. In both states on chip DLL 

(Delay Lached Loop) remains active. The power consumed in active power down mode is more 

when compared to power consumed in precharge power down mode. In both power down 

states, the on-chip DLL is ON that enables the chip to power-up with least latency. To ensure 

transition into the lower power state, it may be necessary to first precharge all banks in the 

rank. Another command that can be issued to manage power state of DRAM is PWR-DWN-

SLOW (Power Down Slow), which transitions a rank into power down slow mode. It can be 

applied only if all banks are in precharge state. In power down-slow-mode on chip DLL is 

inactive.  A rank can be woken up from low-power mode using power-up command, refresh 

command, precharge command, or precharge-all-banks command. Time taken by power-up 

command to transition ranks into active state depends upon whether the DRAM banks are in 

power-down-slow or power-down-fast mode. If the chip is in active-power-down state then 
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power up command retains the data in row buffer when the chip is powered up. Precharge-all-

banks forcibly precharges all the banks in a rank.  

2.2.3 Timing Constraints 

Physical implementation of DRAM devices imposes certain timing limitations. These 

limitations arise due to signalling constraints, power profiles, and wiring limitations. Due to 

timing constraints only few commands among all DRAM commands can be issued during a 

clock cycle. Which command is to be issued depends on current DRAM state. Table 2.1, 

provides a list of timing parameters for a typical Micron DDR3 chip. The value of tRFC 

parameter is dependent on chip capacity and varies in accordance with capacity.  

Table 2.1 Timing Parameters 

Timing 

Parameter 

Default Value 

(cycles at 800 Mz) 

Description 

tRCD 11 Delay between Row and Column Command. It 

represents time duration between data open at sense 

amplifiers and accessed from row buffer.  

tRP 11 It represents Row Precharge, i.e., time duration 

needed to precharge DRAM array for another row 

access. 

tCAS 11 It constitutes the latency encountered in Column 

Access Strobe. The period of time between column 

access command and the beginning return of data by 

the main memory device. It is also known as tCL. 

tRC 39 Row Cycle. Time required to access multiple rows 

within a bank. tRC=tRAS+tRP 

tRAS 5 It represents the minimum delay between one Row 

activation to another Row activation command. It 

restricts the maximal current profile. 

tFAW 32 Four (row) bank Activation Window. Utmost time 

period for engaging maximal four activated banks.  

tWR 12 Write Recovery time. It represents the minimal time 

duration betwixt the initiation of a precharge 

command and the termination of a write data burst.  
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tWTR 6 Write to Read delay time. The minimal interim time 

betwixt the beginning of a column read command 

and the culmination of a write data burst.  

tRTP 6 Read to Precharge.The interlude duration between a 

read and a precharge command.  

tCCD 4 Column-to-Column Delay. The minimal column 

command timing, governed by internal burst 

(prefetch) length. 

tRFC 128 Refresh Cycle Time. The interlude between Refresh 

and Activation commands. 

tREFI 6240 Refresh interval period. 

tCWD 5 Column Write Delay. The interim time between the 

deployment of data on the data bus by the DRAM 

controller and issuance of the column-write 

command. 

tRTRS 2 Rank-to-rank switching time. Utilized in DDR and 

DDR2 SDRAM memory systems; not used in 

SDRAM or Direct RDRAM memory systems. One 

full cycle in DDR SDRAM. 

tPDMIN 4 Minimal power down duration. 

tXP 5 Time to depart fast power down. 

tXPDLL 20 Time to depart slow power down. 

tDATATRANS 4 It represents Data transfer time from CPU to memory 

or conversely. 

 

At a temperature of 85 degree Celsius DRAM rows need to be refreshed with in a time interval 

of 64ms. The refresh operation takes place in following steps. First, memory controller issues 

REFRESH command in every 7.8µs (refresh interval). This command triggers refresh to 

multiple rows in all the banks in the channel. For tRFC interval after issuing REFRESH 

command DRAM chips are not available to service any other command. In accordance to 

JEDEC standard REFRESH command can be delayed up to 8 times tREFI, if average rate of 

refresh command is one per tREFI [41]. 
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2.2.4 DRAM Access Latency 

The sense amplifiers are used to sense each bank of memory. Within a DRAM chip the range 

of row size is 1-2 KB [42]. First, Activation command is allotted in order to fetch a row from 

memory array to row buffer. Data present in row buffer can be read out by issuing column read 

command, whereas data can be written into address in row buffer by column write command. 

To read data from the memory addresses or to write data into a particular memory addresses 

present in row buffer, column address command is only required only [43]. The energy 

consumed for serving memory request and stall time experienced throughout the execution of 

a memory request is henceforth dependent on the status of address, i.e., requested address is 

already fetched in sense amplifier or not. Requests generated for main memory fall into 

following categories:  

1) Row Hit: Row hit is a scenario in which requested memory address is present in row buffer. 

This condition is called open row buffer. In this case for serving requested memory request 

only CAS memory command is required to be issued and it request minimum number of 

operations to serve so.  

2) Row Closed: In this case sense amplifier is closed, i.e., no address is present in sense 

amplifier. So, first requested address is fetched to sense amplifier by issuing activate command 

then CAS is issued. 

 3) Row Conflict: In this case requested address is not present in sense amplifier. Some other 

address is already present in row buffer.  

 

Figure 2.7 DRAM Latency from Processor’s Perspective 
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Figure 2.7, represents comprehensive DRAM latency from processor’s outlook. Along with 

afore mentioned latencies additional recess induces relaying of whole cache line from the 

memory bank, else to the memory bank of the main memory data bus. 

2.2.5 Row Buffer Management 

Each bank has a row of sense amplifiers called row buffer to store the row being addressed. If 

new memory request addresses a row present in row buffer, it results in row buffer hit. Row 

buffer hit consumes least amount of time and energy to serve a memory request. Row buffer 

miss a condition in which memory request addresses a separate row other than present in row 

buffer. If row present in row buffer is not further requested by memory requests in near future 

then it is better to close row buffer. Closing row buffer facilitates more efficient service of 

future memory requests. Many row buffer management policies [44-48] are investigated that 

are used in memory controllers. An efficient row buffer management affects the performance 

and energy consumption of main memory sub-system in a significant way. Hence, it becomes 

necessary to effectively handle row buffer.   

2.2.6 Address Mapping 

Intelligent address mapping process is responsible for affecting the performance and energy 

consumption of memory system. Address mapping process affects the level of parallelism and 

row hits achievable in a memory system. Several papers [41, 47, 49], have investigated the 

impact of address mapping schemes on performance of memory system. Address mapping 

translates an address obtained from system’s memory address space onto logical DRAM 

organisation, i.e., address mapping process maps the request address into a set of <channel (L), 

rank (K), bank (B), row (R), column (C)> which specifies the location of data being addressed. 

Address mapping process determines which part of address bits are used to address which 

logical component of DRAM organisation and this choice greatly affects the performance as 

well as energy consumed by memory sub-system. For example, two requests trying to access 

different rows of the same bank results in increased request serving latency as we need to first 

service the first request then this row is required to be closed in order to service second request. 

As per the values provided in Table 2.1, it would consume 38 DRAM cycles to serve both 

memory requests, provided the bank was in precharge state initially. 38 DRAM cycles 

consumed in following manner. First request would consume tREQ1 = tRCD + tCAS cycles for 

execution. It is followed by PRECHARGE command to close the row, PRECHARGE 

command can be issued tRAS cycles after ACTIVATE command. tRAS value is 5, which is 
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greater than tREQ1. Thus, it would be tRAS + tRP cycles before issuing next ACTIVATE 

command. So, in total tRAS + tRP + tRCD + tCAS = 38 cycles are required for execution of both 

memory requests. Whereas, if both requests were addressing to the same row but different 

columns of memory address then only 33 cycles are required to service both. They can be 

serviced one after another serially, so require tRCD + 2*tCAS = 33 cycles. In this case energy 

consumption as well as latency, both are decreased.  

Another option for memory access pattern would be to request different banks. In this case 

both requests can be serviced in parallel hence require tRCD + tCAS =22 cycles for issuing 

ACTIVATE commands, although in order to satisfy tRCD timing parameter, second 

ACTIVATE is required to be delayed by five cycles. Thus, total execution time to execute both 

memory requests would be 27 cycles. This mapping policy would consume more energy as 

both banks are active, i.e., two row buffers are activated rather than single to service memory 

requests. In order to achieve more parallelism, accessing two different channels would be even 

more beneficial but it will consume more energy. All the above discussed scenarios impact the 

performance but only in accordance with the stream of addresses. In general, applications 

leverage spatial locality while issuing memory requests, i.e., memory addresses with difference 

in lower order bits of the addresses are expected to lie in shorter time frame. This makes us to 

use lower order bits to address column values to address channel, rank or bank values. If lower 

order bits address column values then it would lead to more row buffer hits and if used to 

address channels, ranks and banks then it provides benefits of increased parallelism. Increased 

parallelism using lower order bits result in performance degradation in long term because of 

increased need of opening and closing the rows and further frequent change in rank and 

channels increase energy consumption.        

2.2.7 DRAM Refresh Management 

DRAM cell stores data in the form of charge on capacitor. The capacitor tends to loose charge 

hence needs to be refreshed periodically in order to retain stored data. These periodic recharge 

(refresh) operations imposes penalty in terms of increased power consumption and decreased 

performance. When a memory bank undergoes refresh operation, it stalls servicing read and 

write requests intended to same bank undergoing refresh operation henceforth resulting in 

increased memory request service latency. In addition refresh operations consume energy in 

terms of reading data and restoring it while performing refreshes. As per study conducted in 

[50], in 32Gb DRAM device 20% of the DRAM’s energy is consumed in terms of refresh 

energy and refreshes degrades system’s performance by more than 30%. In SDRAM two 
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refresh modes, auto-refresh and self-refresh are used to reform refresh operation. The refresh 

operation should be performed within DRAM cell’s retention time. Retention time is the time 

interval for which DRAM cell can retain its stored data without being again recharged. 

Researches have been conducted to improve DRAM’s retention time and retention failures [51-

54].    

2.2.8 Basics on DRAM Current Parameters 

In this section, a brief description about different DRAM currents and insight about their 

measurement settings is provided. Detailed insight about DRAM current measures is provided 

in [55]. 

1. IDD0: IDD0 represents One Bank Active-Precharge Current. It is evaluated across activate 

and precharge commands in respect of one bank while other banks are maintained in 

precharged state. 

2. IDD1: IDD1 stands for One Bank Active-Read-Precharge Current and is calculated over 

the activate, column-read and precharge commands with respect to one bank. Rest 

banks are in closed state.  

3. IDD2N: IDD2N depicts Precharge Standby Current. It is calculated when complete banks 

are in the precharged state. 

4. IDD2P0: IDD2P0 renders to Precharge Power-Down Current-Slow-Exit. It is calculated in 

power-down mode at the time when Clock Enable is at Low state and the DLL is off, 

in this phase external clock is kept On and complete banks are in precharged state. 

5. IDD2P1: It represents Precharge Power-Down Current-Fast-Exit which is measured 

during power-down mode when Clock Enable is at Low state, DLL is on and external 

clock is On while complete banks are kept closed. 

6. IDD3N: IDD3N corresponds to Active Standby Current that is calculated when at least one 

bank is in active state. 

7. IDD3P: Active Power-Down Current is evaluated for the power-down mode with Clock 

Enable Low and the DLL locked, when the external clock is active and minimal one 

bank is in active state. 

8. IDD4R: IDD4R represents Burst Read Current and is evaluated while performing Read 

operation, during its measurement all banks are active performing seamless read data 

burst along with all data bits switching between the bursts and column read commands 

are considered to be driving across all the banks. 
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9. IDD4W: Burst Read Current is evaluated while performing write operation, while 

performing seamless write data burst with all data bits toggling between bursts. All 

banks are in active state, with the column write commands driving across complete 

banks and the ODT (On Die Termination) steady at HIGH. 

10. IDD5: IDD5 represents Refresh Current that is evaluated while performing refresh process. 

Commands to schedule Refresh are imposed in each nRFC cycles. 

11. IDD6: Self Refresh Current is evaluated during self-refresh mode when the clock enable 

at Low state and DLL Off and reset. In addition external clock is kept Off and all banks 

are in precharged state. 

12. IDD1W: One Bank Active-Write-Precharge Current is not a JEDEC benchmark. But, its 

reference measures may be calculated by replacing IDD4W instead of IDD4R in IDD1 current 

and represents activation-write-precharge current. 

For a MICRON 512MB Dual Data Rate (DDR3-800) Dual In Memory Module current 

measurements are shown in Table 2.2. 

Table 2.2 Current Measures for DDR3 

Current Measure (mA) 

IDDO 360 

IDD1R 440 

IDD1W 410 

IDD2N 180 

IDD2P0 40 

IDD2P1 100 

IDD3N 200 

IDD3P 100 

IDD4R 840 

IDD4W 840 

IDD5 800 

IDD6 24 

 

2.2.9 DRAM Power Model  

In this section, we describe the power model used to calculate memory system power 

consumption. DRAM power consumption can be factored into two components consumed by 
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memory elements (core power consumption) [56], and power consumed while driving data into 

or out of the data bus (I/O power consumption). Power consumed by memory elements, i.e., 

core power consumption comprised of three main elements, i) Average power consumption 

when memory is in idle state (base power consumption), is the summation of power consumed 

in standby mode and during refresh operation ii) Power consumption when DRAM is active 

(active power consumption) and Power consumption while servicing read/write requests. The 

equations used for power modeling are based on Micron Memory System Power Technical 

Note [57] and Micron power calculator [58]. For better assimilation, P(XX) is used to denote 

power consumed by XX sub-component. Total power consumed by DRAM chip is calculated 

as      

𝑃𝑐ℎ𝑖𝑝_𝑝𝑜𝑤𝑒𝑟 =  𝑃(𝑟𝑒𝑎𝑑) +  𝑃(𝑤𝑟𝑖𝑡𝑒)+ 𝑃(𝑟𝑒𝑓𝑒𝑟𝑒𝑠ℎ) + 𝑃(𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒)+ 𝑃(𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑) + 𝑃(𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒)      

                     (2.1) 

𝑃𝑡𝑜𝑡𝑎𝑙_𝑑𝑟𝑎𝑚_𝑝𝑜𝑤𝑒𝑟 =  𝑃𝑐ℎ𝑖𝑝_𝑝𝑜𝑤𝑒𝑟 ∗ 𝑁𝐷𝑅𝐴𝑀_𝑐ℎ𝑖𝑝𝑠              (2.2) 

Where, 𝑁𝐷𝑅𝐴𝑀_𝑐ℎ𝑖𝑝𝑠, represents total number of DRAM chips available in memory system and 

𝑃(𝑟𝑒𝑎𝑑), power consumed in read operation,  𝑃(𝑤𝑟𝑖𝑡𝑒), represents power consumed in write 

operation, 𝑃(𝑟𝑒𝑓𝑒𝑟𝑒𝑠ℎ) , depicts power consumed during refresh, 𝑃(𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑), represents 

power consumed  in background processes and 𝑃(𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒), represents termination power. 

𝑃(𝑟𝑒𝑎𝑑) =  (𝐼𝐷𝐷4𝑅 − 𝐼𝐷𝐷3𝑁) ∗ 𝑉𝐷𝐷 ∗ 𝑁𝑟𝑒𝑎𝑑𝑐𝑦𝑐𝑙𝑒𝑠               (2.3) 

              𝑃(𝑤𝑟𝑖𝑡𝑒) = (𝐼𝐷𝐷4𝑊 − 𝐼𝐷𝐷3𝑁) ∗ 𝑉𝐷𝐷 ∗ 𝑁𝑤𝑟𝑖𝑡𝑒𝑐𝑦𝑐𝑙𝑒𝑠               (2.4) 

 𝑃(𝑟𝑒𝑓𝑒𝑟𝑒𝑠ℎ) = (𝐼𝐷𝐷5 − 𝐼𝐷𝐷3𝑁) ∗ 𝑉𝐷𝐷 ∗
𝑇𝑅𝐹𝐶

𝑇𝑅𝐹𝐸𝐼
⁄               (2.5) 

 𝑃(𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒) =  𝑃(𝑚𝑎𝑥𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒) ∗
𝑇𝑅𝐶

(𝑎𝑣𝑔. 𝑔𝑎𝑝 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑠)⁄            (2.6) 

 𝑃(𝑚𝑎𝑥𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒) = (𝐼𝐷𝐷0 −
(𝐼𝐷𝐷3𝑁 ∗ 𝑇𝑅𝐴𝑆 + 𝐼𝐷𝐷2𝑁 ∗ (𝑇𝑅𝐶 − 𝑇𝑅𝐴𝑆))

𝑇𝑅𝐶
⁄ ) ∗ 𝑉𝐷𝐷  (2.7) 

𝑃𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 , represents background power dissipation and is combination of following 

components 

 𝑃𝑎𝑐𝑡_𝑝𝑑𝑛 =  𝐼𝐷𝐷3𝑃 ∗ 𝑉𝐷𝐷 ∗ 𝑇𝑎𝑐𝑡_𝑝𝑑𝑛                 (2.8) 

 𝑃𝑎𝑐𝑡_𝑠𝑡𝑑𝑏𝑦 =  𝐼𝐷𝐷3𝑁 ∗ 𝑉𝐷𝐷 ∗ 𝑇𝑎𝑐𝑡_𝑠𝑡𝑑𝑏𝑦                (2.9) 

 𝑃𝑝𝑟𝑒_𝑑𝑤𝑛_𝑠𝑙𝑜𝑤 = 𝐼𝐷𝐷2𝑃0 ∗ 𝑉𝐷𝐷 ∗ 𝑇𝑝𝑟𝑒_𝑑𝑤𝑛_𝑠𝑙𝑜𝑤             (2.10) 
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 𝑃𝑝𝑟𝑒_𝑑𝑤𝑛_𝑓𝑎𝑠𝑡 = 𝐼𝐷𝐷2𝑃1 ∗ 𝑉𝐷𝐷 ∗ 𝑇𝑝𝑟𝑒_𝑑𝑤𝑛_𝑓𝑎𝑠𝑡             (2.11) 

 𝑃𝑝𝑟𝑒_𝑠𝑡𝑏𝑦 =  𝐼𝐷𝐷2𝑁 ∗ 𝑉𝐷𝐷 ∗ 𝑇𝑝𝑟𝑒_𝑠𝑡𝑏𝑦               (2.12) 

 𝑃𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 = 𝑃𝑎𝑐𝑡_𝑝𝑑𝑛 + 𝑃𝑎𝑐𝑡_𝑠𝑡𝑑𝑏𝑦 + 𝑃𝑝𝑟𝑒_𝑑𝑤𝑛_𝑠𝑙𝑜𝑤 + 𝑃𝑝𝑟𝑒_𝑑𝑤𝑛_𝑓𝑎𝑠𝑡 + 𝑃𝑝𝑟𝑒_𝑠𝑡𝑏𝑦                   

                   (2.13) 

Power dissipated in ODT resistors constitutes termination power. For termination power 

consumption not only active rank is responsible but also other ranks in same channel participate 

in same.  

 𝑃𝑟𝑒𝑎𝑑_𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 = 𝑝𝑑𝑠𝑟𝑑 ∗ 𝑁𝑑𝑎𝑡𝑎_𝑟𝑒𝑎𝑑             (2.14) 

 𝑃𝑤𝑟𝑖𝑡𝑒_𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 = 𝑝𝑑𝑠𝑤𝑟 ∗ 𝑁𝑑𝑎𝑡𝑎_𝑤𝑟𝑖𝑡𝑒              (2.15) 

 𝑃𝑟𝑒𝑎𝑑_𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒_𝑜𝑡ℎ𝑒𝑟 = 𝑝𝑑𝑠𝑡𝑒𝑟𝑚𝑅𝑜𝑡ℎ ∗ 𝑁𝑑𝑎𝑡𝑎_𝑟𝑒𝑎𝑑_𝑜𝑡ℎ           (2.16) 

 𝑃𝑤𝑟𝑖𝑡𝑒_𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒_𝑜𝑡ℎ𝑒𝑟 = 𝑝𝑑𝑠𝑡𝑒𝑟𝑚𝑊𝑜𝑡ℎ ∗ 𝑁𝑑𝑎𝑡𝑎_𝑤𝑟𝑖𝑡𝑒_𝑜𝑡ℎ            (2.17) 

The values for 𝑝𝑑𝑠𝑟𝑑, 𝑝𝑑𝑠𝑤𝑟, 𝑝𝑑𝑠𝑡𝑒𝑟𝑚𝑅𝑜𝑡ℎ , 𝑝𝑑𝑠𝑡𝑒𝑟𝑚𝑊𝑜𝑡ℎ  are taken as per micron technical 

note[57]. 

𝑃𝑡𝑜𝑡𝑎𝑙_𝑐ℎ𝑖𝑝_𝑝𝑜𝑤𝑒𝑟 =  𝑃(𝑟𝑒𝑎𝑑) +  𝑃(𝑤𝑟𝑖𝑡𝑒)+ 𝑃(𝑟𝑒𝑓𝑒𝑟𝑒𝑠ℎ) + 𝑃(𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒)+ 𝑃(𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑) + 𝑃(𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒)

                   (2.18) 

2.2.10 Memory Controller 

As mentioned earlier, the main memory system is comprised of storage devices and a memory 

controller. In order to hide hardware details, memory controller plays a role of translator and 

control wrapper for storage devices. Memory controller receives memory requests and as per 

the received request, issues commands to DRAM devices. Memory controller can be 

categorized into two layers: the outer layer and inner layer. Outer layer communicates with 

other computer components and inner layer controls the DRAM devices. Memory scheduler is 

that part of memory controller which issues DRAM commands as per the selected memory 

request. The outer layer accepts memory requests and enqueue them in single transaction queue 

(TQ). Often write requests and their data are kept in separate write queue (WQ). Requests 

placed in transaction queue and write queue are mapped into a series of DRAM commands and 

then these are handled to inner layer. Simple way to translate incoming request is to map them 

into a PRECHARGE command, ACTIVATE command and a WRITE or READ command. 

After translation of incoming request, these commands are placed in inner layer’s command 
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queue (CQ). The memory commands translated are issued as per the timing constraints. 

REFRESH commands are also issued at periodic intervals to retain the data stored.  

2.3 Memory Access Scheduling 

Memory scheduling policies were developed to enhance the performance and decrease energy 

consumption of superscalar, multicore and multithreaded processors. Transition from unicore 

to multicore processor resulted in change in behaviour of memory scheduling policies also. 

From the role of reordering and scheduling requests issued from same thread, its behaviour 

changed to schedule requests from different threads for better and efficient resource utilization. 

In the following sections we will discuss different memory access scheduling policies.  

2.3.1 Memory Scheduling Policies for Single-Threaded Single Core Processor 

 Memory access scheduling policies in single threaded single-core processors mainly focus on 

re-ordering memory access requests in order to reduce gap between processor and memory 

latency. Researchers in [31], have proposed a memory access scheduling policy in order to re-

order DRAM commands like bank PRECHARGE, ACTIVATE and Column Access Strobe.  

In [59], authors have focused on designing parallelized memory controller by 

introducing memory access scheduler which is responsible for issuing read requests, write 

requests, ACTIVATE and PRECHARGE commands. The Ph.D. thesis [60], have proposed a 

compiler based technology called access ordering for solving memory bandwidth issue in 

scalar processor by reordering memory requests. Authors in [61], investigated memory access 

ordering to find the limitations for performance enhancement. In [62], researchers introduced 

a memory scheduling unit to prefetch memory read requests, buffer memory write accesses, 

and dynamically reordering memory accesses to maximize efficient memory bandwidth 

utilization. The key limitation of before discussed algorithms is that they are beneficial for 

single-threaded processors only. They cannot handle requests from multiple threads. Our main 

focus in this thesis is on memory access schedulers for multi-threaded and multicore 

processors. As per [63], there are some scheduling policies that were developed for single 

threaded processors but can be used in SMT processors. Memory access scheduling policies 

under this category are FCFS (First Come First Serve), age-based policy, hit-first scheduling 

policy and read-first scheduling policy.  

 FCFS scheduling policy serves requests in accordance with their arrival time. Request 

that arrives first is served first, irrespective of all other factors. It is very simple hence requires 
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very less hardware for implementation. Its limitation also lies in being very simple. It does not 

consider the criticality of other resources and requests. Hit-first scheduling policy prioritizes 

row-buffer hits over row-buffer miss requests. So, it prioritizes memory requests that take less 

time to complete. Read-first scheduling policy gives more priority to memory reads over writes 

because memory reads are more critical for system’s performance than memory writes. Both 

hit-first and read-first scheduling policies can be used along with other scheduling algorithms. 

 Next section contains memory access scheduling policies that are developed for multi-

threaded and multi-core processor. 

2.3.2 Scheduling Policies for Multi-threaded and Multi-core processors:  

The idea of main memory scheduling policy for multi-threaded processors is discussed in [63]. 

In multithreaded and multi-core processors multiple threads run simultaneously and hence 

contention to access system resources (memory resource) among threads also increases. In 

[63], researchers presented three thread-aware scheduling policies. Introduced scheduling 

policies are request-based, reorder buffer-based and IQ-based (Issue Queue-based) scheduling 

policies. ROB-based and IQ-based scheduling policies are resource based scheduling policies 

and request-based scheduling algorithm is request based scheduling policy. They compared the 

performance of these scheduling strategies with algorithms like hit-first, read-first and age-

first. 

 Researchers categorized memory access scheduling algorithms in two categories, 

resource-based algorithms and request-based algorithms. Two more categories are added for 

classification of memory scheduling policies i.e., fairness-based algorithms and parallelism-

based algorithm.  

Resource-Based Algorithms: The key concept behind these scheduling policies is that they try 

to decrease conflict among threads for accessing main memory. The contention among threads 

serves as a bottleneck in system’s performance. Three resource based scheduling policies are 

discussed here. i.e., ROB-based policy, IQ-based policy and scheduling policy using RIR 

(Read-to In-flight Ratio) metric. ROB-based memory access scheduling policy prioritizes 

thread having maximum entries in reorder buffer. The key idea behind doing so is that serving 

request from threads having more re-order buffer entry releases more waiting instructions than 

serving requests from other threads. This scheduling policy decreases contention on reorder 

buffer, thus improves throughput of the system. 
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IQ-based scheduling policy prioritizes requests from the thread having highest amount of issue 

queue entries. The idea behind prioritizing requests from threads having highest number of 

issue queue entry is that it is more advantageous in terms of performance to serve these requests 

than to serve requests from other threads. It helps to improve throughput and decrease 

contention among threads on issue queue. 

In [64], researchers have presented a new performance metric called RIR. RIR is the fraction 

among the amount of ready instructions in the issue queues and the amount of in-flight 

instructions from issue to write back stages. High amount of RIR means the thread has made 

good progress during execution with whatever resources were available with it. Researchers 

utilized this metric in phase co-scheduling for a dual-core chip multiprocessor of dual-threaded 

SMT processors. Using this metric gives good results in memory access scheduling. 

Request-based Scheduling Policy: Request-based scheduling strategies prioritize requests 

from thread having minimum amount of pending requests that is why sometimes it is called as 

LREQ (Least REQuest). This algorithm improves throughput of the memory system but does 

not affect fairness. As the number of threads during execution increases, performance of 

request-based scheduling policy decreases. Figure 2.7, reveals the simulation trends obtained 

for FCFS, hit-first, age-based, ROB-based, IQ-based and LREQ based scheduling policies as 

per assumptions and simulation setup considered in [63]. 

 

Figure 2.8 Comparison between Scheduling Policies[63] 
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In [65], authors proposed a new scheduling strategy named ME-LREQ (Memory Efficiency 

with Least REQuest). It is request based scheduler but researchers further attached a new 

parameter named memory efficiency to it. Memory efficiency of an application is narrated as 

Instructions per clock (IPC) of this application divided by memory bandwidth usage under 

single-core environment, given by equation 2.19. 

 𝑀𝐸[𝑖] =
𝐼𝑃𝐶𝑠𝑖𝑛𝑔𝑙𝑒[𝑖]

𝐵𝑊𝑠𝑖𝑛𝑔𝑙𝑒[𝑖]
                (2.19) 

In [65], as per results obtained, proposed scheduling policy improved performance by 6.4% on 

average and upto 9.2% as compared to original request-based scheduling policy. The limitation 

of this scheduling policy is that it does not support both online and offline profiling. 

Fairness-Based Algorithms: Fairness is an important aspect in system’s performance and 

energy consumption that is being addressed by only few algorithms. 

For single threaded processors age-based algorithms were proposed. Same is still applicable 

for multi-threaded and multicore processors. Other than age-based scheduling policy there are 

other fairness-based scheduling algorithms proposed for multi-threaded multicore processor 

environment. One among such scheduling policies is Round Robin (RR) scheduling policy. 

Round Robin scheduling policies iteratively issues pending memory requests from threads, one 

at a time from each thread in one iteration. Round Robin scheduling policy can be presented 

by following equation: 

 𝑇ℎ𝑟𝑒𝑎𝑑𝐼𝐷𝑛𝑒𝑥𝑡_𝑟𝑒𝑞𝑢𝑒𝑠𝑡 =
𝑇ℎ𝑟𝑒𝑎𝑑𝐼𝐷𝑙𝑎𝑠𝑡_𝑠𝑒𝑟𝑣𝑒𝑑_𝑟𝑒𝑞𝑢𝑒𝑠𝑡+1

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 𝑡ℎ𝑟𝑒𝑎𝑑𝑠 ℎ𝑎𝑣𝑖𝑛𝑔 𝑝𝑒𝑛𝑑𝑖𝑛𝑔 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠
          (2.20) 

Round Robin scheduling strategy aims to improve fairness among threads in slightly different 

manner than age-based scheduling policy. Age-based scheduling strategy aims to achieve 

fairness among requests irrespective of threads that issued them. That is, if at a time I, thread 

X issued three memory requests and at time i+10, thread Y issued one memory request, the 

requests generated by thread X will be served first being older than requests generated by thread 

Y. Whereas, RR scheduling policy does not consider how old an request is. For above 

mentioned scenario, in case of RR scheduling policy, first a request from thread X is served 

than one from thread Y, iteratively. In other words, it can be said that age based memory 

scheduling policy tries to achieve fairness at memory request level, whereas RR scheduling 

policy tries to achieve fairness at thread level. 
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In [42], authors proposed another fairness-based memory scheduling policy named STFM 

(Stall Time Fair Memory scheduler). This scheduling policy primarily focuses on improving 

fairness. The scheduling policy estimates stall-time Tshared and Talone. Tshared represents memory 

waiting time observed by the thread when executing along with multiple threads in the memory 

system. Talone is the wait time experience by the thread if it had running alone in the memory 

system. Using the values of Tshared and Talone, the researchers in [42] calculated slowdown for 

each thread. Then the maximum slowdown and minimum slowdown corresponding to each 

pending request is calculated. The requests having ratio between maximum and minimum 

slowdown and above certain threshold are scheduled first to decrease stall time experiences by 

the threads. If this ratio is below threshold then simple FR-FCFS scheduling policy is used to 

schedule memory requests. 

Parallelism-based Scheduling Algorithm: Schedulers under this category focus on enhancing 

parallelism among main memory sub-system components or among applications themselves. 

Authors in [66], proposed a memory access scheduling policy named PAR-BS (parallelism-

aware Batch Scheduling). PAR-BS is primarily based on two key ideas, one is batch 

scheduling, i.e., to schedule memory requests in batches in accordance to their arrival time and 

corresponding requests belonging to oldest batch have highest priority in order to avoid 

starvation. Another scheduling idea is parallelism aware scheduling, i.e., to facilitate bank level 

parallelism with a batch.  

A scheduler named ATLAS proposed in [67], prioritized threads that are least served in past 

by memory controllers. The key limitation of ATLAS is that it provides good results in terms 

of performance and fairness if memory system have multiple memory controllers. TCM 

scheduler proposed in [68], first categorised threads in two groups, i.e., memory-intensive 

threads and memory non-intensive (compute intensive) threads. TCM prioritize threads 

belonging to compute intensive category over memory intensive ones because they are light 

and easy to service, henceforth resulting in improved performance. In order to exploit fairness 

among threads TCM shuffles priority of threads under memory-intensive category. 

Refresh based Scheduling Policies: DRAM based memory system must incorporate efficient 

and intelligent refresh mechanism that should be able to decide:  1) timing regarding scheduling 

of refresh operations while meeting timing constraints of additional memory commands, and 

2) which DRAM rows are to be refreshed. In this section further we briefly discuss approaches 
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for deciding when to issue refresh commands while meeting timing parameters of other 

memory commands. 

Decision Regarding When to issue Refresh Command 

Classification of Refresh scheduler is based on how they issue refresh operations [69] and 

deciding whether they issue regular accesses around [70] or within timing constraints [35]. In 

[69] Stuecheli et al. propose refresh mechanism named  Elastic Refresh [69] that dynamically 

fits refresh period according to currently executing workload. In [70], authors propose 

Dynamic Command Expansion (DCE) and Pre-emptive Command Drain (PCD) that prevent 

the memory controller queue from halting useful memory accesses if the memory controller 

queue is filled with memory commands addressed to the bank to be refreshed. At first, DCE 

delays commands to the banks that are to be banks refreshed, and then proactively issues 

commands to the banks under refresh operation. In [35], Nair et al. proposed refresh pause 

operation allowing regular accesses to operate with less delay. 

Decision Regarding What Not to Refresh 

Another basis for categorization of refresh schemes is on the basis of refresh data on which 

refresh operation is to be performed. It is based on cell retention time, error tolerance of the 

data, access recency, and validity of row, i.e., validity of row includes decision regarding 

whether valid row is under refresh operation. A row is said to be valid if operating system has 

allocated the physical pages containing those rows.  

Cell Retention Time: Retention time refers to the duration for which DRAM cell maintains 

data integrity, i.e., retaining data without changing or disrupting the stored value on it as 

capacitor tends to leak stored data gradually with time. The retention time of cells varies from 

cell to cell across the chip due to process variation [71, 72]. The scheduling approaches that 

make use of retention time information do not consider system workloads and global memory 

usage. On hardware level, retention aware approach may refresh cells with longer retention 

time less frequently and cells with less retention time more frequently, as used in the Variable 

Refresh Architecture (VRA) proposed by Ohsawa et al. in [73] and in Retention-Aware 

Intelligent DRAM Refresh (RAIDR) approach proposed by Liu et al. in [74]. In VRA approach, 

each row’s expected refresh period is maintained in registers inside DRAM based memory 

system. Retention Aware Approach makes use of fact that only a few rows require very 

frequent refreshes and such rows are tracked inside memory controller. At software level 

refresh period of cells can be improved by allocating addresses that refers to cells with 

sufficient retention time. In [75], authors proposed the Retention-Aware Placement approach 

in DRAM (RAPID) and Refresh Incessantly but Occasionally (RIO) policy is proposed by 
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Baek et al. [76]. These two before mentioned approaches are two such Retention based 

solutions that work on minimizing device’s refresh rate by isolating pages requiring frequent 

refreshes. 

Error Tolerance: Some applications like machine learning, media processing and unstructured 

information analysis can tolerate shortcomings in some of their data and still they produce 

acceptable outcomes. Approximate computation [77, 78] makes use of such approximate data 

to find out the tradeoffs among performance, energy, and accuracy. So, DRAM cells storing 

such error-tolerant data are not required to be refreshed as frequently as cells storing critical 

data. The number of cells falling into fault-tolerant category depends on application’s 

characteristics. Liu et al. [79] proposed approach that partitions DRAM banks into two regions, 

i.e., critical and noncritical regions. The proposed approach, Flikker, extends the self-refresh 

time in order to refresh non-critical regions less frequently. Proposed solution focuses on 

smartphones that keeps DRAM in self-refresh mode when in idle state, similar technique can 

be applied to auto refresh mode in operating mode. DRAM must be repartitioned if workload 

characteristics change in such a way that more data becomes critical. Such partitioning is coarse 

grained and it simplifies hardware and reduces area overhead.  

Access Recency: DRAM accesses recharge data stored in cell so subsequent refresh operation 

to same row is not required and may be postponed. The amount of rows influenced depends on 

how many various rows are retrieved within the maximum refresh period, which may be few 

for many workloads. Ghosh et al. [80] presented Smart Refresh approach that maintains per-

row timeout counter in memory controller and divides the refresh period into phases. During 

each phase the memory controller decrements the counter and when counter reaches zero value 

it issues RAS-only refresh.  In [81], Emma et al. proposed cleverer refresh policies for 

embedded DRAM caches. ECC ensures error tolerance and timestamp guide scheduling 

selective refreshes. In [82] Agrawal et al. similarly work on eDRAM caches with Refrint. 

Authors incorporated eager writeback policy for rarely used lines additionally with maintaining 

access recency. Limited rows are there in eDRAM so overhead for tracking an information in 

eDRAM is much more bearable than information tracking overhead for DRAM based main 

memory.  

Validity: If operating system does not allocate memory addresses then refreshes made to 

corresponding addresses are wasteful. Many researchers work on software approaches that 

attempt to initiate refreshes only for memory addresses with valid data. The policies based on 

validity of data is sensitive to the total memory usage of the computing system. In addition to 

variable retention aware policy, Ohsawa et al. in [73] presented a Selective Refresh 
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Architecture (SRA) approach that uses an A bit per row and accordingly decide whether to 

refresh it or not. In this scheme modification to ISA is made so that the compiler, operating 

system, or memory controller can prevent refreshes to invalid data. Isen and John [83], 

proposed a combination of hardware/software approach ESKIMO that make use of SRA for 

tracking data significance. For an instance, in newly allocated memory addresses the values of 

uninitialized data are insignificant. The information regarding allocation and de-allocation of 

virtual addresses is maintained with operating system. Baek et al. [76] propose Placement-

Aware Refresh In situ (PARIS) that uses physical memory usage information maintained at 

operating system instead of virtual addresses.  PARIS maintains RD bits in the memory 

controller. The storage overheads is reduced by tracking valid bits for coarse row granularities. 

However, using coarse row granularity for maintaining valid bits increases unnecessary 

refreshes. 
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CHAPTER 3 

DRAM SCHEDULER OPTIMIZED FOR ROW BUFFER HITS AND 

FAIRNESS AMONG THREADS  

___________________________________________________________________________ 

3.1 Impact of Row Buffer Hits on DRAM Performance 

Row buffer hit is condition in which the address being requested by memory access is already 

present in the sense amplifier. In this case minimum number of operations are required to be 

performed to service a memory request. How prioritizing row buffer hits affects the behaviour 

of DRAM in terms of energy consumption and performance is evaluated first to identify its 

role in efficient memory scheduling. The dynamic energy consumed to perform column read 

command (to read data from cell) on DRAM memory cell is given by   

dataNDDRD TVIIE *)( 3DD4R   (3.1) 

where: IDD4R denotes current withdrawn to perform column read and IDD3N corresponds to 

current withdrawn in active standby mode. Time taken to transfer data in M column accesses 

is represented by Tdata and is given by (3.2). 

burstdata TMT 
 

(3.2) 

 Tburst represents data transfer latency and is given by (3.3) 

2
clk

burst

t
BLT 

 
(3.3) 

Along with ERD additional dynamic energy (EDQ) is also expended to read data out from DRAM 

cell, given by (3.4). 

dataDQSDQRDQDQ TNNPE  )()(
 

(3.4) 

where, PDQ(R) represents power consumed per pin while extracting output [84]. NDQ(R) denotes 

number of data pins and NDQS corresponds to number of strobe pins. 

When writing data into DRAM cell, dynamic energy EWR is expanded and is given by (85). 

dataNDDWDDWR TVIIE  )( 34
 

(3.5) 

where, IDD4W and IDD3N represents write current drawn and stand by current drawn during Tdata. 
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While writing data, write termination energy is also spent to writes, (3.6). 

dataDMDQSDQWDQterm TNNNPE  )()(
 

(3.6) 

In equation (6), NDM represents number of data mask pins and NDQ(M) denotes power per pin 

during write termination. 

Equation (3.7) and equation (3.8), gives dynamic energy consumption during read miss and 

write miss. 

DQRDDDreadmissDRAM EEEE  0)(  (3.7) 

termWRDDwritemissDRAM EEEE  0)(  
(3.8) 

where,  

)))((1( 2300 rcRASrcNDDRASNDD
rc

DDDD tVttItI
t

IE 
 (3.9) 

where, IDD0 is average current drawn during issuing activate command. trc is delay between two 

activate command. After delay of tras activate command is preceded by precharge command. 

Dynamic energy spent in row hit situation, i.e., read hit and write hit, is in the form of dynamic 

energy consumed to perform read column access and write column access, respectively. 

Dynamic energy consumed in read hit access and write hit access is given by (3.10) and (3.11) 

DQRDreadhitDRAM EEE )(  
(3.10) 

termWRwritehitDRAM EEE )(  
(3.11) 

By analysing equation (3.7), (3.8) and (3.10), (3.11), it is clearly revealed that row buffer hits 

require lesser number of operations to access the desired page.  

3.1.1 Motivational Results 

We start by analysing the impact of row buffer hits on DRAM performance. For conducting 

such analysis we simulated and compared existing memory scheduling policies that are using 

this feature with ones that do not take advantage of row buffer hits. We simulated chosen 

scheduling policies on cycle accurate DRAM’s main memory system simulator, USIMM [86]. 

In USIMM, memory controller issues device level memory commands and this decision is 

dependent on present status of channel(s), rank(s) and bank(s) of main memory system. In order 
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to conduct comparative evaluation we simulated workloads using proposed scheduling 

approach and same workloads using existing scheduling approach under two different memory 

configuration, i.e., single-channel memory configuration and four-channel memory 

configuration. In single-channel memory configuration, memory system is formulated with one 

channel and that channel two ranks are present and in each rank four banks are present. In four-

channel memory configuration, memory system is composed of four channels and in each 

channel two ranks are there and in each rank four banks are present. In simulator power related 

calculations are performed on the basis of Micron’s power calculation methodology. The 

detailed information regarding power simulation are included in [57]. 

Table 3.1 Workload Description 

Trace File(s) 

Workloads with 
Single-Channel 

m/m 
Configuration  

Workloads with 
four-Channel 

m/m 
Configuration  

comm2 1C_1Chn_1 1C_4Chn_1 

comm1 comm1 2C_1Chn_1 2C_4Chn_1 

comm1 comm1 comm2 comm2 4C_1Chn_1 4C_4Chn_1 

fluid swapt comm2 comm2 4C_1Chn_2 4C_4Chn_2 

face face ferret ferret 4C_1Chn_3 4C_4Chn_3 

black black freq freq 4C_1Chn_4 4C_4Chn_4 

stream stream stream stream 4C_1Chn_5 4C_4Chn_5 

fluid fluid swapt swapt comm2 comm2 
ferret ferret - 8C_4Chn_1 

fluid fluid swapt swapt comm2 comm2 
ferret ferret black black freq freq comm1 

comm1 stream stream 
- 16C_4Chn_9 

 

Result Analysis 

Table 3.2, brings out the outcomes for simulated scheduling policies in respect of row buffer 

hit rate. The outcomes in Table 3.2, highlights that RLDP scheduling policy stems to highest 

page hit rate. Subsequently PRWL scheduling algorithm conducted better in terms of overall 

page hit rate. Execution of close page policy is least amongst all simulated scheduling policies. 

Amid all simulated policies RLDP and PRWL prefers row buffer hits over other memory read 
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and write commands, however, FCFS and close page policy does not utilize such feature, 

therefore the results received for row buffer hits reveals the similar pattern. 

Table 3.2 Comparative statement of simulated scheduling policies on the basis of row 

buffer hit 

Workload 

Read Hit Rate Write Hit Rate 

FCFS Close RLDP PRWL FCFS Close RLDP PRWL 

MT-c1 0.0033 -0.0290 0.0144 -0.0356 -0.2097 -0.2099 -0.0345 -0.4018 

4C_1Chn_4 0.6291 0.5178 0.5709 0.527 0.1603 0.1508 0.3823 0.1356 

2C_1Chn_1 0.5996 0.4846 0.5053 0.4746 -0.1653 -0.2475 0.1673 0.1274 

4C_1Chn_1 0.5294 0.4167 0.4728 0.4272 -0.1619 -0.2084 0.1164 -0.2847 

1C_1Chn_1 0.5749 0.4605 0.4743 0.4498 -0.2850 -0.2890 0.0854 -0.0189 

4C_1Chn_3 0.6996 0.5952 0.6543 0.6011 0.3990 0.3860 0.5761 0.3563 

4C_1Chn_2 0.5545 0.4430 0.4982 0.4528 -0.0861 -0.1163 0.1861 -0.1125 

4C_1Chn_5 0.6461 0.5340 0.5930 0.5444 0.1837 0.1662 0.3985 0.1452 

MTc-4 0.0185 0.0073 0.0065 0.0002 -0.6412 -0.7449 0.0091 -0.0476 

4C_4Chn_4 0.0479 0.0057 0.0096 0.0026 -0.4024 -0.4406 0.0129 -0.0300 

2C_4Chn_1 0.0595 0.0074 0.0063 0.0038 -0.0707 -0.1321 0.0968 0.0075 

4C_4Chn_1 0.0141 0.0041 0.0041 -0.0001 -0.4801 -0.5352 0.0242 -0.0254 

1C_4Chn_1 0.0160 0.0026 0.0026 0.0016 -0.0699 -0.0853 0.0040 -0.0013 

4C_4Chn_3 0.0638 -0.0038 0.0130 -0.0013 -0.3775 -0.4282 0.0534 -0.0613 

4C_4Chn_2 0.0197 0.0025 0.0038 -0.0002 -0.3988 -0.4230 0.0034 -0.0315 

4C_4Chn_5 0.0466 0.0043 0.0085 0.0002 -0.3885 -0.4572 0.0097 -0.0595 

8C_4Chn_1 0.0074 -0.0058 0.0025 -0.0091 -0.4052 -0.4768 -0.0037 -0.1556 

16C_4Chn_9 -0.0140 -0.0222 -0.0025 -0.0270 -0.2988 -0.3438 -0.0169 -0.3256 

 1-Channel 

 4-Channel 

0.5296 

0.0280 

0.4279 

0.0002 

0.4729 

0.0054 

0.4301 

-0.0029 

-0.0206 

-0.3533 

-0.0460 

-0.4067 

0.2347 

0.0193 

-0.0067 

-0.0730 

Average 0.2509  0.2132 0.2132 0.1896 -0.2054 -0.2464 0.1150 -0.0435 
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Influence of row buffer hits on Dynamic RAM based main memory system’s energy utilization 

and performance is analysed by evaluating performance metrics like, energy-delay product, 

total execution time, and maximum slowdown time.  

Energy-Delay Product 

The results obtained are depicted in Figure 3.1 for EDP reveals that RLDP and PRWL 

consumed less energy than FCFS and close page policy while maintaining the performance 

level for all simulated scenarios. In Figure 3, results convey that RLDP rationalized EDP by 

17.33% and 12.95% in one-channel memory configuration when compared with FCFS and 

close page policy, respectively. 14.62% and 10.09% decrease in EDP is achieved when PRWL 

scheduling policy is compared to FCFS and close policy in single- as well as four- channel 

memory configurations, respectively. 
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Figure 3.1 EDP (Js) Comparison 
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Figure 3.2 % decrease in EDP for 1-channel configuration. 

Results obtained after simulation in 4-channel configuration, Figure 3.2 depicts that 21.84% 

and 10.98% reduction in EDP is observed when RLDP is compared to FCFS and close policy, 

respectively, in 4-channel configuration. Whereas, PRWL reduced EDP by 20.81% and 9.53%, 

when compared to FCFS scheduling policy and close page policy, respectively in 4-channel 

configuration. 
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Figure 3.3 % decrease in EDP for 4-channel configuration 
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Figure 3.4 % of overall decrease in EDP 

In total RLDP has reduced EDP by 19.97% and PRWL has reduced EDP by 18.17% in 

comparison with FCFS scheduling policy. Similarly, 11.93% and 9.95% total reduction in EDP 

has been observed when RLDP and PRWL is compared to close page scheduling policy, Figure 

3.4. 

Total Execution Time 

The results shown in Figure 3.5 reveal that the performance of RLDP is best among all 

simulated scheduling policies for both memory configurations. After RLDP, PRWL performed 

better than other simulated policies. RLDP took 8.94% and 6.75% less time to complete their 

execution in comparison to FCFS and close scheduling policy, respectively, in single-channel 

memory configuration. Whereas, 7.86% and 5.64% reduction in execution time is observed 

when PRWL is compared to FCFS and close page policy, respectively, Figure 3.6. 
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Figure 3.5 Total Execution Time (mCyc) Comparison 
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Figure 3.6 % decrease in Total Execution Time for 1-channel configuration 

In 4-channel memory configuration 10.89% and 10.49% reduction in execution time is 

observed when RLDP and PRWL is compared to FCFS scheduling policy, respectively. When 

RLDP is compared to close, 5.38%, and when PRWL is compared to close policy 4.96% 

reduction in execution time is observed, Figure 3.7.   
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Figure 3.7 % decrease in Total Execution Time for 4-channel configuration 
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RLDP reduced execution time of workloads by 9.99% and 6.05%, in total when compared to 

FCFS scheduling policy and close page policy, respectively. When PRWL is compared to 

FCFS scheduling policy 9.30% reduction in execution time is observed, whereas, with respect 

to close page policy 5.33% reduction in execution time can be seen, Figure 3.8. Both RLDP 

and PRWL prioritize row buffer hits which further lead to reduced execution time because of 

reduced service time required to complete requests made for main memory. Row buffer hits 

require least number of operations for servicing a memory request. 
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Figure 3.8 % of Overall decrease in Total Execution Time 

Maximum Slowdown Time 

The results obtained for maximum slowdown time reveals that the performance of RLDP is 

best among all scheduling policies simulated for evaluation. After RLDP, PRWL scheduling 

policy is fair while issuing memory requests intended for memory, Figure 3.9. 
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Figure 3.9 Maximum Slowdown Time Comparison 
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Figure 3.10  % decrease in Maximum Slowdown Time for 1-channel configuration. 

Figure 3.10, shows that 8.89% and 7.4% decrement in maximum slowdown time is obtained 

for single-channel memory configuration when RLDP is compared to FCFS and PRWL is 

compared to FCFS, respectively. In comparison to close page policy 6.82% and 6.06% 

reduction is found when RLDP and PRWL is compared to close page policy.  
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Figure 3.11 % decrease in Maximum Slowdown Time for 4-channel configuration 
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In 4-channel memory configuration, 11.02% decreased maximum slowdown time is obtained 

when RLDP is compared to FCFS scheduling policy and 5.04% reduced maximum slowdown 

time is obtained with respect to close page policy. When PRWL is compared to FCFS 

scheduling policy 9.4% reduction in maximum slowdown time is obtained. In comparison to 

close page policy, 3.36% reduced maximum slowdown time is obtained, Figure 3.11. Overall,  

9.95% reduction in maximum slowdown time is obtained when RLDP is compared to FCFS 

scheduling policy and 5.98% reduced maximum slowdown time is obtained when RLDP 

compared to close page policy. When PRWL is compared with FCFS and close scheduling 

policy 8.4% and 4.71% reduction in maximum slowdown time is observed, Figure 3.12. 

FCFS Close

M
a
x
im

u
m

 S
lo

w
d
o
w

n
 T

im
e

0

2

4

6

8

10

12

RLDP

PRWL

 

Figure 3.12 % decrease in overall Maximum Slowdown Time 

Conclusion 

The performance metrics chosen for evaluating the performance are not fully independent. 

These metrics affect the performance of each other. The scheduler exploiting maximum row 

buffer hits requires least number of operations to service a memory request which leads to 

reduced execution time required to complete operation of requests. Less number of operations 

required for service of a memory request may lead to reduced energy consumption also. Among 

all simulated policies, the performance of RLDP is best. This is because RLDP prioritizes row 

buffer hits, prioritizes read requests over writes and delayed close page policy. Similarly, 

PRWL also works on improving row hits and improves bank level parallelism. So, we 
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summarize that both memory scheduling policies, i.e., RLDP as well as PRWL focuses on 

reducing the number of operations required to service a memory request because of which both 

RLDP scheduler and PRWL scheduler performed better than  FCFS scheduling policy and 

close page scheduling policy. FCFS and close scheduling policies treat each memory request 

equally. They do not prioritize row hit and read requests over other memory requests. Hence, 

for an efficient scheduler, in terms of energy consumption as well as performance, row buffer 

hits should be prioritized over other memory accesses.  

3.2 Impact of Inter-thread Fairness on DRAM Performance 

The DRAM based main memory is a system’s resource that is being shared by all concurrently 

executing threads in chip multiprocessor system. Main memory resource is shared by all 

concurrently running threads to fetch the required data and to store the intermediate results 

produced during the execution the threads.  In chip multiprocessor system multiple cores are 

integrated onto single chip. These multiple chips facilitates multiple threads to run 

simultaneously for faster and more energy efficient execution [42]. In single core system only 

single thread run at a time so there exists no contention for accessing the main memory 

resource. So, with increase in number of cores the necessity of an efficient as well as intelligent 

scheduler is also increasing. If memory scheduler does not schedules memory requests 

intelligently then for some threads starvation condition may arise while others running parallel 

may get unfair priority. So, the starved threads derives to increased maximal slowdown time 

which additionally leads to increased execution time and energy consumption. So, a scheduler 

is said to be efficient in terms of energy and performance, if in addition to prioritizing row hits, 

it also considers fairness among threads.  

Concurrently executing applications on multiple cores contend with each other for main 

memory resource causing inter-thread interference. Interference among threads results in 

increased wait time for some threads. The increased stall time of a thread is because of two 

factors, i.e., when other thread’s requests are prioritized Tinterf(others)  and stall time due to 

conflicts generated from same thread Tinterf(own).  

)(int)(intint ownerfotherserferf TTT 
 

(3.13) 

Tinterf(others) is further due to two factors, i.e., Tinterf(bus), interference due to wait time in bus and 

halt time if interference occurs in DRAM bank, Tinterf(bank).  
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)(int)(intint )( buserfbankerferf TTothersT 
 

(3.14) 

Every read request or write request is issued to DRAM bank through DRAM bus. The DRAM 

bus remains unavailable for other requests during this transfer period (Tbus cycles). The value 

Tbus depends on type of DRAM used in memory subsystem. Tbus value for DDR2 SDRAM is 

given by 

2
BLTbus   (3.15) 

3.2.1 Motivational Results  

To analyse the impact of inter-thread fairness, we conducted a comparative analysis among 

scheduling policies exploiting thread fairness with scheduling policies in which inter-thread 

fairness is ignored. Table 3.3, presents the simulation environment and simulated policies used 

for evaluation. Among simulated scheduling policies FCFS and close page policies do not 

ensure fairness among threads, whereas, FR-FCFS and PBFS scheduling policy ensures 

fairness among threads.   

Table 3.4, describes the workloads simulated on USIMM simulator under two memory 

configurations, i.e., one having one channel in memory system and other having four channels 

in memory system to evaluate the impact of inter thread fairness on DRAM’s performance. 

Dual Data Rate-3 DRAM based main memory system is simulated for evaluation. Workloads 

are formed as the combination of traces, Table 3.4. Traces are extracted from PARSEC [87] 

and commercial transaction processing workload benchmarks. These workloads are executed 

using selected scheduling policies and then their performance is evaluated in terms of selected 

performance metrics. 

Table 3.3 Simulation Parameters 

Parameter Description 

Examined Schedulers FCFS, Close, FR-FCFS, PBFS 

Simulator USIMM 

Processor Clock Speed 3.2GHz 

Memory Bus Speed 800 MHz (plus DDR3) 

Cache lines per row 128 
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Table 3.4 Workload Description 

Selected Trace (s) 
Workloads with 

Single-Channel m/m 
Configuration  

Workloads with 
four-Channel m/m 

Configuration  

comm2 1Core_1Chn_1 1Core_4Chn_1 

comm1 comm1 2Core_1Chn_1 2Core_4Chn_1 

comm1 comm1 comm2 comm2 4Core_1Chn_1 4Core_4Chn_1 

fluid swapt comm2 comm2 4Core_1Chn_2 4Core_4Chn_2 

face face ferret ferret 4Core_1Chn_3 4Core_4Chn_3 

black black freq freq 4Core_1Chn_4 4Core_4Chn_4 

stream stream stream stream 4Core_1Chn_5 4Core_4Chn_5 

fluid fluid swapt swapt comm2 comm2 ferret ferret - 8Core_4Chn_1 

fluid fluid swapt swapt comm2 comm2 ferret ferret 
black black freq freq comm1 comm1 stream stream 

- 16Core_4Chn_9 

 

The evaluation is conducted on the basis of behaviour metrics like total execution time that 

depicts total time taken by simulated threads for completing their execution, maximum 

slowdown time, maximum stall time experienced by simultaneously executing threads, energy-

delay product, revealing energy consumed during execution and delay in executing last thread. 

These performance metrics are inter-dependent on each other. If the threads are interfering with 

each other to access main memory scheduler then due to contention their maximum slowdown 

time would be more which further leads to increased execution time and power consumption. 

It may further impact energy consumed by scheduling policy and performance of schedulers. 

So, for efficient servicing of memory accesses, memory scheduling policies should be fair 

while scheduling memory requests generated to access main memory resource. 

Memory Configuration 1-channel configuration, 4-channel configuration 

Write Queue Capacity 64 

Number of Ranks per channel 2 

Number of Banks per channel 8 
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Total Execution Time 

Evaluation made in terms of total execution time depicts that PBFS performed best among all 

simulated policies. In comparison to FCFS scheduling policy 5.96%, 8.81% reduction in total 

execution time is obtained in 1-channel, 4-channel memory configuration. In total, 7.46% less 

time is consumed by PBFS scheduling policy when compared to FCFS scheduling policy. 

When PBFS is compared to close page policy 3.70%, 3.28%, reduced execution time is 

obtained, in 1-channel, 4-channel memory configuration. Overall, 3.40% reduction in 

execution time obtained when PBFS is compared to close page policy. This behaviour of PBFS 

is because it tries to ensure fairness among threads on the basis of priority among threads. 

Memory intensive threads are given higher priority than compute intensive threads. PBFS tries 

to ensure fairness among threads to avoid starvation experienced by threads executing 

simultaneous with each other. Which results in decreased execution time of threads.  

 

Figure 3.13 Total Execution Time (mCyc) Comparison 

Energy-Delay Product 

As shown in Figure 3.14, PBFS has consumed least amount of energy while maintaining the 

performance during execution. This behaviour of PBFS is shown because it tries to maintain 

fair environment among threads running along each other which leads to reduced congestion 
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observed by threads hence reduced energy-delay product. In 1-channel memory configuration 

and 4-channel memory configuration 9.68% and 16.97% reduction is observed when PBFS is 

compared to FCFS scheduling policy, whereas 4.89%, 5.14% is obtained when compared to 

close page policy. In terms of energy-delay product, overall 13.82% and 5.16% reduction is 

obtained when PBFS is compared to FCFS scheduling policy and close page policy, 

respectively. 

 

Figure 3.14 EDP (Js) Comparison 

Maximum Slowdown Time 

As shown in Figure 3.15, PBFS has observed least slowdown. A scheduling policy is said to 

be fairer if it shows least maximum slowdown. Scheduler being fairer among all simulated 

policies observes less stall time as compared to other scheduling policies not ensuring fairness 

among threads. In terms of maximum slowdown time, total, 6.92% reduction is observed when 

compared to FCFS scheduling policy and 2.42% decreased maximum slowdown time is 

observed when PBFS is compared to close page policy. 
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Figure 3.15 Maximum Slowdown Time Comparison 

Conclusion 

In CMP the threads processing on several cores professes for the common system resources 

and may intervene with one another for acquiring them. In absence of a genuine memory 

scheduling policy it is possible that some threads are unjustly computed, leading to a prolonged 

stall time for other threads. Extended pause time to access memory, results in enhanced 

maximum slowdown time which further marshals increment in execution time and therefore 

results in escalated energy consumption. Hence, a noble memory scheduler is required to be 

legitimate in terms of scheduling threads.  

3.3 Proposed Memory Access Scheduling Algorithm 

In order to achieve inter-thread fairness and increased performance or decreased energy 

consumption we propose a scheduling policy named Energy-Efficient Fairness-Aware 

Memory Access Scheduling (EEFA). The flow chart of proposed scheduler is presented in 

Figure 3.16. 

Proposed scheduling policy tries to ensure that each thread gets equal chance to access shared 

main memory sub-system by giving more priority to requests generated from threads blocking 

reorder buffer head. In proposed scheduling policy row buffer hit requests are prioritized over 

other memory accesses henceforth results in reduced average access latency of memory request 
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Figure 3.16 Flow Chart of Energy-Efficient Fairness-Aware Memory Access Scheduling 
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and power consumption during servicing the requests. Another key aspect covered by proposed 

scheduler is to prioritize memory reads over writes during memory request scheduling. 

Memory read requests largely impacts the system’s performance by halting the processor 

during servicing the read requests, whereas memory writes requests do not stops the processing 

of processor. As memory writes do not halt the processor during execution so they are not on 

the critical for system’s performance. Because of this memory read requests should be given 

high priority than memory write requests. But scheduling of memory write requests to store 

the required data is also important, as if write queue gats completely filled then it may stop the 

processing of processor. Hence memory writes can’t be ignored completely.  This scenario 

results in a situation where it becomes difficult to decide that when we should schedule memory 

write requests. In conventional memory access schedulers [29, 30, 42, 67, 88, 89, 90] memory 

write requests and memory read requests are served in batches. In drain-write mode memory 

writes are served and in read mode memory reads are served and these modes are strictly 

separated from one another. Here exists the opportunity to enable parallelism at bank level. 

Bank level parallelism is enabled by pre-issuing issuable read commands while servicing the 

write requests on finding command bus is idle. Along with this inter-thread fairness and row 

buffer hits are also facilitated in the proposed scheduler. Bank level parallelism is also included 

in proposed scheduler. 

The proposed memory scheduling policy enhances system fairness, energy consumption and 

decreases execution time for chosen workloads and multi-core environment for varied memory 

configurations.               

3.3.1 Prioritizing Read Requests over Writes 

Memory read requests are more important for the performance of computing system than 

memory write operations. In proposed scheduling approach memory reads are given high 

priority over write requests.  In proposed scheduling algorithm memory read requests are 

scheduled first unless memory write requests reaches the high watermark in write queue. When 

the write queue touches high watermark, i.e., it is about to be full, memory scheduler enters in 

drain-write mode and starts servicing memory write requests. 

3.3.2 Row Buffer Hit 

In proposed scheduler row buffer hits are increased to ensure that minimum number of 

operations are required to service memory requests. To enhance row hits, memory hits, i.e., 

read hits and write hits are prioritized than other memory read/write accesses requested to main 
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memory for service. Row buffer hits requires minimum amount of time and takes least amount 

of energy to service a memory request as only column access read strobe operation is required 

to be issued in order to fetch the data [91] and column access write strobe required to issued, 

in order to store data. Proposed scheduling tries to maximize row buffer hits. 

3.3.3 Fairness among Threads 

In proposed scheduling policy inter-thread fairness is provided by facilitating equal opportunity 

to each thread running simultaneously with each other and waiting for being serviced by 

memory system. Inter-thread fairness is accomplished by giving high priority to requests 

blocking the reorder buffer head. So, the requests queued in the middle or at the end of reorder 

buffer also get chance to access the shared main memory resource. Row buffer is blocked by 

memory intensive threads during execution as they tend to produce more memory requests than 

compute intensive threads. Therefore, by servicing requests generated by reorder buffer head 

compute intensive threads observe less stall time to service main memory resource.  

3.3.4 Bank Level Parallelism 

In addition to above mentioned features proposed scheduling algorithm also exploits bank level 

parallelism. 

In conventional scheduling approach, in drain-write mode only memory writes are serviced, 

memory read requests are not serviced during this mode. As memory reads and writes are 

serviced in bursts. In proposed memory access scheduling approach, scheduler issues timing 

constraint satisfying issuable read commands on finding idle memory cycles and when write 

requests reach low threshold value, i.e., memory writes are nearly drained. Memory controller 

opens the sense simplifier for forthcoming memory read requests by pre-issuing issuable read 

commands during drain-write mode. Pre-scheduling of schedulable memory read commands 

may result in reduced read request service latency and partial enhancement in read-write 

parallelism. 

This read-write interleaving may cause increased service time overhead in terms of additional 

bus turnaround delay. This effect is rationalized by ensuring that only those memory read 

commands issued during write mode that do not cause data bus switch its direction, i.e., only 

PRE and ACT commands are issued during this period. PRE and ACT commands do not cause 

data bus to change its direction, hence do not result in turnaround delay.  
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3.4 Experimental Evaluation Methodology 

Proposed scheduling policy is built on a device level memory command simulator named 

USIMM. In USIMM, memory controller schedules device level memory operations based on 

current status of main memory system, i.e., on the basis of nature of channel(s), rank(s) and 

bank(s). In order to conduct comparative evaluation we simulated workloads using proposed 

scheduling approach and same workloads using existing scheduling approach under two 

different memory configuration, i.e., single-channel memory configuration and four-channel 

memory configuration. In single-channel memory configuration, memory system is formulated 

with one channel and in that channel two ranks are present and in each rank four banks are 

present. In four-channel memory configuration, memory system is composed of four channels 

and in each channel two ranks are there and in each rank four banks are present. In simulator 

power related calculations are performed on the basis of Micron’s power calculation 

methodology. The detailed information regarding power simulation are included in [57]. 

3.4.1 Benchmarks: Characteristics and Classification 

A set of benchmarks derived from PARSEC benchmark suite were used to constitute 

workloads. The workloads were run to conduct comparative evaluation. Description of 

benchmarks is provided in Table 3.5. Experiments were carried out in varied core environment, 

i.e., ranging from one, two, four, eight and sixteen cores in order to simulate multi-threaded 

environment. Workload details are provided in Table 3.6. For better understanding, 

nC_mChan_i, convention is used to represent n-core, m-channel simulation running workload 

i. For calculating maximum slowdown time MT-Canneal workload is not used because only 

multithreaded workloads are taken to calculate maximum slowdown time.  

Table 3.5 Benchmark Description 

Benchmark Trace Driven Application Domain 

Blackscholes Black Financial Analysis 

bodytrack  Body Computer Vision 

Facesim Face Animation Physics 

Ferret Ferret Similarity Search 

Fluidaminate Fluid Animation Physics 
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Streamcluster Stream Data Mining 

Swaption Swapt Financial Analytics 

Canneal Canneal Engineering 

 

Table 3.6 Simulated Workloads Description 

Traces Workloads with 1-Channel 

configuration   

 

Configuration File 

Workloads with 4-Channel 

Configuration  

comm2 1Core_1Chan_1 1Core_4Chan_1 

comm1 comm1 2Core_1Chan_1 2Core_4Chan_1 

comm1 comm1 comm2 comm2 4Core_1Chan_1 4Core_4Chan_1 

fluid swapt comm2 comm2 4Core_1Chan_2 4Core_4Chan_2 

face face ferret ferret 4Core_1Chan_3 4Core_4Chan_3 

black black freq freq 4Core_1Chan_4 4Core_4Chan_4 

stream stream stream stream 4Core_1Chan_5 4Core_4Chan_5 

fluid fluid swapt swapt comm2 

comm2 ferret ferret 

- 8Core_4Chan_1 

fluid fluid swapt swapt comm2 

comm2 ferret ferret black black 

freq freq comm1 comm1 stream 

stream 

- 16Core_4Chan_9 

 

3.4.2 Performance Analysis Metrices 

We comparatively analysed the performance of proposed scheduling approach with chosen 

existing scheduling policies, FCFS, Close and PBFS by simulating workloads described in 

Table 3.2. The comparative performance is evaluated based on selected performance 

parameters like total execution time, energy delay product, maximum slowdown time, page hit 

rate and total memory system power consumption.  

Total Execution Time: Total execution time includes time consumed by all threads running 

simultaneously to complete their execution. 

Energy-Delay Product: EDP for a simulation is calculated by multiplying the energy 

consumed for that simulation and the delay to finish the last program in that workload. The 
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objective of achieving reduced energy consumption while maintaining performance is captured 

by this performance metric [92]. A scheduling policy is more efficient in terms of energy and 

performance if its energy delay product is less.   

Maximum Slowdown Time: This performance metric is used to measure the fairness among 

threads [93]. A simulation environment is fairer if maximum slowdown time is less. To achieve 

fairness among threads by reducing interference among threads stall time experienced by each 

thread running simultaneously should be curtailed rather considering stall time in total. 

Maximum slowdown time represents maximum of slowdown time experienced by each thread 

running simultaneously. Slowdown time is measured by dividing stall time experienced by 

thread when running simultaneously with other threads (Tshared) by stall time experienced by 

thread when running alone (Talone). Slowdown time for a thread can be calculated by equation 

3.16. 

 𝑆𝑙𝑜𝑤𝑑𝑜𝑤𝑛𝑇𝑖𝑚𝑒 =  
𝑇𝑠ℎ𝑎𝑟𝑒𝑑

𝑇 𝑎𝑙𝑜𝑛𝑒
              (3.16) 

Row hit rate: Row hit is a scenario in which the address being requested by a memory request 

is already present in the row buffer. In this case least number of steps are required to be 

performed for servicing a memory request. Row hit rate is a total of read hit rate and write hit 

rate. Read hit represents page hits obtained while servicing read requests and write hit 

represents page hits obtained while servicing write requests. Formula for computing read hit 

rate and write hit rate is given by equation 3.17 and equation 3.18. 

 𝑅𝑒𝑎𝑑 𝑃𝑎𝑔𝑒 𝐻𝑖𝑡 𝑅𝑎𝑡𝑒 =
𝑁𝑜𝑟𝑒𝑎𝑑𝑐𝑜𝑚𝑛𝑑𝑠

−𝑟𝑒𝑎𝑑𝑎𝑐𝑡−𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑡𝑖𝑣𝑒𝑎𝑐𝑡

𝑁𝑜_𝑟𝑒𝑎𝑑𝑐𝑜𝑚𝑛𝑑𝑠
        (3.17) 

 𝑊𝑟𝑖𝑡𝑒 𝑃𝑎𝑔𝑒 𝐻𝑖𝑡 𝑅𝑎𝑡𝑒 =
𝑁𝑜𝑤𝑟𝑖𝑡𝑒𝑐𝑜𝑚𝑛𝑑𝑠

−𝑤𝑟𝑖𝑡𝑒𝑎𝑐𝑡

𝑁𝑜𝑤𝑟𝑖𝑡𝑒𝑐𝑜𝑚𝑛𝑑𝑠

         (3.18) 

where, readact, represents number of activate commands issued to bring required row in sense 

amplifier for servicing read requests and speculativeact, represents speculative activates issued 

by memory controller. 

Total memory System Power Consumption: Total memory system power consumption 

represents total power consumed by main memory system during execution. Memory system 

power consumption is a combination of power consumed by different components in terms of 

read power, write power, refresh power, activate power, background power and terminate 

power. Total memory system power consumption is power consumed by all memory chips, 
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i.e., power consumed by one memory chip multiplied by total number of memory chips present 

in memory system.    

3.5 Result Evaluation  

Simulated scheduling policy’s results are evaluated by comparing it with three already 

implemented memory access scheduling policies, FCFS, Close-page policy and PBFS 

scheduler.  

3.5.1 Total Execution Time 

The simulation scenario revealed in Figure 3.17, in terms of execution time shows that 

proposed scheduling approach showed best performance amongst all chosen scheduling 

policies. 
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Figure 3.17 Total Execution Time (mCyc) comparison 

Proposed scheduler performed best among all simulated schedulers for both memory system 

configurations. In comparison to FCFS memory scheduling approach, proposed scheduling 

policy decreases the total execution time by 7.2% for single-channel memory configuration 

and 10.2% for 4-channel memory configuration. In total, proposed scheduler has shown 8.8% 

enhancement in terms of total execution time when compared to FCFS approach. In 

comparison to close page policy proposed memory access scheduling approach has curtailed 

the total execution time by 4.82%. Similar simulation scenario is observed when comparison 

is made with respect to PBFS memory access scheduler. 1.42% and 1.52% deduction in total 
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execution time is observed with respect to PBFS scheduling approach for single-channel 

memory configuration and 4-channel memory configuration. In total 1.47% reduction is 

observed in comparison to PBFS scheduling policy.   
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Figure 3.18 % decrease in Total Execution Time 

This behaviour is shown by proposed algorithm is because proposed scheduler tries to utilize 

maximum row buffer hits. Along with this proposed scheduler itemizes read requests over write 

which reduces processor’s halt time and therefore final execution time is also reduced. 

3.5.2 Maximum Slowdown Time  

Figure 3.19, reveals the results obtained in terms of maximal slowdown time. This simulation 

results obtained depicts that for maximal slowdown time proposed scheduler is better than 

FCFS, Close and PBFS scheduling approach. This simulation trend shows that proposed 

scheduling policy increases the fairness and improves the scheduling environment for all 

simulated threads. On average proposed scheduler performs 0.79% and 1.72% better than 

PBFS for single channel memory configuration and four channel memory configurations, 

respectively. Proposed scheduler has reduced overall maximum slowdown time by 1.65% 
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when compared to PBFS. Figure 3.20, presents the same simulation scenario in terms of 

maximal slowdown time in relation to close page scheduling approach and FCFS scheduling 

policy. 
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Figure 3.19 Maximum Slowdown Time comparison 

In comparison with close page policy 5.3% reduction in maximum slowdown time is seen in 

single-channel memory configuration, whereas, for 4-channel memory configuration 4.2% 

deduction is observed. In total 4.03% deduction is observed. Similarly, with respect to FCFS 

scheduling policy 7.4% reduced maximum slowdown time is found in 1-channel configuration. 

Proposed scheduler reduced maximum slowdown time by 10.24% in comparison to FCFS 

scheduling policy for 4-channel memory configuration. Overall, 8.48% reduction is achieved 

when compared to FCFS scheduler.  
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Figure 3.20 % decrease in Maximum Slowdown Time 

The observed simulation trend is achieved because proposed scheduling approach tries to attain 

maximum inter-thread fairness by prioritizing reorder buffer head requests. Due to increased 

level of fairness, stall time experienced by threads waiting for accessing main memory resource 

in reorder buffer is now reduced, which further leads to reduced slowdown time for threads 

and hence minimized maximum slowdown time. 

3.5.3 Energy-Delay Product 

 In terms of EDP performance metric again proposed scheduling approach proved to be best 

among all simulated scheduling policies, Figure 3.21, reveals the results and presents that 

proposed scheduler has decreased EDP by 17.92% in comparison to FCFS scheduling 

approach. And with respect to PBFS scheduler also proposed scheduling policy has rationalized 

EDP by 5.14%, for 1-channel configuration. When comparison is made with respect to PBFS 

scheduling policy 4.44% deduction is achieved in 4-channel memory confirmation and in total 

proposed scheduler deducted energy-delay product by 4.76% in comparison to PBFS 

scheduling policy. Overall, proposed approach has reduced energy-delay product by 9.68% in 

comparison to close page approach and 4.76% when compared to PBFS scheduling algorithm. 

This improvement in terms of energy-delay product stems due to considerable reduction in 

number of operations achieved by proposed scheduling approach. Proposed scheduling policy 

has reduced the number of operations required to service a memory request by exploiting 

maximum row buffer hits. Reductions in number of operations further results in rationalized 

energy consumption. 
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Figure 3.21 EDP (Js) comparison 

In addition, proposed scheduler is able to achieve fairness among threads by reducing thread’s 

waiting time in reorder buffer. Reduced stall time of threads leads to reduced slowdown time 

observed by threads which further results in curtailed delay in complete execution of a thread. 

3.5.4 Total Memory System Power Consumption 

As depicted earlier, proposed memory scheduling approach improves system’s performance 

for all workloads under both memory configurations in comparison to FCFS scheduler, Close 

page policy and PBFS scheduling approach. As depicted in Figure 3.22, total memory system 

power consumption is marginally increased with respect to FCFS policy but this increment is 

not consistent. Whereas, in overall scenario when compared to close page scheduling approach, 

proposed policy has reduced memory system power consumption by 1.74%. Whereas, when 

comparison is made with respect to PBFS scheduling policy proposed scheduling reduced 

power consumed by memory system. With respect to PBFS scheduling approach 7.012% 

decrement in total memory system power consumption is observed in 1-channel memory 

configuration. For 4-channel memory configuration 4.83% reduced memory system power 

consumption is observed. In total, proposed scheduling policy is able to reduce total memory 

system power consumption by 5.58% with respect to PBFS scheduling approach. 
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 Figure 3.22 Total Memory system Power (W) comparison  

Reduction in memory system power consumption is achieved because proposed scheduler 

improves row buffer hits that further leads to reduced number of operations required to service 

memory requests. Reduced number of operation leads to reduced power consumption required 

to service memory requests. 

3.5.5 Row Hit Rate 

The results revealed in Table 3.7, shows that proposed scheduling approach performed best 

amongst all simulated scheduling approaches when evaluated in terms of row hits, i.e., 

summation of both read hit rate as well as write hit rate. Proposed scheduler has achieved 

highest row hit rate. As shown in Table 3.7, taking read hit rate in consideration proposed 

policy has performed best and same simulation scenario can be observed for write hit rate also, 

because in proposed scheduler row hit requests are prioritized over other memory commands. 

Proposed scheduler pre-issues issuable read commands while serving writes in write-drain 

mode and writes are almost drained. By pre-issuing issuable read commands, the row buffer is 

kept open for forthcoming memory read requests.  
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Table 3.7 Row Hit Rate 

 

Workload 

Read Page Hit Rate Write Page Hit Rate 

FCFS Close PBFS Proposed FCFS Close PBFS Proposed 

MT-c1 0.0033 -0.0290 -0.045 -0.0255 -0.2097 -0.2099 -0.934 -0.0859 

4C_1Chn_4 0.6291 0.5178 0.503 0.5388 0.1603 0.1508 -0.032 0.3198 

2C_1Chn_1 0.5996 0.4846 0.480 0.4788 -0.1653 -0.2475 -0.358 0.1457 

4C_1Chn_1 0.5294 0.4167 0.389 0.4413 -0.1619 -0.2084 -0.834 0.0307 

1C_1Chn_1 0.5749 0.4605 0.496 0.4518 -0.2850 -0.2890 -0.107 0.0691 

4C_1Chn_3 0.6996 0.5952 0.552 0.6187 0.3990 0.3860 0.238 0.4918 

4C_1Chn_2 0.5545 0.4430 0.419 0.4645 -0.0861 -0.1163 -0.432 0.1045 

4C_1Chn_5 0.6461 0.5340 0.510 0.5548 0.1837 0.1662 -0.03 0.3223 

MTc-4 0.0185 0.0073 -0.0095 0.0038 -0.6412 -0.7449 -0.089 -0.0003 

4C_4Chn_4 0.0479 0.0057 -0.0093 0.0066 -0.4024 -0.4406 -0.089 -0.0034 

2C_4Chn_1 0.0595 0.0074 0.0066 0.0052 -0.0707 -0.1321 0.092 0.1193 

4C_4Chn_1 0.0141 0.0041 -0.0063 0.0032 -0.4801 -0.5352 -0.036 0.0270 

1C_4Chn_1 0.0160 0.0026 0.00004 0.0019 -0.0699 -0.0853 -0.001 0.0041 

4C_4Chn_3 0.0638 -0.0038 -0.0301 0.0062 -0.3775 -0.4282 -0.196 0.0118 

4C_4Chn_2 0.0197 0.0025 -0.1003 0.0028 -0.3988 -0.4230 -0.354 -0.0210 

4C_4Chn_5 0.0466 0.0043 -0.0435 0.0051 -0.3885 -0.4572 -2.467 -0.0115 

8C_4Chn_1 0.0074 -0.0058 -0.0123 -0.0038 -0.4052 -0.4768 -0.065 -0.0427 

16C_4Chn_9 -0.0140 -0.0222 -0.0151 -0.0194 -0.2988 -0.3438 -0.128 -0.0684 

 1-Channel 

 4-Channel 

0.5296 

0.0280 

0.4279 

0.0002 

0.1543 

0.1850 

0.4404 

0.0012 

-0.0206 

-0.3533 

-0.0460 

-0.4067 

-0.281 

-0.582 

0.1748 

0.0015 

Average 0.2509  0.1903 0.1713 0.1964 -0.2054 -0.2464 -0.3234 0.0785 
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3.6 Conclusion 

Memory access latency, energy consumption while servicing memory requests and memory 

capacity to support multi-threaded environment are major memory design concerns these days. 

Amongst these prime factors, memory latency and energy consumption can be optimized by 

efficiently and intelligently re-scheduling the memory access requests. We propose a memory 

access scheduling approach that significantly reduces the memory access latency and energy 

consumption of DRAM main memory while servicing memory requests while creating a fair 

environment for each thread. In proposed scheduling approach prioritize row hits are prioritized 

over other memory requests to obtain reduced total execution time and energy delay product.  

Along with aforementioned goals, bank-level parallelism is also exploited to make optimal use 

of available system’s resources. Among a varied variety of chosen workloads using both 

memory system configurations for 1-, 2-, 4-, 8- and 16-core environment, we showed that 

proposed scheduling approach is consistently able to facilitate 

 high level of inter-thread fairness, 1.63%, 8.46%, 4.03% of improvement in terms of 

fairness is observed in comparison to PBFS, close and FCFS scheduling policy.  

 improved energy-delay product, 4.76% reduction in energy delay product is observed 

when compared to PBFS. 

 rationalized total execution time, 1.47%, 8.8%, 4.82% of improvement in terms of total 

execution time is observed in comparison to PBFS, FCFS and close scheduling policy 

 improved row buffer hits, 12.78% improvement in read page hit rate is observed 

compared to PBFS. 

 reduced total memory system power consumption, 4.83% reduction in total memory 

system power consumption is observed when compared to PBFS. 
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CHAPTER 4 

DRAM SCHEDULER OPTIMIZED FOR READ-WRITE SWITCHES 

___________________________________________________________________________ 

In current scenario, energy consumption, performance and capacity of main memory system 

are key aspects that affect computing system design. These days, computing systems are 

facilitated with multiple cores. Multicore system enables simultaneous execution of multiple 

applications. These concurrently running applications interfere at main memory. Main memory 

is a major resource demanded by running threads because it stores data structures that are 

required for execution of an application. Main memory sub-system’s performance and energy 

consumption can be improved by rationalizing the number of operations required to access its 

memory contents and by limiting the delay to service the memory access. It can be achieved 

by intelligently scheduling the memory requests and it is underlying memory access scheduler 

that decides the scheduling of memory accesses. We proposed a memory access scheduling 

scheme, EEPAF, for limiting the energy consumption and refining the performance of main 

memory. EEPAF, prioritizes reads over writes, implements delayed write drain policy, exploits 

row buffer hits, increases bank level parallelism and ensures fairness among threads. The 

results quantify the main memory energy consumption for different workloads under varied 

core environment and demonstrate significant reduction in power consumption, energy-delay 

product, and execution time, while improving performance. 

4.1 Proposed Memory Access Scheduler 

4.1.1 Baseline Scheduler 

We consider a baseline scheduler proposed earlier in previous chapter, which minimally 

switches between read and write drain mode by first servicing read and write requests in bursts 

and second by pre issuing issuable read commands during write drain mode. In previously 

proposed scheduler memory reads are given more preference than memory writes, because 

memory reads are more significant for improved system’s performance. When processor issues 

memory read request, it stops its execution waiting for results fetched from main memory in 

response to issued memory read instruction. To prioritize memory read accesses the scheduler 

always enter in read drain mode (in which only read instructions are serviced) unless write 

queue is about to full. If write queue is about to be full, scheduler enters in drain write mode. 

While servicing memory requests row buffer hits are prioritized over other memory read/write 

requests as row hits requires less number of steps to perform hence reduced service time as 
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well as reduced related power consumption. These two factors collectively results in reduced 

energy consumption of the memory system. After prioritizing row buffer hits in order to ensure 

thread fairness memory accesses issued from threads blocking the reorder buffer are serviced. 

This is so because memory intensive threads tends to block reorder buffer and compute 

intensive threads sometimes enter into starvation state. To ensure that such starvation condition 

do not arise, memory requests blocking the reorder buffer are serviced first than other memory 

requests. After servicing the requests generated from reorder buffer other memory read/write 

requests are serviced. If no row hit request is there or request generated from reorder buffer is 

already in service the scheduler issues requests to service in FCFS manner. The requests that 

arrives first are serviced first. In proposed scheduler bank level parallelism is achieved by 

interleaving doable reads and writes. In write drain mode on finding idle cycle EEPAF issues 

non-conflicting read commands opening the sense amplifier for upcoming read requests. This 

write-read interleaving helps to exploit bank level parallelism and also increases read hits for 

upcoming read requests. 

4.1.2 Reduced Read-Write Switching 

In proposed memory access scheduler, EEPAF, delayed write drain policy is employed on top 

of baseline scheduler.  Delayed write drain policy further prioritizes read requests and exploits 

row buffer hit. In addition, it reduces the frequency of entering in write drain mode which leads 

to reduced read-write switching. In conventional scheduling policies once all read requests are 

served, i.e., read queue gets empty, the scheduler enters into write drain mode. In proposed 

scheduler instead of immediately entering into write mode, scheduler delays entering in write 

drain mode and waits for incoming read requests. Delayed write drain is applied only when 

memory traffic is not heavy otherwise conventional drain policy is employed. Whether the 

traffic is heavy or not, depends on historic memory request frequency. For a certain amount of 

time memory requests issued for a particular channel are observed, if memory requests exceeds 

a certain threshold value memory traffic is considered heavy otherwise not.  So, by extending 

read drain mode proposed scheduler prioritizes read requests, more read hits are achievable 

now and considerably reduces latency caused due to bus turnaround time. Reduced turnaround 

time is achieved by reducing the frequency of switching between servicing memory reads and 

writes. Delayed write drain policy enhanced the scheduler’s ability to reduce energy 

consumption and performance. Flow chart of our implemented scheduling policy is given in 

Figure 4.1. 
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Figure 4.1 Flow Chart of EEPAF 
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4.2 Methodology  

In this section, we at first briefly describe the system configuration and workloads used for 

evaluating the performance of proposed scheduler. Then we present the performance metrics 

used for conducting quantitative analysis of EEPAF.  

4.2.1 System Configuration and Workloads  

We build our proposed scheduler on simulator named USIMM. USIMM directs device level 

memory commands based on current memory status. To evaluate proposed scheduler 

experiments are run using two memory configurations, Table 4.1 provides details of both 

memory configurations. In simulator power related calculations are made on the bases of 

micron’s power calculation methodology.  

We evaluate the performance of EEPAF in multicore environment varying from 1, 2, 4, 8 and 

16 cores for varied variety of workloads. Multithreaded workloads from commercial 

transaction processing (e.g., comm1 and comm2) and PARSEC (e.g., black, face, ferret, fluid, 

freq, stream, swapt, MT*-canneal) are used for simulation. Using before mentioned trace files 

ten different workload combinations are made and simulated for both memory combinations 

in varied core environment.  

4.2.2 Metrics 

We quantitatively compare EEPAF with four previously proposed memory access schedulers, 

i.e., FCFS, close, RLDP and PBFS. The comparison is conducted in terms of power 

consumption, fairness and performance. We use energy-delay product to capture the goal of 

improved performance at reduced energy consumption or same energy consumption [92]. To 

measure unfairness among threads, maximum slowdown time performance metric is used [93]. 

Total memory system power consumption is used to calculate power consumed in memory 

system. In addition to before mentioned metrics, total execution time performance metric is 

used to capture the thread’s execution time. 

4.3 Evaluation 

We evaluated sensitivity of proposed scheduler EEPAF, to varying core count and memory 

configuration. For analyzing the impact of memory configuration, we run experiments using 

both two memory configurations, i.e., configuration-1 and configuration-2 (details in Table 

4.1). Sensitivity to core count is evaluated by varying number of cores using simulation. For 

quantitative analysis, we evaluated EEPAF in comparison to four previously proposed 
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schedulers (FCFS, Close, RLDP and PBFS) in terms of Memory system power consumption, 

Energy Delay Product, Total Execution Time and Maximum Slowdown Time. 

Table 4.1 Memory Configurations 

Parameters Configuartion-1 Configuration-2 

Processor clock speed  3.2GHz 3.2GHz 

Processor ROB size  128 160 

Memory bus speed  
800 MHz (plus 

DDR) 

800 MHz (plus 

DDR) 

Memory channels 1 4 

Ranks per channel 2 2 

Banks per Rank  8 8 

Cache lines per row 128 128 

 

4.3.1 Memory System Power Consumption  

For both memory configurations, proposed scheduler outperforms all simulated memory access 

policies under multi-core environment in terms of memory system power consumption. Figure 

4.2, depicts the performance of EEPAF in comparison to simulated schedulers for i-channel 

memory configuration and varied core count. 

Here exception is FCFS scheduling policy. The performance of FCFS scheduling policy is 

better than EEPAF in terms of memory system power consumption because FCFS employs 

simple mechanism and does not exhaust power to limit other factors. On analyzing the 

simulation trend we find that there is increase in FCFS power consumption as core count 

increases. For 4-core environment FCFS power consumption is greater than EEPAF. This 

because of the fact that FCFS does not work well in multicore environment due to thread’s 

interference. With increase in number of cores, simultaneously running threads also increases. 

These parallel executing threads contend with each other for accessing main memory resource. 

If memory scheduling policy is not fair while scheduling memory accesses then some threads 

may feel starvation condition, which further leads to increased power consumption. FCFS is 

simplest scheduling policy. It does not ensures fairness among threads while scheduling 

requests generated by these memory requests hence consumes more power with increased core 

count. 
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Figure 4.2 Comparison based on Memory System Power Consumption using memory 

configuration-1 

Figure 4.3, depicts the simulation trend obtained in terms of memory system power 

consumption for simulated scheduling policies in 4-channel memory configuration. For 4-

channel memory configuration proposed scheduler consumed less power when compared to 

close page policy, RLDP scheduling policy and PBFS scheduler. But in comparison to FCFS 

scheduling approach marginal increase in power consumption is observed. 
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Figure 4.3 Comparison based on Memory System Power Consumption using memory 

configuration-2 
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Figure 4.4 Overall Memory System Power Consumption 
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Simulation trend obtained for all simulated scheduling policy as whole, depicted by Figure 4.4  

conveys that in total proposed scheduler consumed less power than close page policy, RLDP 

and PBFS scheduling policy. However, marginal increase in power consumption is observed 

when compared to FCFS scheduling policy.  

4.3.2 Energy Delay Product 

The results shown in Figure 4.5, for Energy Delay Product reveals that proposed scheduler’s 

performance is best among all memory access scheduling policies (i.e., FCFS, Close, RLDP 

and PBFS) for configuration-1 and configuration-2, memory configurations.  

Figure 4.5, depicts the simulation trend obtained in terms of energy delay product in memory 

configuration-1, facilitating one channel in memory system. As per obtained results, proposed 

scheduler performed best among all simulated policies. In memory configuration-1, proposed 

scheduler reduced energy consumption while maintaining performance of the system more as 

compared to all simulated scheduling policies. Despite of increased power consumption in 

comparison to FCFS, proposed scheduling policy is able to reduce energy delay product 

because proposed scheduler has managed to reduce total execution time required to complete 

execution of simulated workloads.    
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Figure 4.5 Comparison based on Energy Delay Product using memory configuration-1 
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Figure 4.6, depicts the simulation trend obtained in terms of energy delay product in memory 

configuration-2. The simulation trend shown in Figure 4.7, reveals that in multi-channel 

environment proposed scheduling policy outperforms all simulated schedulers. Using 

configuration-2, in comparison to PBFS, RLDP, Close and FCFS, EEPAF reduced energy 

delay product by 3.5%, 0.41%, 10.16% and 21.05% respectively. 
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Figure 4.6 Comparison based on Energy Delay Product using memory configuration-2 

In total, proposed scheduler has shown most reduction in energy delay product as compared to 

all simulated policies, Figure 4.7. For uni-core environment 8.5% and 2.5% reduction in energy 

delay product is observed when compared to PBFS and RLDP, respectively. With respect to 

PBFS 5.1%, 6.08%, 5.88%, 1.84% reduction in energy-delay product is observed in 2-, 4-, 8-, 

16- core environment. In total 4.2% and 0.12% reduction in energy delay product is observed 

with respect to PBFS and RLDP, respectively.    
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Figure 4.7 Overall Energy Delay Product 

4.3.3 Total Execution Time  

The simulation trend seen in Figure 4.10, reveals that overall performance of proposed 

scheduler is better than PBFS, FCFS and close page policy. Proposed scheduling policy shows 

significant reduction in execution time required by workloads to complete their execution. In 

1-channel environment proposed scheduler reduced total execution time when compared to 

FCFS, PBFS and close page policy, Figure 4.8. However, when compared to RLDP scheduling 

policy proposed scheduler has shown increase in total execution time.  For memory 

configutaion-2, also same simulation trend is seen. In 4-channel memory configuration, 

proposed approach performed best among all simulated policies in terms of total execution 

time. Proposed scheduler took less time as compared to close, RLDP and PBFS scheduling 

policy but marginal increase in execution time is observed when compared to RLDP scheduling 

policy to complete execution of simulated workloads. 
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Figure 4.8 Comparison based on Total Execution Time using memory configuration-1 
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Figure 4.9 Comparison based on Total Execution Time using memory configuration-2 
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As a whole, Figure 4.10, proposed scheduling policy shows significant reduction in execution 

time, i.e., 10.06%, 4.85% and 0.43% when compared to FCFS, close and PBFS scheduling 

policies respectively. In comparison to RLDP scheduling policy, proposed approach shows 

1.10% increase in execution time. But, if we consider energy consumption then proposed 

scheduler reduced energy consumption in comparison to RLDP while maintaining performance 

of the memory system depicted by energy-delay product performance metric. Increased 

complexity of proposed scheduling policy resulted in increased total memory system power 

consumption. 
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Figure 4.10 Overall Total Execution Time 

4.3.4 Maximum Slowdown Time  

For maximum slowdown time performance metric, EEPAF showed best performance in 

comparison to other simulated memory access schedulers for memory configuration-1. 

Proposed scheduler reduced stall time observed by threads running simultaneously 

significantly in varied core environment. In memory system using 1-channel proposed 
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scheduler reduced thread’s waiting time, i.e., proposed scheduler is able to ensure fair 

environment for scheduling of requests generated for main memory system. The results 

obtained for simulated policies in terms of maximum slowdown time is revealed by Figure 

4.11. In memory configuration-2 under varied core environment, proposed scheduling policy 

outperforms all simulated scheduling approaches, i.e., in 4-channel memory configuration also 

proposed scheduler performed best among simulated approaches, shown in Figure 4.12. 
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Figure 4.11 Comparison based on Maximum Slowdown Time using memory   

configuration-1 

 

By limiting maximum slowdown time, EEPAF managed to reduce un-fairness among 

simultaneously running threads in multicore platform.  

As depicted by Figure 4.13. In comparison to PBFS proposed memory scheduling policy 

reduced unfairness among threads by 1.82%, 3.5%, 0.81%, 0.59% 1-, 2-, 4-, 8- and16-, core 

environment. In total, 0.6% reduction in maximum slowdown time is obtained when compared 

to PBFS scheduling policy.   
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Figure 4.12 Comparison based on Maximum Slowdown Time using memory 

configuration-2 
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Figure 4.13 Overall Maximum Slowdown Time. 
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4.4 Conclusion 

We introduce energy-efficient performance aware fair memory scheduler, EEPAF. The 

detailed analysis conducted across a wide variety of workload in varied core environment 

reveals that EEPAF significantly reduces energy consumption and improves performance of 

memory system while maintaining fairness among threads. EEPAF reduces the issue of energy 

consumption by rationalizing power consumption and execution time of a thread. Reduction in 

power consumption is achieved by limiting the operations required to service the issued 

memory request. Reduction in number of operations is achieved by maximizing row hits. 

Whereas, thread’s execution time is reduced by i) reducing processor’s stall time (by 

prioritizing reads over writes) ii) minimizing the slowdown time of a thread (reducing 

unfairness) iii) enhancing bank level parallelism (write-read interleaving) and iv) reducing 

requests service time ( exploiting row hits). EEPAF does not adversely affect the performance 

of system while reducing energy consumption because it considers both quantities, i.e., power 

and execution time while scheduling commands. Conclusion can be drawn from performed 

analysis that for multicore environment EEPAF can be an efficient and efficacious memory 

access scheduling strategy. In future, further more efficient memory schedulers can be 

explored. Also interaction of EEPAF with other scheduling policies can be an interesting area 

to work on. 
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CHAPTER 5 

A DRAM SCHEDULER OPTIMIZED FOR DRAM 

ACCESS LATENCY 

___________________________________________________________________________ 

To improve the performance and energy consumption of chip multiprocessor (CMP) system, 

memory request serving latencies should be minimized. These latencies can be minimized by 

scheduling appropriate memory command at appropriate time. We proposed a scheduler that 

reduces latency related to serving memory read requests by delaying switching into write drain 

mode when memory traffic is not heavy and write queue is not full. Memory reads are more 

important to handle than memory writes for system’s performance. Further, precharge and 

activate operations are performed using constant stride prefetcher. In idle memory cycles the 

scheduler issues row precharge commands using cache prefetching technique based on Global 

History Buffer. Authors in [94] have used stride detector and Global History Buffer based 

speculative precharges and activates, but they treat memory reads and memory writes equally. 

Whereas, proposed scheduler in this paper prioritizes reads over writes for better system 

performance. Our evaluations show that proposed scheduling policy significantly outperforms 

previous schedulers [94, 95] in varied multicore environments in terms of performance as well 

as energy consumption. 

5.1 Proposed Scheduling Policy 

Proposed scheduling policy is a combination of delayed write drain policy [96], constant stride 

prefetcher [97] and global history buffer based prefetching technique [98]. So, the proposed 

scheduler is divided into three entities and their issuing power is as per the listing below:  

 Delayed write drain and FR-FCFS based scheduler.  

 Constant stride prefetcher based predictor.  

 Close page policy based on global history buffer based prefetcher.  

5.1.1 Delayed Write Drain and FR-FCFS based Base Scheduler 

Delayed write drain policy is based on the assumption that while serving read requests in read 

mode, read queue gets empty, it is more beneficial to wait for upcoming requests than 

immediately entering in write-drain mode. It is so, because reads are more critical for system’s 

performance than writes.  
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 Figure 5.1 Flow chart of proposed scheduling approach 

When no read requests arrive in certain amount of time or when write queue gets full up to 

high watermark, write drain mode is activated. Delayed write drain mode is applied adaptively 
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according to memory request traffic. If memory request traffic is heavy, then, in this scenario 

it is better to service write requests immediately after read mode rather than waiting for more 

read request’s arrival. Whereas, when there is no massive read/write traffic then delayed write 

drain is activated. Whether the memory request traffic is high or low, it is dependent on historic 

request frequency. Requests are observed for some CPU cycles (in this paper 10k CPU cycles), 

if number of request for a particular channel exceeds a threshold limit (200 in our approach), 

delayed write drain is activated. In proposed scheduler read requests and write requests are 

served in bursts to avoid delay encountered due to switching of bus direction. Scheduler enters 

in write drain mode when write queue is about to be full, i.e., reaches high watermark. In write 

drain mode writes are serviced in FR-FCFS manner until lower threshold limit (low watermark) 

is met. When in write drain mode no write request can be issued in any memory cycle then in 

that idle cycle issuable (precharge or activate) commands are issued in accordance with 

pending read requests. In case of read mode, the scheduler issues read hit requests first then 

older read requests are served. If no pending read request can be issued in any memory cycle, 

then, in that idle memory cycle non-conflicting issuable write commands (precharge command) 

are issued. If there is no pending read requests in read queue and if delayed write drain can be 

activated, scheduler waits for upcoming read requests, otherwise enters drain write mode. The 

other entities of scheduler issues commands only when there are no command issuable by base 

scheduler. The flow chart of proposed scheduler is depicted in Figure 5.1. 

5.1.2 Stride Prefetcher based Precharge/Activate Command Predictor 

Stride prefetcher is implemented by maintaining a constant stride prefetch (CSP) table for 

holding stride related history. CSP table contains previous stride value, last address accessed 

and a found bit, Figure 5.2. Existing constant stride between memory access requests having 

same value of instruction program counter are stored in it. When the scheduler goes through 

the read queue during read mode and write queue during write drain mode, on encountering a 

memory request having same stride value as previous stride value in CSP table, the found bit 

is set. 

 

Figure 5.2 Constant Stride Table 
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Initially, all constant stride table entries are set to zero when the scheduler goes through 

read/write queue for detecting issuable row hits. After issuing issuable row hits when the 

scheduler looks through read/write queue for checking any other command issuable during that 

phase constant strides are detected in current read queue or write queue. If no issuable 

command is found, the scheduler then goes through CSP table entries. With respect to every 

entry for which found bit is set, scheduler issues precharge or activate commands to the rows 

of banks at x+y, x+2y, …., x+dy physical addresses, where, x is last address accessed value in 

CSP table, y is previous stride value in CSP table and d is degree of prediction. 

If a memory access prediction corresponds to different channel, then it is stored in separate 

array and can be read by scheduler if there is no issuable command while issuing commands 

in that channel. 

5.1.3 Prefetcher based Close Page Policy 

In this paper, prefetcher used global history buffer [89], which is earlier used for data cache 

prefetching. GHB stores prefetch history. GHB prefetcher is implemented in two levels, Figure 

5.3. 

 

Figure 5.3 Global History based Close Page Predictor 
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 Index Table: Index table has capacity of 1024 entries and references to GHB. Index 

table can be accessed with a key, eight least significant bits of the key are xor of 

instruction program counter and memory address of memory request, top two most 

significant bits corresponds to thread identifier of memory request. 

 Global History Buffer: GHB is a FIFO table having 512 entries and is maintained as 

circular buffer. It holds 512 most recent memory requests. Each entry in GHB table is 

linked to previous entry having same index table key using a pointer. 

GHB is maintained for read requests. At onset of every memory cycle, prefetcher adds new 

request in GHB table. When there is no command that can be issued, GHB prefetcher tries 

to issue precharges to close the pages. Scheduler first accesses the head of the GHB table, 

i.e., the most recent request and then follows the link downwards to find older memory 

requests, if any. Scheduler closes the pages of older memory requests which do not conflict 

with pending read/write command. 

5.2 Methodology 

In this section we provide the pertinent details about simulation environment, simulated 

workloads and evaluation metrics used during quantitative analysis of proposed scheduling 

policy. 

The proposed scheduling policy is built on device level main memory commands simulator 

named USIMM. Proposed scheduling policy is simulated under two memory system 

configurations, one with single channel containing eight banks per rank and four ranks per 

channel, mem-config-1. In this memory configuration address mapping is enabled in order to 

maximize row hits. Second memory system setup simulated for evaluation supports four 

channels and each channel is further configured same as first configuration, mem-config-4. In 

second memory configuration address mapping is set to 0 so as to increase memory access 

parallelism. 

The proposed scheduling policy is evaluated in terms of performance and energy consumption 

for chip multiprocessor systems using workloads consisting of multithreaded programs. The 

workloads are constituted with trace files of PARSEC [87] benchmark suite representing 

applications from diverse domains such as image processing, animation physics, financial 

analysis etc. Trace files are obtained using Simics [99] and are described in Table 5.1.  
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The performance and energy consumption of proposed scheduling policy is analysed in terms 

of total execution time, row buffer hits, energy-delay product and total memory system power 

consumption. The evaluation is made under various multicore environments, i.e., 2-core, 4-

core and 8-core.     

Table 5.1 Benchmark Description 

   Benchmark Application Domain 

Blackscholes 
Financial Analysis 

bodytrack  
Computer Vision 

Facesim 
Animation Physics 

Ferret 
Similarity Search 

Fluidaminate 
Animation Physics 

Streamcluster 
Data Mining 

Swaption 
Financial Analytics 

Canneal 
Engineering 

transaction processing workload 
Server 

5.3 Result Analysis 

Quantitative analysis of proposed scheduling approach is made to check the impact of varying 

core count and memory configuration on system’s performance and energy consumption. For 

comparative analysis, we compare proposed approach with two existing schedulers, scheduler-

1: FR-FCFS [30] and scheduler-2: scheduling approach proposed in [95]. Comparative analysis 

is made in terms of execution time, row hits, power consumption and energy-delay product.  

5.3.1 Total Execution Time 

The simulation trend seen in Figure 5.6, reveals that overall performance of proposed scheduler 

is better than scheduler-1 and scheduler-2. Proposed scheduling policy shows significant 

reduction in execution time required by workloads to complete their execution. In 1-channel 

environment proposed scheduler reduced total execution time when compared scheduler-1, 

Figure 5.4. For memory configutaion-1, 0.037% increase in total execution time is observed 

when compared to scheduler-2, whereas, 45.63% decrease is found when compared to 

scheduler-1.  
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In 4-channel memory configuration, proposed approach performed best among all simulated 

policies in terms of total execution time, Figure 5.5. Proposed scheduling approach took least 

time to complete execution of workloads in memory system comprised of 4 channels. Proposed 

scheduler took 0.34% less time as compared to scheduler-2, in 4-channel memory 

configuration. However, when comparison is made with respect to scheduler-1, 0.71% 

decrement in execution time is observed to complete execution of simulated workloads.  

 

Figure 5.4 Total Execution time based comparison for mem-config-1 

As a whole, Figure 5.6, proposed scheduling policy shows significant reduction in total 

execution time. When compared to scheduler-1, 26.88% reduction in total execution time is 

observed. Whereas 0.16% less execution time, when compared to scheduler-2 scheduling 

policy. 
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Figure 5.5 Total Execution time based comparison for mem-config-4 

 

Figure 5.6 Total time consumed during execution 
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5.3.2 Row Hits 

For both simulated memory configurations, scheduling policy proposed in this paper performed 

better than all simulated schedulers under varied core environment in terms of row hits, Figure 

5.7. In terms of read row hits, proposed scheduler performed better than scheduler-1 and its 

performance is comparable to scheduler 2. Proposed scheduler shows, 1.01%, overall increase 

in row hits when compared to scheduler-1 and in mem-config-1. 

 

Figure 5.7 Read Page Hit Rate for mem-config-1 

5.3.3 Energy-Delay Product 

The simulation trends, Figure 5.10, obtained for energy-delay product can be summarized as, 

proposed scheduler reduces energy consumption in both memory configurations for all 

simulated core environments. Overall, 62%, 56.4%, 0.93%, decrease in energy consumption is 

observed in 2-core, 4-core and 8-core environment in comparison to scheduler-1. From the 

results obtained it is observed that proposed scheduler out-performs all simulated schedulers in 

terms of energy-delay product. 
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The results have shown in Figure for Energy Delay Product reveals that proposed scheduler’s 

performance is best among all memory access scheduling policies (i.e., scheduler-1 and 

scheduler-2) for configuration-1 and configuration-2, memory configurations.  

Figure 5.8, depicts the simulation trend obtained in terms of energy delay product in memory 

configuration-1, facilitating 1 channel in memory system. As per obtained results, proposed 

scheduler performed best among all simulated policies. In memory configuration-1, proposed 

scheduler reduced energy consumption by 0.065% and 69.3% when compared to scheduler-2 

and scheduler-1, respectively, while maintaining performance of the system more as compared 

to all simulated scheduling policies.  

 

Figure 5.8 Energy Delay Product based comparison for mem-config-1 

Figure 5.9, depicts the simulation trend obtained in terms of energy delay product in memory 

configuration-2. The simulation trend shown in Figure 5.9, reveals that in multi-channel 

environment proposed scheduling policy outperforms all simulated schedulers. Using 

configuration-2, in comparison to scheduler-1 and scheduler-2, proposed scheduler reduced 

energy delay product by 3.5% and 0.41%, respectively. 
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Figure 5.9 Energy Delay Product based comparison for mem-config-4 

 

Figure 5.10 Total Energy Delay product 
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In total, proposed scheduler has shown most reduction in energy delay product as compared to 

all simulated policies. 47.5% and 0.84% reduction in energy delay product is observed with 

respect to scheduler-1 and scheduler-2, respectively.    

5.3.4 Total Memory System Power Consumption 

Fig. 5.13, depicts the performance of proposed scheduling approach in terms of memory power 

consumption in comparison to selected schedulers chosen for comparative study under multi-

core environment and both memory sub-system setups. By result analysis it is depicted that 

proposed scheduler consumed more power than all simulated scheduling approaches. This is 

because of the increase caused in hardware of the system to implement prefetchers. In 1-channel 

memory configuration, Figure 5.11, 25.78% increase in memory power consumption is 

observed in comparison to scheduler-1 and 0.052% increment is observed when compared to 

scheduler-2. In 4-channel memory configuration, Figure 5.12, 0.42% increase in power 

consumption is observed with respect to scheduler-2. Total 8.6% increment in power 

consumption is found when compared to scheduler-1 and 0.2% increment is observed when 

compared to scheduler-2. 

 

Figure 5.11 Memory System Power Consumption based comparison for mem-config-1 
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Figure 5.12 Memory System Power Consumption based comparison for mem-config-4 

 

Figure 5.13 Total power consumed by Memory System 
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5.4 Conclusion 

In this section, we propose a memory scheduler that issues commands on the basis of delayed 

write drain and FR-FCFS policy to the memory. Scheduler uses prefetching techniques that are 

earlier used for data cache prefetching. Prefetching techniques are used for predictive row 

precharge/activate operations. From implementation aspect, the scheduler is easy to 

implement, and its memory requirement is also very less. In comparison with scheduler-1 

memory scheduling approach, overall, proposed scheduling approach rationalizes total 

execution time by 26.8%, 0.161% in mem-config-1 and mem-config-4, respectively, whereas, 

in comparison to scheduler-2 our scheduling policy decreases total execution time by 0.34% in 

mem-config-4. We can see that proposed scheduler performed better in terms of execution time 

in multi-channel configuration than single channel memory system. In terms of power 

consumption performance of proposed scheduler is better in comparison to other simulated 

policies. Proposed scheduler consumed less amount of power considering the increase in 

hardware. Also, the proposed scheduler successfully achieved increased row hits than 

scheduler-1 and scheduler-2. This increase in performance is because proposed scheduler 

issues speculative precharge and activate commands. Moreover, row hit read/write commands 

are prioritized over memory requests. Proposed approach consumed least amount of energy 

among all simulated policies, i.e., overall, 47.54%, 0.827% less in comparison to scheduler-1 

and scheduler-2, respectively. Delay in entering in write drain mode also helps to achieve 

increased performance in terms of energy consumption, row hits and execution time. In future, 

proposed approach can be attached with other scheduling policies to make it more efficient. 

Further, appropriate scheduling mechanisms can also be incorporated to improve performance 

degradation in terms of energy as well power consumption due to refresh operations.  
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CHAPTER 6 

MANAGING REFRESH INDUCED PENALITIES IN DRAM BASED 

MAIN MEMORY SYSTEM   

___________________________________________________________________________ 

Increased use of big data applications results in increasing demand for larger and faster main 

memory system. DRAM based main memory system is chosen to satisfy these growing needs 

because of its low service latency as well as high density. But DRAM cell being volatile in 

nature requires periodic refreshes to retain its data. The periodic refresh operations negatively 

affect the performance and power consumption of the system. Earlier, refresh caused power 

and performance overheads were not paid much attention but with increased capacity and speed 

of DRAM based main memory system, these overheads have also increased significantly. 

Increased usage of memory intensive applications, increase in number of cores for faster and 

efficient processing and growth in I/O speed capabilities have resulted in significant 

development in main memory capacity and bandwidth availability. Computing systems used 

these days use DRAM based main memory system. DRAM is preferred over SRAM (Static 

Random Access Memory) because of its comparatively higher density and preferred over non-

volatile memory technologies like phase change memory, MRAM and flash memory etc. 

because it is having lower latency, higher tolerance and bandwidth. Advancement in DRAM 

technology for increased capacity speed resulted in inclined power and performance overhead. 

6.1 Proposed Scheduling Policy  

In proposed scheduling policy refreshes are managed to reduce refresh caused energy and 

performance overhead of the DRAM based main memory system. Refreshes are managed by 

issuing write commands to banks that are undergoing refresh operation. By parallelizing write 

commands with refresh operation. By parallelizing write commands with refresh operation 

memory cycle that was earlier wasted in conventional scheduling policy for refreshes is now 

utilized to service memory write requests. By parallelizing memory writes with refresh 

operations performance overhead is reduced by reducing memory write service latency. In 

proposed scheduling policy first read requests are prioritized over write requests by always 

entering in drain read mode unless write queue is about to be full. If write queue is about to be 

full, i.e., write requests are above high watermark, scheduler starts issuing write requests to be 

serviced until write requests get less than low watermark. When in write drain mode, row hit 
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write requests are serviced first then other write requests. If there is no other row hit write 

request available then writes are issued in FCFS manner. If scheduler is in drain write mode 

and there is no issuable write command then precharge and activate commands based on 

constant stride prefetching are issued to open and close rows. If constant stride prefetcher based 

precharge and activate commands are not issuable then global history buffer based precharge 

command is issued to close the rows. When in read mode, first read hit requests are served then 

if no read hit request is left, reads are served in first come first serve manner. If read queue is 

about to be empty and write queue is not yet full then in this case if memory traffic is also not 

heavy then instead of entering in drain write mode immediately, memory controller stays in 

read mode and waits for upcoming read requests. Here, again read requests are prioritized over 

write requests because reads are more critical for system’s performance. If write queue is full 

or memory traffic is not heavy then scheduler simply enters in drain write mode and starts 

servicing write requests. If read queue is not empty and there is no issuable read requests then 

constant stride prefetcher based precharge and activate commands are issued. If constant stride 

prefetcher based commands are also not issuable then global history buffer based precharge 

commands are issued speculatively. 

  

Figure 6.1  Memory Controller Transition States 

In proposed scheduler along with read drain mode and write drain mode two more controller 

states are added, i.e., pre-refresh and refresh states. In pre-refresh state memory controller stops 

issuing write command to the banks that are not refresh target in upcoming refresh cycle. In 

refresh state the banks that are not refreshed are capable servicing issued write requests while 

banks undergoing refresh operation do not service any read/write command. Figure 6.1, 
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describes the transition criteria and transition between memory controller states. The flow chart 

for proposed scheduling policy is detailed in Figure 6.2.    

 

Figure 6.2 Proposed Scheduling Approach 
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6.2 Evaluation Methodology 

The proposed scheduling policy is simulated on DRAM based main memory scheduler named 

USIMM. Simulation environment considered for comparative evaluation of proposed 

evaluation is presented in Table 6.1. The proposed scheduler is comparatively analyzed in 

comparison to existing scheduling policies, scheduler-1[100], scheduler-2[101] and scheduler-

3[102] in terms of energy delay product, total execution time, maximum slowdown time and 

total memory system power consumption. 

Table 6.1 Memory Configuration 

Parameters Configuration 

Processor clock speed  3.2GHz 

Processor ROB size  160 

Memory bus speed  800 MHz (plus DDR) 

Memory channels 4 

Ranks per channel 2 

Banks per Rank  8 

Cache lines per row 128 

 

6.2.1 Energy-Delay product 

In terms of EDP performance metric, proposed scheduling approach proved to be best among 

all simulated scheduling policies, Figure 6.3, reveals the results and presents that proposed 

scheduler has rationalized EDP by 3.3% with respect to scheduler-1. With respect to scheduler-

2 and scheduler-3, proposed scheduling policy has decremented EDP by 1.33%.  

 

Figure 6.3 Comparison based on Energy-Delay Product 
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This improvement in terms of energy-delay product stems due to considerable reduction in 

number of operations achieved due to prefetching based pre-charge and activate command 

scheduling. Reductions in number of operations further results in reduced execution time which 

may further lead to curtailed energy consumption. 

6.2.2 Total execution time 

The simulation scenario presented in Figure 6.4, depicts that proposed scheduling approach has 

shown best performance among all simulated scheduling approaches in terms of total execution 

time. In comparison to scheduler-1, scheduler-2, scheduler-3, proposed scheduling policy 

reduces the total execution time by 1.22%, 0.95% and 0.6% respectively. Parallelizing writes 

and pre-issuing constant stride prefetch based precharge and activate commands helps to 

reduce memory cycles required to complete execution of simulated workload. Servicing write 

requests along with bank refreshes utilizes idle memory cycle time and benefits in achieving 

reduced execution time of programs.   

 

Figure 6.4 Comparison based on Total Execution Time 

6.2.3 Maximum Slowdown time 

Figure 6.5, reveals the results obtained in terms of maximum slowdown time. The simulation 

trend obtained presents that for maximum slowdown proposed scheduler is better than 

scheduler-1 and scheduler-3. With respect to scheduler-1, proposed scheduling approach has 

reduced maximum slowdown time by 0.21%, whereas in comparison to scheduler-3 a drop of 
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1.04% in terms of maximum slowdown time is observed. However, when compared to 

scheduler-2, 0.3% marginal increase in maximum slowdown time is observed, because 

scheduler-2 ensures fairness among threads, whereas in proposed scheduling policy fairness is 

not key concern.  

 

Figure 6.5 Comparison based on Average Maximum Slowdown Time 

6.2.4 Total Memory System Power consumption 

Proposed memory scheduling approach improves system’s performance for all simulated 

workloads under considered memory configuration in comparison to simulated schedulers, i.e., 

scheduler-1, scheduler-2 and scheduler-3. As shown in Figure 6.6, total memory system power 

consumption is marginally increased with respect to scheduler-2 and scheduler-3. Whereas, 

when compared to scheduler-1, 1.23% deduction in total memory system power consumption 

is observed. The increase in power consumption is due to constant stride prefetcher and global 

history buffer implementation. The increased components consume more power for 

prefetching operations which introduces marginally increased power consumption overhead. 

But we want to evaluate proposed scheduling policy in terms of its impact on both energy as 

well as performance (service latency) and this performance goal is captured by energy-delay 



96 

 

product and in terms of EDP proposed approach has shown best behaviour among all simulated 

environment.  

 

Figure 6.6 Comparison based on Total Memory System Power Consumption 

6.2.5 Conclusion 

The scheduler proposed in this chapter utilizes delayed write drain policy to prioritize read 

requests over writes, uses prefetching based precharge and activate operations and  parallelizes 

write operations with refresh operation to compensate idle memory cycle time. Reads are 

preferred over write requests to achieve performance benefits as read affects overall 

performance of a computing system significantly than write operations. For prefetching 

constant stride prefetching and global history buffer based prefetcher is used. Whereas to 

implement parallelized write operations with reads in addition to read and write states, two 

more controller states are added. By parallelizing writes with refresh operation, memory cycle 

that earlier wasted for refresh operation in conventional scheduling approach, is now utilized 

for servicing memory write requests, which further helps to achieve reduced execution time for 

any program. Prefetching helps to reduce number of operations required to complete execution 

of a program. Reduced number of operations causes reduced execution time which may further 

benefit in terms of energy delay product. But extra components introduced in terms of 

prefetcher causes comparatively increased power consumption. But the increase in power 

consumption is marginal which do affect the energy consumption and performance of a system.  
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Proposed scheduler reduces total execution time by 1.22%, 0.95% and 0.6% in comparison to 

scheduler-1, scheduler-2 and scheduler-3, respectively. In terms of energy delay product, 

3.27%, 1.33%, 1.33% reduction is observed in comparison to scheduler-1, scheduler-2 and 

scheduler-3.We conclude that proposed scheduler is able to provide reduced execution time, 

and performance benefit in terms of energy consumption and service latency (EDP) while 

showing slight increment in power consumption.  
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CHAPTER 7 

CONCLUSION AND FUTURE SCOPE 

___________________________________________________________________________ 

This chapter concludes the various topics covered in this thesis and future prospects of 

proposed scheduling policies. In this thesis, we discuss novel memory scheduling policies that 

further extend the state-of-art. Main memory is a major contributor in overall system’s energy 

consumption. To rationalize main memory’s energy consumption and to improve its 

performance memory scheduling has received significant attention. Through the policies we 

have proposed in this research work, we draw attention to scheduling policies that are capable 

of maximizing performance benefits and restraining the power consumption while meeting the 

timing intricacies of the DRAM devices. 

7.1 Summary 

 We conclude work done in this dissertation as follows 

 In chapter 3, proposed scheduling policy tries to maximize row buffer hits and fairness 

among simultaneously executing threads. Proposed scheduling policy is facilitated with 

features like prioritizing reads over write requests, preferring row hit memory requests 

over other memory accesses, improved bank level parallelism and ensuring fair 

execution environment by scheduling requests that block reorder buffer head. The 

proposed scheduling policy not only ensures improved performance and reduced 

energy consumption but also increased bank level parallelism and thread fairness. The 

conducted comparative analysis of proposed scheduling policy reveals that proposed 

scheduler improves energy-delay product by 4.76% in comparison to PBFS. The results 

found after simulation supports the fact that proposed scheduler provides more fair 

simulation environment as it decreases maximum slowdown time observed by 

executing threads by 1.63% when compared to PBFS and by 4.03% when compared to 

close page policy. The simulation trend observed for total execution time supports the 

fact that it decreases total execution time by 1.47% when compared to PBFS and by 

4.82% with respect to close page policy. The results obtained supports that proposed 

scheduling policy improves row hits and fairness among threads during execution.  

 The scheduling policy proposed in chapter 4 tries to reduce read-write switching of 

command and data bus. First, read-write switching is reduced by serving read requests 
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and write requests in bursts. Then by issuing issuable precharge and activate commands 

when in drain mode and at the end of it. One more factor incorporated to reduce read-

write switching is by delaying entering in write mode when serving reads and read 

queue is empty and memory traffic is not heavy. By delaying entering in write drain 

mode not only read-write switching is curtailed but also reads are prioritized over write 

requests. The proposed scheduling policy is then evaluated in terms of total execution 

time, energy-delay product and maximum slowdown time to analyse the impact of 

proposed scheduling policy on memory system’s performance and power consumption. 

The conducted comparative analysis reveals the fact that that proposed scheduler 

reduces total execution time by 0.6%, maximum slowdown time by 0.59% and energy-

delay product by 4.2% when compared to PBFS. 

 The scheduler proposed in chapter 5, improves memory access latency of memory 

commands by prefetching upcoming memory requests and issuing precharge and 

activate commands accordingly. The precharge command is issued to rows that are not 

to be used by upcoming requests while activate command is used to bring the rows in 

sense amplifier that are to be used by upcoming memory requests. Prefetching is 

constant stride based and global history buffer based. In addition to prefetching delayed 

write drain policy is incorporated to further enhance system’s performance by 

prioritizing read requests. By evaluating the results obtained after simulating proposed 

scheduler it is found that proposed scheduling approach is able to reduce total execution 

time by 0.7% in comparison to scheduler-1 and by 26.8% in comparison to scheduler-

2. In addition to reducing execution time, proposed scheduler is able to achieve 

performance benefit depicted by performance metric energy delay product. 

 The scheduler proposed in chapter 6, reduces main memory’s energy and performance 

overhead introduced due to DRAM refreshes. Proposed scheduler parallelizes memory 

write operation with memory refreshes in addition to constant stride prefetching and 

global history buffer based close page policy. Only writes are overlapped with refresh 

operation because writes are not critical for system’s performance as reads are. So, we 

can delay issuing writes to banks that are not going to be refreshed in upcoming refresh 

cycle and servicing them when refresh operation is performed on other banks. Proposed 

approach is able to achieve 1.23% power consumption reduction and 3.27% curtailed 

energy consumption when compared to scheduler-1.   
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7.2 Future Scope 

In this section we elaborate that how emerging trends may lead to various applications of 

memory scheduling strategies. 

7.2.1 Scheduling for Heterogeneous Platform 

Advancement in technology have facilitated the researchers to architect computing system in 

which different types of blocks lie on same die. For instance, AMD’s fusion series of APU’s 

(Accelerated Processing Units) integrates a GPU along with CPU having multiple cores. 

Integration of GPU and CPU has led researchers to think about memory architecture in more 

detail. In Fusion series, the GPU as well as CPU shares a common memory controller. Both 

GPU and CPU have different requirements in terms of memory. GPU(s) are more memory 

latency tolerant than CPUs while requiring more bandwidth. A memory scheduling policy 

should be able to satisfy the needs of both clients. i.e., C.P.U. as well as G.P.U. We plan to 

investigate the applicability of proposed scheduling policy in such heterogeneous environment 

where C.P.U. and G.P.U. work together contending for same memory resource and having 

different expectation from memory system.  

7.2.2 Scheduling for Mobile Devices 

A lot of emphasis have been laid on memory controller’s design with respect to large servers. 

However, mobile devices are growing very fast and hence they require equal attention for 

efficient performance and energy consumption. With respect to mobile devices, first memory 

access scheduler should be simple in order to save chip area, second scheduler should be more 

energy efficient than performance oriented. So, memory scheduling techniques should focus 

on reducing energy consumption but performance drop should not be large. 

7.2.3 Scheduling for Emerging Non Volatile Memory Technologies  

Due to increased demand of large capacity of main memory system as well as restrained energy 

consumption, researchers these days are exploring the possibility of using non-volatile memory 

technologies such as Phase Change Memory, memristor etc. as an replacement to DRAM. To 

benefits of both memory technologies, i.e., DRAM as well as non-volatile memory technology 

researchers are opting hybrid main memory system also. So, a memory scheduling policy 

should be able to satisfy future memory trends also. In order to facilitate so, proposed 

scheduling policies can be analyzed to check their impact in hybrid (DRAM + non-volatile 

memory based) main memory system. 
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7.2.4 Scheduling for Hybrid Memory Cubes 

Hybrid memory cube [103] is a memory technology in which multiple layers of DRAM are 

stacked on a logic layer. The HMC device is connected to processors. The problem in using 

HMC is distribution of work responsibilities between memory controllers lying on chip as well 

as one on the logic layer of HMC. To solve this dilemma one approach is implementation of 

transaction scheduler in logic layer of HMC. This enables on-chip memory controller to decide 

thread priorities and command scheduler to decide which policies are to be implemented for 

HMC DRAM layers. Scheduling policies should be able to support such computing 

environment. Work can further be extended to support HMC memory technology.  
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