
FINDING ENERGY SUSTAINABLE TECHNIQUES FOR

COMPUTER MEMORY

Thesis submitted in fulfillment of the requirements for the Degree of

DOCTOR OF PHILOSOPHY

By

AASTHA MODGIL

Under the supervision of

DR. VIVEK KUMAR SEHGAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY,

WAKNAGHAT, H.P.

ii

Copyright @ JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

May 2019

ALL RIGHTS RESERVED

iii

CANDIDATE’S DECLARATION

I hereby declare that the work reported in the Ph.D. thesis entitled “Finding Energy

Sustainable Techniques for Computer Memory” submitted at Jaypee University of

Information Technology, Waknaghat, Solan (HP), India is an authentic record of my work

carried out under the supervision of Dr. Vivek Kumar Sehgal. I have not submitted this work

elsewhere for any other degree or diploma. I am fully responsible for the contents of my Ph.D.

thesis.

Aastha Modgil

(Enrollment No.: 136216)

Department of Computer Science & Engineering

Jaypee University of Information Technology, Waknaghat, Solan (HP), India

Date:

iv

SUPERVISOR’S CERTIFICATE

This is to certify that the work reported in the Ph.D. thesis entitled “FINDING ENERGY

SUSTAINABLE TECHNIQUES FOR COMPUTER MEMORY”, submitted by Aastha

Modgil at Jaypee University of Information Technology, Waknaghat, Solan (HP), India

is a bonafide record of his original work carried out under my supervision. This work has not

been submitted elsewhere for any other degree or diploma.

Dr. Vivek Kumar Sehgal

Associate Professor

JUIT, Solan

Date:

v

TABLE OF CONTENTS

CANDIDATE’S DECLARATION .. iii

SUPERVISOR’S CERTIFICATE .. iv

ACKNOWLEDGEMENT .. ix

LIST OF FIGURES .. x

LIST OF TABLES .. xii

ABSTRACT .. xiii

CHAPTER 1: INTRODUCTION ... 1-4

1.1 Future’s Performance Requirement ... 2

1.2 DRAM Latency... 2

1.3 Thesis Overview ... 3

1.4 Problem Statement .. 3

1.5 Proposed Solutions .. 4

1.6 Thesis Layout ... 4

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW 5-29

2.1 Basic DRAM Device Architecture and Circuits ... 5

2.1.1 DRAM Device Organisation .. 5

2.1.2 DRAM Cell ... 7

2.1.3 Sense Amplifier ... 7

2.1.4 DRAM Device Control Logic .. 8

2.1.5 Data Input/Output .. 10

2.2 DRAM based Main Memory Organization .. 10

2.2.1 Main Memory Subsystem .. 10

2.2.2 DRAM Commands .. 12

2.2.3 Timing Constraints... 13

2.2.4 DRAM Access Latency.. 15

vi

2.2.5 Row Buffer Management ... 16

2.2.6 Address Mapping ... 16

2.2.7 DRAM Refresh Management ... 17

2.2.8 Basics on DRAM Current Parameters .. 18

2.2.9 DRAM Power Model ... 19

2.2.10 Memory Controller .. 21

2.3 Memory Access Scheduling ... 22

2.3.1 Memory Scheduling Policies for Single-Threaded Single Core Processor....... 22

2.3.2 Scheduling Policies for Multi-threaded and Multi-core processors: 23

CHAPTER 3: DRAM SCHEDULER OPTIMIZED FOR ROW BUFFER HITS AND

FAIRNESS AMONG THREADS .. 30-60

3.1 Impact of Row Buffer Hits on DRAM Performance .. 30

3.1.1 Motivational Results .. 31

3.2 Impact of Inter-thread Fairness on DRAM Performance .. 41

3.2.1 Motivational Results .. 42

3.3 Proposed Memory Access Scheduling Algorithm .. 46

3.3.1 Prioritizing Read Requests over Writes .. 48

3.3.2 Row Buffer Hit .. 48

3.3.3 Fairness among Threads ... 49

3.3.4 Bank Level Parallelism .. 49

3.4 Experimental Evaluation Methodology ... 50

3.4.1 Benchmarks: Characteristics and Classification .. 50

3.4.2 Performance Analysis Metrices .. 51

3.5 Result Evaluation .. 53

3.5.1 Total Execution Time... 53

3.5.2 Maximum Slowdown Time .. 54

3.5.3 Energy-Delay Product .. 56

vii

3.5.4 Total Memory System Power Consumption ... 57

3.5.5 Row Hit Rate ... 58

3.6 Conclusion .. 60

Chapter 4: DRAM Scheduler Optimized for Read-Write Switches 61-75

4.1 Proposed Memory Access Scheduler ... 61

4.1.1 Baseline Scheduler ... 61

4.1.2 Reduced Read-Write Switching ... 62

4.2 Methodology ... 64

4.2.1 System Configuration and Workloads .. 64

4.2.2 Metrics... 64

4.3 Evaluation ... 64

4.3.1 Memory System Power Consumption .. 65

4.3.2 Energy Delay Product .. 68

4.3.3 Total Execution Time... 70

4.3.4 Maximum Slowdown Time .. 72

4.4 Conclusion .. 75

CHAPTER 5: A DRAM SCHEDULER OPTIMIZED FOR DRAM ACCESS LATENCY

 .. 76-89

5.1 Proposed Scheduling Policy .. 76

5.1.1 Delayed Write Drain and FR-FCFS based Base Scheduler 76

5.1.2 Stride Prefetcher based Precharge/Activate Command Predictor 78

5.1.3 Prefetcher based Close Page Policy .. 79

5.2 Methodology ... 80

5.3 Result Analysis ... 81

5.3.1 Total Execution Time... 81

5.3.2 Row Hits .. 84

5.3.3 Energy-Delay Product .. 84

viii

5.3.4 Total Memory System Power Consumption ... 87

5.4 Conclusion .. 89

CHAPTER 6: MANAGING REFRESH INDUCED PENALITIES IN DRAM BASED MAIN

MEMORY SYSTEM ... 90-97

6.1 Proposed Scheduling Policy .. 90

6.2 Evaluation Methodology ... 93

6.2.1 Energy-Delay product .. 93

6.2.2 Total execution time .. 94

6.2.3 Maximum Slowdown time ... 94

6.2.4 Total Memory System Power consumption .. 95

6.2.5 Conclusion ... 96

CHAPTER 7: CONCLUSION AND FUTURE SCOPE ... 98-101

7.1 Summary .. 98

7.2 Future Scope ... 100

7.2.1 Scheduling for Heterogeneous Platform ... 100

7.2.2 Scheduling for Mobile Devices .. 100

7.2.3 Scheduling for Emerging Non Volatile Memory Technologies 100

7.2.4 Scheduling for Hybrid Memory Cubes ... 101

REFERENCES ... 102

LIST OF PUBLICATIONS ... 110

ix

ACKNOWLEDGEMENT

I express my warm gratitude and profound respect to my supervisor Dr. Vivek Kumar Sehgal,

Associate Professor and Ph.D. coordinator, Department of Computer Science & Engineering

and IT, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh,

India, under whose valuable guidance the work has been completed successfully. One can learn

a lot from him and I found his guidance as a golden opportunity to me. The author would like

to express special thanks to Dr. S.P. Ghrera, Professor and Head, Department of Computer

Science & Engineering and IT, Jaypee University of Information Technology, Waknaghat,

Solan, Himachal Pradesh, India, for motivating and encouraging me in every crucial moment.

My committee members have also had a big impact on the quality and scope of my work. I am

thankful for the valuable suggestions I received from my DPMC members, Prof. (Dr.) Sunil

Kha, Department of Physics and Material Science, Dr. Shailendra Shukla, Assistant

Professor (Senior Grade), Department of Computer Science & Engineering and IT, and Dr.

Geetanjali, Assistant Professor (Senior Grade), Department of Computer Science &

Engineering and IT.

I express my gratitude to Professor (Dr.) Vinod Kumar, Vice Chancellor of Jaypee University

of Information Technology and Professor (Dr.) Samir Dev Gupta, Director and academic

head for providing an inert and conducive research environment.

I am thankful to lab staff for providing good experimental environment and equipment which

helped me to accomplish my simulation work.

I am also grateful to my parents, Mr. Arvind Modgil and Mrs. Kusum Modgil for their love,

care and moral support. I would like to thank my younger brother, Mr. Aviral Modgil for his

valuable inputs and support. Last but not the least, I thank my husband Maj. Ashish Thakur

for being pillar of strength throughout this research period.

Finally, I thank to eminent reviewers of my research work and every person from whom

affection, help, guidance, support, and inspiration I received during my research work.

x

LIST OF FIGURES

Figure 2.1"Basic DRAM Device based Memory Organisation .. 5

Figure 2.2 DRAM Cell Organisation ... 6

Figure 2.3"DRAM cell .. 7

Figure 2.4 Circuit diagram of Sense Amplifier .. 8

Figure 2.5"Control Logic of DRAM Device .. 9

Figure 2.6"Main Memory Hierarchy ... 11

Figure 2.7 DRAM Latency from Processor’s Perspective .. 15

Figure 2.8"Comparison between Scheduling Policies .. 24

Figure 3.1 EDP (Js) Comparison ... 34

Figure 3.2"% decrease in EDP for 1-channel configuration. .. 35

Figure 3.3"% decrease in EDP for 4-channel configuration ... 35

Figure 3.4"% of overall decrease in EDP. .. 36

Figure 3.5 Total Execution Time (mCyc) Comparison... 36

Figure 3.6"% decrease in Total Execution Time for 1-channel configuration 37

Figure 3.7"% decrease in Total Execution Time for 4-channel configuration 37

Figure 3.8"% of Overall decrease in Total Execution Time ... 38

Figure 3.9 Maximum Slowdown Time Comparison .. 38

Figure 3.10 "% decrease in Maximum Slowdown Time for 1-channel configuration. 39

Figure 3.11"% decrease in Maximum Slowdown Time for 4-channel configuration 39

Figure 3.12"% decrease in overall Maximum Slowdown Time .. 40

Figure 3.13 Total Execution Time (mCyc) Comparison ... 44

Figure 3.14"EDP (Js) Comparison ... 45

Figure 3.15 Maximum Slowdown Time Comparison .. 46

Figure 3.16"Flow Chart of Energy-Efficient Fairness-Aware Memory Access Scheduling .. 47

Figure 3.17 Total Execution Time (mCyc) comparison ... 53

Figure 3.18"% decrease in Total Execution Time .. 54

Figure 3.19 Maximum Slowdown Time comparison ... 55

Figure 3.20"% decrease in Maximum Slowdown Time ... 56

Figure 3.21 EDP (Js) comparison .. 57

Figure 3.22 Total Memory system Power (W) comparison .. 58

Figure 4.1"Flow Chart of EEPAF .. 63

xi

Figure 4.2 Comparison based on Memory System Power Consumption using memory

configuration-1.. 66

Figure 4.3"Comparison based on Memory System Power Consumption using memory

configuration-2.. 67

Figure 4.4 Overall Memory System Power Consumption .. 67

Figure 4.5"Comparison based on Energy Delay Product using memory configuration-1 68

Figure 4.6 Comparison based on Energy Delay Product using memory configuration-2 69

Figure 4.7"Overall Energy Delay Product ... 70

Figure 4.8 Comparison based on Total Execution Time using memory configuration-1 71

Figure 4.9"Comparison based on Total Execution Time using memory configuration-2 71

Figure 4.10 Overall Total Execution Time... 72

Figure 4.11"Comparison based on Maximum Slowdown Time using memory config-1 73

Figure 4.12 Comparison based on Maximum Slowdown Time using memory config-2 74

Figure 4.13"Overall Maximum Slowdown Time. .. 74

 Figure 5.1 Flow chart of proposed scheduling approach ... 77

Figure 5.2"Constant Stride Table... 78

Figure 5.3"Global History based Close Page Predictor .. 79

Figure 5.4 Total Execution time based comparison for mem-config-1 82

Figure 5.5"Total Execution time based comparison for mem-config-4, 83

Figure 5.6 Total time consumed during execution ... 83

Figure 5.7"Read Page Hit Rate for mem-config-1 ... 84

Figure 5.8 Energy Delay Product based comparison for mem-config-1................................ 85

Figure 5.9"Energy Delay Product based comparison for mem-config-4 86

Figure 5.10 Total Energy Delay product .. 86

Figure 5.11"Memory System Power Consumption based comparison for mem-config-1 87

Figure 5.12 Memory System Power Consumption based comparison for mem-config-4 88

Figure 5.13"Total power consumed by Memory System .. 88

Figure 6.1 Memory Controller Transition States .. 91

Figure 6.2"Proposed Scheduling Approach ... 92

Figure 6.3 Comparison based on Energy-Delay Product .. 93

Figure 6.4"Comparison based on Total Execution Time .. 94

Figure 6.5 Comparison based on Average Maximum Slowdown Time 95

Figure 6.6"Comparison based on Total Memory System Power Consumption 96

xii

LIST OF TABLES

Table 2.1 Timing Parameters ... 13

Table 2.2 Current Measures for DDR3 .. 19

Table 3.1 Workload Description .. 32

Table 3.2 Comparison of simulated scheduling policies on the basis of row buffer hit 33

Table 3.3 Simulation Parameters ... 42

Table 3.4 Workload Description .. 43

Table 3.5 Benchmark Description ... 50

Table 3.6 Simulated Workloads Description .. 51

Table 3.7 Row Hit Rate ... 59

Table 4.1 Memory Configurations ... 65

Table 5.1 Benchmark Description……………………………………………………………81

Table 6.1 Memory Configuration .. 93

xiii

ABSTRACT

__

The increasing growth of internet based information infrastructure consists of powerful

computers and data centers has led to the development of personal/mobile computing devices.

These datacenters are required to perform heavy data processing while ensuring quality of

service. These highly powerful performance oriented computing platforms are used to model

and analyze various complicated scientific problems and natural phenomenon. These

computing devices are capable of providing high performance requirements of various complex

applications only if they are facilitated with efficient memory system. The memory system

stores data during and after execution and provides data to processing cores necessary to

complete execution of applications. It is main memory system that stores data structure

necessary for completion of a program. Main memory constitutes a major part in overall

system’s power consumption. Researchers have reported that in mid-range IBM eServer

machine, main memory contributed 40% of the total system’s power consumption. Many

researchers have worked to make DRAM based main memory system efficient in terms of

performance, energy and access locality.

The prime factor that affects the efficiency of main memory system is its memory controller.

Memory accesses constitute an important part of total applications energy consumption. It is

memory controller of main memory system that is responsible for its efficient working. The

decision regarding what command to issue and when, is dependent on main memory controller.

Main memory controller makes this decision on the basis of memory access scheduler used.

Based on utilized memory scheduling policy DRAM requests are serviced, the sequence of

servicing requests targeted to Dynamic-RAM largely affects the performance as well as energy

consumed by main memory sub-system.

This thesis investigates the impact of memory scheduling policy on energy consumption and

performance of main memory system in several situations. We propose four scheduling policies

that try to service main memory requests in more energy efficient manner while maintaining

the performance of main memory system. We have tried to rationalize main memory’s energy

consumption by reducing its active power consumption and access latency. First, we have

worked on, i) reducing DRAM’s active power consumption by optimizing row buffer hits and

ensuring fairness among simultaneously running threads; ii) by optimizing read-write

switching; iii) by reducing DRAM’s refresh induced energy and performance overheads.

xiv

Second, we have worked on reducing DRAM’s access latency by prefetching memory requests

and issuing precharge and activate commands accordingly.

1

CHAPTER 1

INTRODUCTION

Advancement in the performance of current computer systems is due to improvements in

silicon process technology. As per Moore’s law due to improvement in silicon process

technology, the count of transistors on a single chip can double in every two years. As a

corollary to Moore’s law the increase in the performance of processor has also doubled in

approximately every two years (i.e., during same time period) due to increased switching speed

of transistors. This increase in switching speed is observed because of increase in transistor

count. However, solely improving the performance and energy consumption of processor does

not always lead to reflect same performance and energy consumption gain while considering

whole computer system. The reason for such disparity in performance and energy consumption

advancement at processor level and whole computer system level is that performance of

computer system and energy consumed by computer system is dependent on performance and

energy consumption of processor, computer memory and interaction between processor and

computer memory as well. Moreover, in passing years, in contrast to the rapid advancement

for improving performance of processor and energy consumed by processor, computer memory

has shown modest improvement. Imbalanced performance scaling and energy consumption

trends shown by processor and memory results in restricted advancement of whole computer

system. In order to gain benefits at whole computer system level, detailed prominence should

be made on efficiently managing the performance as well as energy consumption of computer

memory. As per [1], main memory contributes towards 40% of the total system’s power

consumption. However, JEDEC [2] and different DRAM vendors are continuously working on

DRAM memory sub-system [3-8], to make DRAM based main memory subsystem efficient in

terms of bandwidth and energy. Due to increased requirement for more memory capacity and

improved performance, larger and faster main memory system is incorporated with every new

release, which further results in increased power consumption of main memory system [9],

hence main memory sub-system is required to be improved day by day.

With increase in operating frequency of processor, power dissipation is also increased. This

“heat wall” is the main reason for shifting towards multicore processors, i.e., increasing the

number of cores than to increase frequency in order to manage processor’s energy

2

consumption. On multicore processors multiple threads run simultaneously for fast execution.

These concurrently executing threads share main memory resource for storing intermediate

results or to retrieve data required to complete execution. So, main memory is the major

resource that is being shared by all the running programs. Hence, main memory is the key

contributor towards overall system’s performance and energy consumption [10]. DRAM being

a crucial component for energy optimization in industries [10-14] as well as in academia [15-

27], many researchers are working on finding the solutions at system level down to circuit-

level for energy optimization. Researchers are trying to optimize active as well as idle power

consumption of DRAM. So, in current scenario while designing a computer system two major

goals are required to be met, i) To improve the performance of the main memory sub-system

at same level of energy consumption, or ii) To decrease energy consumption of the main

memory sub-system at same level of performance.

1.1 Future’s Performance Requirement

Demand for improved performance of the main memory is on rise. Various commercial

applications like applications from the field of “Big Data” make extensive use of main memory

resource. Applications related to Big data intend to find out useful and meaningful information

from many thousands of petabytes of available data. In order to extract this information

multiple threads run concurrently, thanks to multicore processors. This high degree of parallel

execution of data results in extensive pressure on memory in terms of capacity (bandwidth) to

fulfil processor’s demands. This aroused demand is accomplished by DRAM vendor by

increasing frequency of DRAM pin. However, total available DRAM bandwidth is constrained

by the number of pins available on socket. As per ITRS road map [28], over a period of 8 years,

pin counts are estimated to increase by only 1.47 times unlike 16 times growth of transistor

count of processor. With different growth trends observed for processor and memory, it is very

important that queuing delay observed by requests generated by multiple core contending for

limited memory pins is required to be reduced. The efficient utilization of main memory

bandwidth is dependent on optimal use of DRAM banks, which can be achieved by efficient

scheduling of memory requests, hence motivates to design efficient memory controller.

1.2 DRAM Latency

Over a period of time, in different DRAM generations a significant increment in DRAM pin

count is observed, whereas, very less decrement in DRAM core latency is achieved. tRCD and

tRC are timing parameters that decides DRAM latency. On one hand, where the transmission

3

latency to transmit data to processor over DRAM interface has reduced but DRAM core latency

is not scaled. This leads to a scenario where concurrently running threads contend with each

other for accessing DRAM banks resulting increased overall latency. Increased overall latency

not only increases the overall execution time of programs but also energy consumed by the

program for completion. This issue further motivates to design efficient memory controller.

1.3 Thesis Overview

From the above discussion, it is very much clear that the memory latency wall and energy

consumption is a major issue that requires to be addressed. In this thesis work, we look for the

optimization of memory system that not only satisfy performance requirements of workloads

but also provide increased performance level at less or same energy consumption, or reduced

energy consumption constraints for same performance gain. In order to gain such benefits we

chose memory controller which is most important part of main memory system and where

changes can be made at minimum cost impact. Memory controller is responsible for issuing

memory commands in every DRAM clock cycle and memory controller issues DRAM

commands based on underlying memory access scheduler. Many studies [29-38] have been

conducted to understand the influence of memory controller’s scheduling algorithms on

performance and energy consumption of main memory system. These studies report that

memory scheduling policies affect main memory subsystem’s performance and the amount of

energy consumed in significant way. In this thesis, we try to find answers to the questions like,

How to prioritize threads? What are those memory requests which are to be served first for

improved performance and energy consumption? How to improve fairness among threads?

Answers to these questions are provided through different memory scheduling policies. In this

dissertation, we propose four memory scheduling policies that focus on improving

performance, fairness among threads and energy consumption of main memory system.

1.4 Problem Statement

Main memory’s performance and energy consumption affects computer system’s performance

and energy consumption in a significant way. Memory controller of the main memory system

is a key component that have a major impact on main memory system’s performance and

energy consumption. The key to design performance neutral, energy efficient main memory

system lies in the formulation of intelligent as well as efficient memory controller policies that

are aware of memory access scenarios and timing constraints and issues memory requests

accordingly to maintain the balance between energy consumption and performance.

4

1.5 Proposed Solutions

To address the issue of rationalizing energy consumption and performance gain of main

memory sub-system, we propose following performance-neutral DRAM energy optimization

strategies.

1 To reduce DRAM’s power consumption while maintaining the performance level.

2 To reduce DRAM access latency

DRAM based main memory system’s power consumption can be managed by either reducing

its active power consumption or by minimizing DRAM’s standby power consumption.

DRAM’s active power consumption can be curtailed by, i) maximizing row-buffer hits, ii)

reducing read-write switches, iii) managing DRAM refreshes while servicing memory

requests. The downside of active power consumption optimizing strategy is that it reduces

DRAM access time which leads to increased DRAM idleness. Also, these idle DRAM periods

should be optimized in order to reduce overall DRAM energy consumption. Power consumed

by DRAM system while in standby (idle) mode can be curtailed by, i) exploiting power down

modes, ii) curtailing power consumed during refresh operations when memory is idle, iii)

frequency scaling to reduce memory’s idleness. The disadvantage of exploiting power down

mode and frequency scaling is that they may result in increased latency and energy

consumption to serve memory accesses caused because of additional power-up latency.

1.6 Thesis Layout

The thesis has seven chapters, out of which CHAPTER 1 presents Introduction. CHAPTER 2

enlightens about fundamental building blocks of main memory system (DRAM based), basic

terminologies and existing memory scheduling policies is provided. CHAPTER 3 presents the

proposed energy efficient and fair memory scheduling algorithm to optimize row hits while

maintaining fairness among threads during execution. CHAPTER 4 presents memory access

scheduling policy proposed to reduce read write switches in order to minimize bus turn around

delay and power consumed to switch the bus, hence serves to reduce thread’s execution time

and energy consumption. CHAPTER 5 presents proposed memory access scheduling algorithm

to minimize DRAM access latency. CHAPTER 6 includes scheduling approach proposed to

manage DRAM refresh induced performance and energy overheads. Finally, CHAPTER 7

presents the conclusion of the dissertation supported with the result of experiments and

simulations. Conclusion is further followed by the future scope of the research work

commenced in the thesis.

5

CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

2.1 Basic DRAM Device Architecture and Circuits

In order to enlighten the researchers about DRAM based main memory system, this chapter

provides an insight into basic architecture and circuits of DRAM devices. Though it is not

possible to complete all aspects of DRAM based circuits and architectures in depth in one

chapter, the fundamental aim of this chapter is to facilitate sufficient details about DRAM

devices and their architecture and circuits to ensure basic understanding about DRAM devices.

Only if basic understanding about fundamentals of DRAM devices is available to the

researchers then only more advanced discussions about its architecture and circuits would be

feasible. Current chapter begins with the description of basic DRAM device, i.e., Fast page

mode (FPM) DRAM device. Then varied components like DRAM cell, sense amplifier are

discussed separately.

2.1.1 DRAM Device Organisation

Figure 2.1, demonstrates the fundamental structure and basic details of DRAM device.

Figure 2.1 Basic DRAM Device based Memory Organisation

Figure 2.2 [39], illustrates that DRAM storage cells are organized as an array, consisting of

4096 rows and 1024 columns in each row. In each column 16 bits of data is facilitated. In order

Array of DRAM cells

Banks with in single Rank

6

to access data stored in DRAM array, Row Access Strobe (RAS) occurs, in which 12-bit

address is placed on address bus. Internally in DRAM device, the address inserted by external

memory controller is stored in row address buffer which is further sent to row address decoder

for decoding the address. The row decoder then decodes the address and selects the

corresponding row out of 4096 rows available. The data stored in chosen row is then sensed

and stored in sense amplifier. Each row contains 1024 columns, where each column is 16-bit

wide, i.e., fundamental addressable unit of this memory device is 16-bit, and during column

access strobe (CAS) 16-bits of data is either read or write from selected row of DRAM device.

CAS can further be issued as column access strobe low (CASL) to access lower 8-bits and

column access strobe high (CASH) to access higher 8-bits independently. External memory

controller places 10-bit address to access specified column from chosen row on address bus,

then asserts appropriate CASH or CASL signals. Then the data of the selected column is placed

onto the bus.

Figure 2.2 DRAM Cell Organisation

7

This basic organization is similar for all DRAM devices ranging from basic FPM DRAM to

DDRx (Dual Data Rate) SDRAM devices. In all DRAM devices DRAM cells are organized as

an array, i.e., as rows and columns. All DRAM devices contains one or more such DRAM cell

arrays, where column is the basic addressable memory unit. All DRAM devices are enabled

with some logic circuits to control timings and sequence of operation of device. The FPM

DRAM device keeps track of the address of next row that is to be refreshed. Due to restricted

pin usage on DRAM devices, dual-sided input-output pins are attached to the system for

moving data into and out of the device. More innovative DRAM devices like ESDRAM, Direct

RDRAM and RLDRAM contains more functionalities and logic circuitry but burden the die

cost of Dynamic-RAM device. So, these advanced devices are not included as standard DRAM

devices.

2.1.2 DRAM Cell

 Figure 2.3, illustrates the circuit diagram of basic DRAM cell, containing one transistor and

one capacitor, which is the fundamental storage unit of DRAM device. Access transistor is

activated by supplying voltage on the wordline gate of transistor. The data to be stored may be

placed onto the bitline by applying voltage representing data value which is used to charge the

storage capacitor. The capacitor then holds the charge for restricted duration after the removal

of voltage from wordline. The transistor turns off when voltage supply from the wordline is

removed. The charge stored on capacitor tends to leak over time, so, it becomes necessary to

recharge (refresh) the cell after a regular intervals to retain the stored charge, or else the

deposited charge will leak away and the value maintained on the device will vanish.

Figure 2.3 DRAM cell

2.1.3 Sense Amplifier

In DRAM devices, sense amplifier perform three different functions. Out of these functions,

primary function is to sense the minor variation in voltage that may occur when capacitor places

8

its charge on the bitline. The sense amplifier makes a comparison between voltage on bitline

and a reference voltage. Sense amplifier then amplifies the voltage so that stored value can be

read as zero or one. Another function of sense amplifier is to restore cell value after the value

present on bitline is sensed and amplified. When capacitor places its charge on bitline, it gets

discharged. As a result, its charge needs to be restored. The third function of sense amplifier is

that sense amplifier also act as temporary storage in the DRAM array. After seeing and

amplifying the data contained in storage cells, the sense amplifier continue to retain the data

values until the precharge operation is not executed on DRAM array. This way, data in the row

present in sense amplifier can be accessed without issuing RAS. For this array of sense

amplifiers collectively act as a row buffer and hence sense amplifier is also addressed as row

buffer. Researchers have worked on managing the state of sense amplifier, i.e., for how long

row buffer would continue to retain data. These policies are referred to as row buffer

management policies. Effective management of state of sense amplifier is very important for

obtaining optimal balance between performance and energy consumption. Basic sense

amplifier circuit diagram is shown in Figure 2.4[39].

Figure 2.4 Circuit diagram of Sense Amplifier

2.1.4 DRAM Device Control Logic

Movement of data onto, within and out of the DRAM device is controlled by basic logic circuit

present in DRAM devices. Logic circuitry accepts signals and control that are fed externally

9

and then controls the data movement by properly sequencing the commands as per timing

constraints. The issuing of control signal at proper time is controlled by logic circuitry. Figure

2.5 [39], represents the logic circuitry of FPM DRAM device. External interface of DRAM

device’s control logic consists of three signals: row access strobe (RAS), write enable (WE),

and column access strobe (CAS). The device interface is asynchronous and memory controller

controls the issue of command pertaining to timing constraints for regulating data movement

into and out of DRAM device. Asynchronous nature of interface reveals that different memory

controllers working at different frequencies can be implemented but the controller should be

able to control different DRAM devices.

Figure 2.5 Control Logic of DRAM Device

10

2.1.5 Data Input/Output

 In DDRx SDRAM and SDRAM devices, variable number of columns are moved on issuing

column read command. According to programing done on an SDRAM device, it can return a

single burst of 1, 2, 4 or 8 columns of data in 1, 2, 4 or 8 cycles. In 2, 4 or 8 column burst of

Synchronous-DRAM based device, each column is individually addressable, i.e., even if a

column is provided in between burst, the Synchronous-DRAM device reorders the burst in

order to at first facilitate data of requested address. This characteristic of device is called as

critical-word forwarding. Each column in the burst is moved separately from the sense

amplifier to external data bus. The individual control over each column and the operational

data rate of DRAM device is constrained. To overcome this issue large number of bits are

moved in parallel from DRAM and are then pipelined to external data bus through multiplexer.

2.2 DRAM based Main Memory Organization

In this section an insight about fundamental building blocks of main memory system (DRAM

based), basic terminologies is provided. In previous section main focus was on single DRAM

device, whereas, in this section details about whole main memory system is provided. In

context with whole main memory system information about organisation, construction and

working of multiple DRAM devices together is provided. The aim to include detailed

information about DRAM based main memory system organisation and nomenclature in this

chapter is to provide proper understanding about the building blocks and operations of memory

system, so that the nomenclature used and discussions made in subsequent chapters can be

better understood.

2.2.1 Main Memory Subsystem

In a computer system, main memory subsystem acts as an intermediate storage between caches

and secondary memory. During processing, it is used for storing intermediate data that can be

used by the processor in near future, or to store data expelled by the cache memory. In order to

behave like an intermediate memory, it has to be faster than hard drives to accomplish better

performance. For faster access to the data, memory should be randomly accessible, hence main

memory is random access memory. Constant charge leaking behaviour of DRAM makes main

memory volatile in nature, hence it requires periodic refreshes. The main memory subsystem

is accessed through a hardware device called memory controller which is placed on

motherboard, in recent computer system it is integrated on CPU die. Memory controller

controls the access made to main memory through system buses, data buses and address buses.

11

Modern main memory system is made up of JEDEC style dual data rate (DDR) synchronous

DRAM (SDRAM) [4, 5]. Dual data rate part of main memory reveals that the data bus operates

two times faster than the address bus and command bus. Synchronous DRAM means on issue

of RAS and CAS the DRAM device acts at falling edge of clock signal, not immediately upon

access strobe signal change. Dynamic part of DRAM depicts its volatile nature. Constant

charge leaking behaviour of DRAM makes main memory volatile, hence it requires periodic

refreshes to retain the stored data. Main memory subsystem is organized hierarchically as

channels, ranks and banks. Within a bank, DRAM devices are organized as an array of rows

and columns. Memory controller is designated to manage one or more main memory channels.

Each channel is provided with a data bus, an address bus and a command bus. Multiple Dual

Inline Memory Module (DIMM) is provided at each channel. DIMM is a collection of multiple

ranks. Ranks on same channel share common data bus, command bus and address bus. Within

a memory module multiple ranks can work together in parallel to service different memory

accesses. Figure 2.6 [39] shows the hierarchical organisation of main memory system. Rank is

a collection of multiple DRAM chips. A particular rank is chosen by issuing chip-select signals.

On selecting a rank all the DRAM chips that are part of rank receive signals (address signals

and command signals) issued by memory controller on command system buses. A rank is

further partitioned into multiple banks, (typically ranging from four to sixteen). Each bank can

concurrently service different memory accesses but the data being transferred into or out of the

bank through common data system has to be serialized. Each bank is logically thought to be

arranged as a two-dimensional array of DRAM cells. Physically, each two-dimensional array

is further divided into sub-arrays [39, 40] in order to manage factors like current draw and

latency.

Figure 2.6 Main Memory Hierarchy

12

2.2.2 DRAM Commands

 In main memory system DRAM cells are organized as rows and columns. This 2-D array

arrangement of DRAM cells facilitates to address particular bit of information through

addressing specific row and column. A row of sense amplifiers, one sense amplifier per column

is also present in each array which act as a buffer for data management during cell refreshes.

First of all PRECHARGE command is issued to access the data stored at row X and column

Y. PRECHARGE command prepares the sense amplifier to receive data. PRECHARGE

command is followed by activate command, which reads out data from DRAM cells to row

buffer (sense amplifiers). Once sense amplifiers contain data, the corresponding row (row X)

is said to be open. To access a particular column (column Y) from the row, column access

strobe corresponding to read/write column Y is issued. On completing a particular memory

request after ACTIVATE command next PRECHARGE command prepares row buffer for

storing next row being addressed. ACTIVATE and PRECHARGE operations on a row

refreshes the DRAM cells. In addition to these, REFRESH command is issued on periodic

intervals to refresh (recharge) the DRAM cells.

Other than basic DRAM commands (PRECHARGE, ACTIVATE, COL-READ, COL-

WRITE, and REFRESH), DDR SDRAM supports many other commands to manage DRAM’s

power state. PWR-DWN-FAST (Power Down Fast) can put rank in either activate power down

mode or fast-power-down mode (precharge-power-down). While issuing power down if all the

banks are in precharge state then chips enter in precharge-power-down mode, whereas, if even

a single bank is active then chip enters in active-power-down mode. In both states on chip DLL

(Delay Lached Loop) remains active. The power consumed in active power down mode is more

when compared to power consumed in precharge power down mode. In both power down

states, the on-chip DLL is ON that enables the chip to power-up with least latency. To ensure

transition into the lower power state, it may be necessary to first precharge all banks in the

rank. Another command that can be issued to manage power state of DRAM is PWR-DWN-

SLOW (Power Down Slow), which transitions a rank into power down slow mode. It can be

applied only if all banks are in precharge state. In power down-slow-mode on chip DLL is

inactive. A rank can be woken up from low-power mode using power-up command, refresh

command, precharge command, or precharge-all-banks command. Time taken by power-up

command to transition ranks into active state depends upon whether the DRAM banks are in

power-down-slow or power-down-fast mode. If the chip is in active-power-down state then

13

power up command retains the data in row buffer when the chip is powered up. Precharge-all-

banks forcibly precharges all the banks in a rank.

2.2.3 Timing Constraints

Physical implementation of DRAM devices imposes certain timing limitations. These

limitations arise due to signalling constraints, power profiles, and wiring limitations. Due to

timing constraints only few commands among all DRAM commands can be issued during a

clock cycle. Which command is to be issued depends on current DRAM state. Table 2.1,

provides a list of timing parameters for a typical Micron DDR3 chip. The value of tRFC

parameter is dependent on chip capacity and varies in accordance with capacity.

Table 2.1 Timing Parameters

Timing

Parameter

Default Value

(cycles at 800 Mz)

Description

tRCD 11 Delay between Row and Column Command. It

represents time duration between data open at sense

amplifiers and accessed from row buffer.

tRP 11 It represents Row Precharge, i.e., time duration

needed to precharge DRAM array for another row

access.

tCAS 11 It constitutes the latency encountered in Column

Access Strobe. The period of time between column

access command and the beginning return of data by

the main memory device. It is also known as tCL.

tRC 39 Row Cycle. Time required to access multiple rows

within a bank. tRC=tRAS+tRP

tRAS 5 It represents the minimum delay between one Row

activation to another Row activation command. It

restricts the maximal current profile.

tFAW 32 Four (row) bank Activation Window. Utmost time

period for engaging maximal four activated banks.

tWR 12 Write Recovery time. It represents the minimal time

duration betwixt the initiation of a precharge

command and the termination of a write data burst.

14

tWTR 6 Write to Read delay time. The minimal interim time

betwixt the beginning of a column read command

and the culmination of a write data burst.

tRTP 6 Read to Precharge.The interlude duration between a

read and a precharge command.

tCCD 4 Column-to-Column Delay. The minimal column

command timing, governed by internal burst

(prefetch) length.

tRFC 128 Refresh Cycle Time. The interlude between Refresh

and Activation commands.

tREFI 6240 Refresh interval period.

tCWD 5 Column Write Delay. The interim time between the

deployment of data on the data bus by the DRAM

controller and issuance of the column-write

command.

tRTRS 2 Rank-to-rank switching time. Utilized in DDR and

DDR2 SDRAM memory systems; not used in

SDRAM or Direct RDRAM memory systems. One

full cycle in DDR SDRAM.

tPDMIN 4 Minimal power down duration.

tXP 5 Time to depart fast power down.

tXPDLL 20 Time to depart slow power down.

tDATATRANS 4 It represents Data transfer time from CPU to memory

or conversely.

At a temperature of 85 degree Celsius DRAM rows need to be refreshed with in a time interval

of 64ms. The refresh operation takes place in following steps. First, memory controller issues

REFRESH command in every 7.8µs (refresh interval). This command triggers refresh to

multiple rows in all the banks in the channel. For tRFC interval after issuing REFRESH

command DRAM chips are not available to service any other command. In accordance to

JEDEC standard REFRESH command can be delayed up to 8 times tREFI, if average rate of

refresh command is one per tREFI [41].

15

2.2.4 DRAM Access Latency

The sense amplifiers are used to sense each bank of memory. Within a DRAM chip the range

of row size is 1-2 KB [42]. First, Activation command is allotted in order to fetch a row from

memory array to row buffer. Data present in row buffer can be read out by issuing column read

command, whereas data can be written into address in row buffer by column write command.

To read data from the memory addresses or to write data into a particular memory addresses

present in row buffer, column address command is only required only [43]. The energy

consumed for serving memory request and stall time experienced throughout the execution of

a memory request is henceforth dependent on the status of address, i.e., requested address is

already fetched in sense amplifier or not. Requests generated for main memory fall into

following categories:

1) Row Hit: Row hit is a scenario in which requested memory address is present in row buffer.

This condition is called open row buffer. In this case for serving requested memory request

only CAS memory command is required to be issued and it request minimum number of

operations to serve so.

2) Row Closed: In this case sense amplifier is closed, i.e., no address is present in sense

amplifier. So, first requested address is fetched to sense amplifier by issuing activate command

then CAS is issued.

 3) Row Conflict: In this case requested address is not present in sense amplifier. Some other

address is already present in row buffer.

Figure 2.7 DRAM Latency from Processor’s Perspective

16

Figure 2.7, represents comprehensive DRAM latency from processor’s outlook. Along with

afore mentioned latencies additional recess induces relaying of whole cache line from the

memory bank, else to the memory bank of the main memory data bus.

2.2.5 Row Buffer Management

Each bank has a row of sense amplifiers called row buffer to store the row being addressed. If

new memory request addresses a row present in row buffer, it results in row buffer hit. Row

buffer hit consumes least amount of time and energy to serve a memory request. Row buffer

miss a condition in which memory request addresses a separate row other than present in row

buffer. If row present in row buffer is not further requested by memory requests in near future

then it is better to close row buffer. Closing row buffer facilitates more efficient service of

future memory requests. Many row buffer management policies [44-48] are investigated that

are used in memory controllers. An efficient row buffer management affects the performance

and energy consumption of main memory sub-system in a significant way. Hence, it becomes

necessary to effectively handle row buffer.

2.2.6 Address Mapping

Intelligent address mapping process is responsible for affecting the performance and energy

consumption of memory system. Address mapping process affects the level of parallelism and

row hits achievable in a memory system. Several papers [41, 47, 49], have investigated the

impact of address mapping schemes on performance of memory system. Address mapping

translates an address obtained from system’s memory address space onto logical DRAM

organisation, i.e., address mapping process maps the request address into a set of <channel (L),

rank (K), bank (B), row (R), column (C)> which specifies the location of data being addressed.

Address mapping process determines which part of address bits are used to address which

logical component of DRAM organisation and this choice greatly affects the performance as

well as energy consumed by memory sub-system. For example, two requests trying to access

different rows of the same bank results in increased request serving latency as we need to first

service the first request then this row is required to be closed in order to service second request.

As per the values provided in Table 2.1, it would consume 38 DRAM cycles to serve both

memory requests, provided the bank was in precharge state initially. 38 DRAM cycles

consumed in following manner. First request would consume tREQ1 = tRCD + tCAS cycles for

execution. It is followed by PRECHARGE command to close the row, PRECHARGE

command can be issued tRAS cycles after ACTIVATE command. tRAS value is 5, which is

17

greater than tREQ1. Thus, it would be tRAS + tRP cycles before issuing next ACTIVATE

command. So, in total tRAS + tRP + tRCD + tCAS = 38 cycles are required for execution of both

memory requests. Whereas, if both requests were addressing to the same row but different

columns of memory address then only 33 cycles are required to service both. They can be

serviced one after another serially, so require tRCD + 2*tCAS = 33 cycles. In this case energy

consumption as well as latency, both are decreased.

Another option for memory access pattern would be to request different banks. In this case

both requests can be serviced in parallel hence require tRCD + tCAS =22 cycles for issuing

ACTIVATE commands, although in order to satisfy tRCD timing parameter, second

ACTIVATE is required to be delayed by five cycles. Thus, total execution time to execute both

memory requests would be 27 cycles. This mapping policy would consume more energy as

both banks are active, i.e., two row buffers are activated rather than single to service memory

requests. In order to achieve more parallelism, accessing two different channels would be even

more beneficial but it will consume more energy. All the above discussed scenarios impact the

performance but only in accordance with the stream of addresses. In general, applications

leverage spatial locality while issuing memory requests, i.e., memory addresses with difference

in lower order bits of the addresses are expected to lie in shorter time frame. This makes us to

use lower order bits to address column values to address channel, rank or bank values. If lower

order bits address column values then it would lead to more row buffer hits and if used to

address channels, ranks and banks then it provides benefits of increased parallelism. Increased

parallelism using lower order bits result in performance degradation in long term because of

increased need of opening and closing the rows and further frequent change in rank and

channels increase energy consumption.

2.2.7 DRAM Refresh Management

DRAM cell stores data in the form of charge on capacitor. The capacitor tends to loose charge

hence needs to be refreshed periodically in order to retain stored data. These periodic recharge

(refresh) operations imposes penalty in terms of increased power consumption and decreased

performance. When a memory bank undergoes refresh operation, it stalls servicing read and

write requests intended to same bank undergoing refresh operation henceforth resulting in

increased memory request service latency. In addition refresh operations consume energy in

terms of reading data and restoring it while performing refreshes. As per study conducted in

[50], in 32Gb DRAM device 20% of the DRAM’s energy is consumed in terms of refresh

energy and refreshes degrades system’s performance by more than 30%. In SDRAM two

18

refresh modes, auto-refresh and self-refresh are used to reform refresh operation. The refresh

operation should be performed within DRAM cell’s retention time. Retention time is the time

interval for which DRAM cell can retain its stored data without being again recharged.

Researches have been conducted to improve DRAM’s retention time and retention failures [51-

54].

2.2.8 Basics on DRAM Current Parameters

In this section, a brief description about different DRAM currents and insight about their

measurement settings is provided. Detailed insight about DRAM current measures is provided

in [55].

1. IDD0: IDD0 represents One Bank Active-Precharge Current. It is evaluated across activate

and precharge commands in respect of one bank while other banks are maintained in

precharged state.

2. IDD1: IDD1 stands for One Bank Active-Read-Precharge Current and is calculated over

the activate, column-read and precharge commands with respect to one bank. Rest

banks are in closed state.

3. IDD2N: IDD2N depicts Precharge Standby Current. It is calculated when complete banks

are in the precharged state.

4. IDD2P0: IDD2P0 renders to Precharge Power-Down Current-Slow-Exit. It is calculated in

power-down mode at the time when Clock Enable is at Low state and the DLL is off,

in this phase external clock is kept On and complete banks are in precharged state.

5. IDD2P1: It represents Precharge Power-Down Current-Fast-Exit which is measured

during power-down mode when Clock Enable is at Low state, DLL is on and external

clock is On while complete banks are kept closed.

6. IDD3N: IDD3N corresponds to Active Standby Current that is calculated when at least one

bank is in active state.

7. IDD3P: Active Power-Down Current is evaluated for the power-down mode with Clock

Enable Low and the DLL locked, when the external clock is active and minimal one

bank is in active state.

8. IDD4R: IDD4R represents Burst Read Current and is evaluated while performing Read

operation, during its measurement all banks are active performing seamless read data

burst along with all data bits switching between the bursts and column read commands

are considered to be driving across all the banks.

19

9. IDD4W: Burst Read Current is evaluated while performing write operation, while

performing seamless write data burst with all data bits toggling between bursts. All

banks are in active state, with the column write commands driving across complete

banks and the ODT (On Die Termination) steady at HIGH.

10. IDD5: IDD5 represents Refresh Current that is evaluated while performing refresh process.

Commands to schedule Refresh are imposed in each nRFC cycles.

11. IDD6: Self Refresh Current is evaluated during self-refresh mode when the clock enable

at Low state and DLL Off and reset. In addition external clock is kept Off and all banks

are in precharged state.

12. IDD1W: One Bank Active-Write-Precharge Current is not a JEDEC benchmark. But, its

reference measures may be calculated by replacing IDD4W instead of IDD4R in IDD1 current

and represents activation-write-precharge current.

For a MICRON 512MB Dual Data Rate (DDR3-800) Dual In Memory Module current

measurements are shown in Table 2.2.

Table 2.2 Current Measures for DDR3

Current Measure (mA)

IDDO 360

IDD1R 440

IDD1W 410

IDD2N 180

IDD2P0 40

IDD2P1 100

IDD3N 200

IDD3P 100

IDD4R 840

IDD4W 840

IDD5 800

IDD6 24

2.2.9 DRAM Power Model

In this section, we describe the power model used to calculate memory system power

consumption. DRAM power consumption can be factored into two components consumed by

20

memory elements (core power consumption) [56], and power consumed while driving data into

or out of the data bus (I/O power consumption). Power consumed by memory elements, i.e.,

core power consumption comprised of three main elements, i) Average power consumption

when memory is in idle state (base power consumption), is the summation of power consumed

in standby mode and during refresh operation ii) Power consumption when DRAM is active

(active power consumption) and Power consumption while servicing read/write requests. The

equations used for power modeling are based on Micron Memory System Power Technical

Note [57] and Micron power calculator [58]. For better assimilation, P(XX) is used to denote

power consumed by XX sub-component. Total power consumed by DRAM chip is calculated

as

𝑃𝑐ℎ𝑖𝑝_𝑝𝑜𝑤𝑒𝑟 = 𝑃(𝑟𝑒𝑎𝑑) + 𝑃(𝑤𝑟𝑖𝑡𝑒)+ 𝑃(𝑟𝑒𝑓𝑒𝑟𝑒𝑠ℎ) + 𝑃(𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒)+ 𝑃(𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑) + 𝑃(𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒)

 (2.1)

𝑃𝑡𝑜𝑡𝑎𝑙_𝑑𝑟𝑎𝑚_𝑝𝑜𝑤𝑒𝑟 = 𝑃𝑐ℎ𝑖𝑝_𝑝𝑜𝑤𝑒𝑟 ∗ 𝑁𝐷𝑅𝐴𝑀_𝑐ℎ𝑖𝑝𝑠 (2.2)

Where, 𝑁𝐷𝑅𝐴𝑀_𝑐ℎ𝑖𝑝𝑠, represents total number of DRAM chips available in memory system and

𝑃(𝑟𝑒𝑎𝑑), power consumed in read operation, 𝑃(𝑤𝑟𝑖𝑡𝑒), represents power consumed in write

operation, 𝑃(𝑟𝑒𝑓𝑒𝑟𝑒𝑠ℎ) , depicts power consumed during refresh, 𝑃(𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑), represents

power consumed in background processes and 𝑃(𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒), represents termination power.

𝑃(𝑟𝑒𝑎𝑑) = (𝐼𝐷𝐷4𝑅 − 𝐼𝐷𝐷3𝑁) ∗ 𝑉𝐷𝐷 ∗ 𝑁𝑟𝑒𝑎𝑑𝑐𝑦𝑐𝑙𝑒𝑠 (2.3)

 𝑃(𝑤𝑟𝑖𝑡𝑒) = (𝐼𝐷𝐷4𝑊 − 𝐼𝐷𝐷3𝑁) ∗ 𝑉𝐷𝐷 ∗ 𝑁𝑤𝑟𝑖𝑡𝑒𝑐𝑦𝑐𝑙𝑒𝑠 (2.4)

 𝑃(𝑟𝑒𝑓𝑒𝑟𝑒𝑠ℎ) = (𝐼𝐷𝐷5 − 𝐼𝐷𝐷3𝑁) ∗ 𝑉𝐷𝐷 ∗
𝑇𝑅𝐹𝐶

𝑇𝑅𝐹𝐸𝐼
⁄ (2.5)

 𝑃(𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒) = 𝑃(𝑚𝑎𝑥𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒) ∗
𝑇𝑅𝐶

(𝑎𝑣𝑔. 𝑔𝑎𝑝 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑠)⁄ (2.6)

 𝑃(𝑚𝑎𝑥𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒) = (𝐼𝐷𝐷0 −
(𝐼𝐷𝐷3𝑁 ∗ 𝑇𝑅𝐴𝑆 + 𝐼𝐷𝐷2𝑁 ∗ (𝑇𝑅𝐶 − 𝑇𝑅𝐴𝑆))

𝑇𝑅𝐶
⁄) ∗ 𝑉𝐷𝐷 (2.7)

𝑃𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 , represents background power dissipation and is combination of following

components

 𝑃𝑎𝑐𝑡_𝑝𝑑𝑛 = 𝐼𝐷𝐷3𝑃 ∗ 𝑉𝐷𝐷 ∗ 𝑇𝑎𝑐𝑡_𝑝𝑑𝑛 (2.8)

 𝑃𝑎𝑐𝑡_𝑠𝑡𝑑𝑏𝑦 = 𝐼𝐷𝐷3𝑁 ∗ 𝑉𝐷𝐷 ∗ 𝑇𝑎𝑐𝑡_𝑠𝑡𝑑𝑏𝑦 (2.9)

 𝑃𝑝𝑟𝑒_𝑑𝑤𝑛_𝑠𝑙𝑜𝑤 = 𝐼𝐷𝐷2𝑃0 ∗ 𝑉𝐷𝐷 ∗ 𝑇𝑝𝑟𝑒_𝑑𝑤𝑛_𝑠𝑙𝑜𝑤 (2.10)

21

 𝑃𝑝𝑟𝑒_𝑑𝑤𝑛_𝑓𝑎𝑠𝑡 = 𝐼𝐷𝐷2𝑃1 ∗ 𝑉𝐷𝐷 ∗ 𝑇𝑝𝑟𝑒_𝑑𝑤𝑛_𝑓𝑎𝑠𝑡 (2.11)

 𝑃𝑝𝑟𝑒_𝑠𝑡𝑏𝑦 = 𝐼𝐷𝐷2𝑁 ∗ 𝑉𝐷𝐷 ∗ 𝑇𝑝𝑟𝑒_𝑠𝑡𝑏𝑦 (2.12)

 𝑃𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 = 𝑃𝑎𝑐𝑡_𝑝𝑑𝑛 + 𝑃𝑎𝑐𝑡_𝑠𝑡𝑑𝑏𝑦 + 𝑃𝑝𝑟𝑒_𝑑𝑤𝑛_𝑠𝑙𝑜𝑤 + 𝑃𝑝𝑟𝑒_𝑑𝑤𝑛_𝑓𝑎𝑠𝑡 + 𝑃𝑝𝑟𝑒_𝑠𝑡𝑏𝑦

 (2.13)

Power dissipated in ODT resistors constitutes termination power. For termination power

consumption not only active rank is responsible but also other ranks in same channel participate

in same.

 𝑃𝑟𝑒𝑎𝑑_𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 = 𝑝𝑑𝑠𝑟𝑑 ∗ 𝑁𝑑𝑎𝑡𝑎_𝑟𝑒𝑎𝑑 (2.14)

 𝑃𝑤𝑟𝑖𝑡𝑒_𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 = 𝑝𝑑𝑠𝑤𝑟 ∗ 𝑁𝑑𝑎𝑡𝑎_𝑤𝑟𝑖𝑡𝑒 (2.15)

 𝑃𝑟𝑒𝑎𝑑_𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒_𝑜𝑡ℎ𝑒𝑟 = 𝑝𝑑𝑠𝑡𝑒𝑟𝑚𝑅𝑜𝑡ℎ ∗ 𝑁𝑑𝑎𝑡𝑎_𝑟𝑒𝑎𝑑_𝑜𝑡ℎ (2.16)

 𝑃𝑤𝑟𝑖𝑡𝑒_𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒_𝑜𝑡ℎ𝑒𝑟 = 𝑝𝑑𝑠𝑡𝑒𝑟𝑚𝑊𝑜𝑡ℎ ∗ 𝑁𝑑𝑎𝑡𝑎_𝑤𝑟𝑖𝑡𝑒_𝑜𝑡ℎ (2.17)

The values for 𝑝𝑑𝑠𝑟𝑑, 𝑝𝑑𝑠𝑤𝑟, 𝑝𝑑𝑠𝑡𝑒𝑟𝑚𝑅𝑜𝑡ℎ , 𝑝𝑑𝑠𝑡𝑒𝑟𝑚𝑊𝑜𝑡ℎ are taken as per micron technical

note[57].

𝑃𝑡𝑜𝑡𝑎𝑙_𝑐ℎ𝑖𝑝_𝑝𝑜𝑤𝑒𝑟 = 𝑃(𝑟𝑒𝑎𝑑) + 𝑃(𝑤𝑟𝑖𝑡𝑒)+ 𝑃(𝑟𝑒𝑓𝑒𝑟𝑒𝑠ℎ) + 𝑃(𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒)+ 𝑃(𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑) + 𝑃(𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒)

 (2.18)

2.2.10 Memory Controller

As mentioned earlier, the main memory system is comprised of storage devices and a memory

controller. In order to hide hardware details, memory controller plays a role of translator and

control wrapper for storage devices. Memory controller receives memory requests and as per

the received request, issues commands to DRAM devices. Memory controller can be

categorized into two layers: the outer layer and inner layer. Outer layer communicates with

other computer components and inner layer controls the DRAM devices. Memory scheduler is

that part of memory controller which issues DRAM commands as per the selected memory

request. The outer layer accepts memory requests and enqueue them in single transaction queue

(TQ). Often write requests and their data are kept in separate write queue (WQ). Requests

placed in transaction queue and write queue are mapped into a series of DRAM commands and

then these are handled to inner layer. Simple way to translate incoming request is to map them

into a PRECHARGE command, ACTIVATE command and a WRITE or READ command.

After translation of incoming request, these commands are placed in inner layer’s command

22

queue (CQ). The memory commands translated are issued as per the timing constraints.

REFRESH commands are also issued at periodic intervals to retain the data stored.

2.3 Memory Access Scheduling

Memory scheduling policies were developed to enhance the performance and decrease energy

consumption of superscalar, multicore and multithreaded processors. Transition from unicore

to multicore processor resulted in change in behaviour of memory scheduling policies also.

From the role of reordering and scheduling requests issued from same thread, its behaviour

changed to schedule requests from different threads for better and efficient resource utilization.

In the following sections we will discuss different memory access scheduling policies.

2.3.1 Memory Scheduling Policies for Single-Threaded Single Core Processor

 Memory access scheduling policies in single threaded single-core processors mainly focus on

re-ordering memory access requests in order to reduce gap between processor and memory

latency. Researchers in [31], have proposed a memory access scheduling policy in order to re-

order DRAM commands like bank PRECHARGE, ACTIVATE and Column Access Strobe.

In [59], authors have focused on designing parallelized memory controller by

introducing memory access scheduler which is responsible for issuing read requests, write

requests, ACTIVATE and PRECHARGE commands. The Ph.D. thesis [60], have proposed a

compiler based technology called access ordering for solving memory bandwidth issue in

scalar processor by reordering memory requests. Authors in [61], investigated memory access

ordering to find the limitations for performance enhancement. In [62], researchers introduced

a memory scheduling unit to prefetch memory read requests, buffer memory write accesses,

and dynamically reordering memory accesses to maximize efficient memory bandwidth

utilization. The key limitation of before discussed algorithms is that they are beneficial for

single-threaded processors only. They cannot handle requests from multiple threads. Our main

focus in this thesis is on memory access schedulers for multi-threaded and multicore

processors. As per [63], there are some scheduling policies that were developed for single

threaded processors but can be used in SMT processors. Memory access scheduling policies

under this category are FCFS (First Come First Serve), age-based policy, hit-first scheduling

policy and read-first scheduling policy.

 FCFS scheduling policy serves requests in accordance with their arrival time. Request

that arrives first is served first, irrespective of all other factors. It is very simple hence requires

23

very less hardware for implementation. Its limitation also lies in being very simple. It does not

consider the criticality of other resources and requests. Hit-first scheduling policy prioritizes

row-buffer hits over row-buffer miss requests. So, it prioritizes memory requests that take less

time to complete. Read-first scheduling policy gives more priority to memory reads over writes

because memory reads are more critical for system’s performance than memory writes. Both

hit-first and read-first scheduling policies can be used along with other scheduling algorithms.

 Next section contains memory access scheduling policies that are developed for multi-

threaded and multi-core processor.

2.3.2 Scheduling Policies for Multi-threaded and Multi-core processors:

The idea of main memory scheduling policy for multi-threaded processors is discussed in [63].

In multithreaded and multi-core processors multiple threads run simultaneously and hence

contention to access system resources (memory resource) among threads also increases. In

[63], researchers presented three thread-aware scheduling policies. Introduced scheduling

policies are request-based, reorder buffer-based and IQ-based (Issue Queue-based) scheduling

policies. ROB-based and IQ-based scheduling policies are resource based scheduling policies

and request-based scheduling algorithm is request based scheduling policy. They compared the

performance of these scheduling strategies with algorithms like hit-first, read-first and age-

first.

 Researchers categorized memory access scheduling algorithms in two categories,

resource-based algorithms and request-based algorithms. Two more categories are added for

classification of memory scheduling policies i.e., fairness-based algorithms and parallelism-

based algorithm.

Resource-Based Algorithms: The key concept behind these scheduling policies is that they try

to decrease conflict among threads for accessing main memory. The contention among threads

serves as a bottleneck in system’s performance. Three resource based scheduling policies are

discussed here. i.e., ROB-based policy, IQ-based policy and scheduling policy using RIR

(Read-to In-flight Ratio) metric. ROB-based memory access scheduling policy prioritizes

thread having maximum entries in reorder buffer. The key idea behind doing so is that serving

request from threads having more re-order buffer entry releases more waiting instructions than

serving requests from other threads. This scheduling policy decreases contention on reorder

buffer, thus improves throughput of the system.

24

IQ-based scheduling policy prioritizes requests from the thread having highest amount of issue

queue entries. The idea behind prioritizing requests from threads having highest number of

issue queue entry is that it is more advantageous in terms of performance to serve these requests

than to serve requests from other threads. It helps to improve throughput and decrease

contention among threads on issue queue.

In [64], researchers have presented a new performance metric called RIR. RIR is the fraction

among the amount of ready instructions in the issue queues and the amount of in-flight

instructions from issue to write back stages. High amount of RIR means the thread has made

good progress during execution with whatever resources were available with it. Researchers

utilized this metric in phase co-scheduling for a dual-core chip multiprocessor of dual-threaded

SMT processors. Using this metric gives good results in memory access scheduling.

Request-based Scheduling Policy: Request-based scheduling strategies prioritize requests

from thread having minimum amount of pending requests that is why sometimes it is called as

LREQ (Least REQuest). This algorithm improves throughput of the memory system but does

not affect fairness. As the number of threads during execution increases, performance of

request-based scheduling policy decreases. Figure 2.7, reveals the simulation trends obtained

for FCFS, hit-first, age-based, ROB-based, IQ-based and LREQ based scheduling policies as

per assumptions and simulation setup considered in [63].

Figure 2.8 Comparison between Scheduling Policies[63]

25

In [65], authors proposed a new scheduling strategy named ME-LREQ (Memory Efficiency

with Least REQuest). It is request based scheduler but researchers further attached a new

parameter named memory efficiency to it. Memory efficiency of an application is narrated as

Instructions per clock (IPC) of this application divided by memory bandwidth usage under

single-core environment, given by equation 2.19.

 𝑀𝐸[𝑖] =
𝐼𝑃𝐶𝑠𝑖𝑛𝑔𝑙𝑒[𝑖]

𝐵𝑊𝑠𝑖𝑛𝑔𝑙𝑒[𝑖]
 (2.19)

In [65], as per results obtained, proposed scheduling policy improved performance by 6.4% on

average and upto 9.2% as compared to original request-based scheduling policy. The limitation

of this scheduling policy is that it does not support both online and offline profiling.

Fairness-Based Algorithms: Fairness is an important aspect in system’s performance and

energy consumption that is being addressed by only few algorithms.

For single threaded processors age-based algorithms were proposed. Same is still applicable

for multi-threaded and multicore processors. Other than age-based scheduling policy there are

other fairness-based scheduling algorithms proposed for multi-threaded multicore processor

environment. One among such scheduling policies is Round Robin (RR) scheduling policy.

Round Robin scheduling policies iteratively issues pending memory requests from threads, one

at a time from each thread in one iteration. Round Robin scheduling policy can be presented

by following equation:

 𝑇ℎ𝑟𝑒𝑎𝑑𝐼𝐷𝑛𝑒𝑥𝑡_𝑟𝑒𝑞𝑢𝑒𝑠𝑡 =
𝑇ℎ𝑟𝑒𝑎𝑑𝐼𝐷𝑙𝑎𝑠𝑡_𝑠𝑒𝑟𝑣𝑒𝑑_𝑟𝑒𝑞𝑢𝑒𝑠𝑡+1

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 𝑡ℎ𝑟𝑒𝑎𝑑𝑠 ℎ𝑎𝑣𝑖𝑛𝑔 𝑝𝑒𝑛𝑑𝑖𝑛𝑔 𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑠
 (2.20)

Round Robin scheduling strategy aims to improve fairness among threads in slightly different

manner than age-based scheduling policy. Age-based scheduling strategy aims to achieve

fairness among requests irrespective of threads that issued them. That is, if at a time I, thread

X issued three memory requests and at time i+10, thread Y issued one memory request, the

requests generated by thread X will be served first being older than requests generated by thread

Y. Whereas, RR scheduling policy does not consider how old an request is. For above

mentioned scenario, in case of RR scheduling policy, first a request from thread X is served

than one from thread Y, iteratively. In other words, it can be said that age based memory

scheduling policy tries to achieve fairness at memory request level, whereas RR scheduling

policy tries to achieve fairness at thread level.

26

In [42], authors proposed another fairness-based memory scheduling policy named STFM

(Stall Time Fair Memory scheduler). This scheduling policy primarily focuses on improving

fairness. The scheduling policy estimates stall-time Tshared and Talone. Tshared represents memory

waiting time observed by the thread when executing along with multiple threads in the memory

system. Talone is the wait time experience by the thread if it had running alone in the memory

system. Using the values of Tshared and Talone, the researchers in [42] calculated slowdown for

each thread. Then the maximum slowdown and minimum slowdown corresponding to each

pending request is calculated. The requests having ratio between maximum and minimum

slowdown and above certain threshold are scheduled first to decrease stall time experiences by

the threads. If this ratio is below threshold then simple FR-FCFS scheduling policy is used to

schedule memory requests.

Parallelism-based Scheduling Algorithm: Schedulers under this category focus on enhancing

parallelism among main memory sub-system components or among applications themselves.

Authors in [66], proposed a memory access scheduling policy named PAR-BS (parallelism-

aware Batch Scheduling). PAR-BS is primarily based on two key ideas, one is batch

scheduling, i.e., to schedule memory requests in batches in accordance to their arrival time and

corresponding requests belonging to oldest batch have highest priority in order to avoid

starvation. Another scheduling idea is parallelism aware scheduling, i.e., to facilitate bank level

parallelism with a batch.

A scheduler named ATLAS proposed in [67], prioritized threads that are least served in past

by memory controllers. The key limitation of ATLAS is that it provides good results in terms

of performance and fairness if memory system have multiple memory controllers. TCM

scheduler proposed in [68], first categorised threads in two groups, i.e., memory-intensive

threads and memory non-intensive (compute intensive) threads. TCM prioritize threads

belonging to compute intensive category over memory intensive ones because they are light

and easy to service, henceforth resulting in improved performance. In order to exploit fairness

among threads TCM shuffles priority of threads under memory-intensive category.

Refresh based Scheduling Policies: DRAM based memory system must incorporate efficient

and intelligent refresh mechanism that should be able to decide: 1) timing regarding scheduling

of refresh operations while meeting timing constraints of additional memory commands, and

2) which DRAM rows are to be refreshed. In this section further we briefly discuss approaches

27

for deciding when to issue refresh commands while meeting timing parameters of other

memory commands.

Decision Regarding When to issue Refresh Command

Classification of Refresh scheduler is based on how they issue refresh operations [69] and

deciding whether they issue regular accesses around [70] or within timing constraints [35]. In

[69] Stuecheli et al. propose refresh mechanism named Elastic Refresh [69] that dynamically

fits refresh period according to currently executing workload. In [70], authors propose

Dynamic Command Expansion (DCE) and Pre-emptive Command Drain (PCD) that prevent

the memory controller queue from halting useful memory accesses if the memory controller

queue is filled with memory commands addressed to the bank to be refreshed. At first, DCE

delays commands to the banks that are to be banks refreshed, and then proactively issues

commands to the banks under refresh operation. In [35], Nair et al. proposed refresh pause

operation allowing regular accesses to operate with less delay.

Decision Regarding What Not to Refresh

Another basis for categorization of refresh schemes is on the basis of refresh data on which

refresh operation is to be performed. It is based on cell retention time, error tolerance of the

data, access recency, and validity of row, i.e., validity of row includes decision regarding

whether valid row is under refresh operation. A row is said to be valid if operating system has

allocated the physical pages containing those rows.

Cell Retention Time: Retention time refers to the duration for which DRAM cell maintains

data integrity, i.e., retaining data without changing or disrupting the stored value on it as

capacitor tends to leak stored data gradually with time. The retention time of cells varies from

cell to cell across the chip due to process variation [71, 72]. The scheduling approaches that

make use of retention time information do not consider system workloads and global memory

usage. On hardware level, retention aware approach may refresh cells with longer retention

time less frequently and cells with less retention time more frequently, as used in the Variable

Refresh Architecture (VRA) proposed by Ohsawa et al. in [73] and in Retention-Aware

Intelligent DRAM Refresh (RAIDR) approach proposed by Liu et al. in [74]. In VRA approach,

each row’s expected refresh period is maintained in registers inside DRAM based memory

system. Retention Aware Approach makes use of fact that only a few rows require very

frequent refreshes and such rows are tracked inside memory controller. At software level

refresh period of cells can be improved by allocating addresses that refers to cells with

sufficient retention time. In [75], authors proposed the Retention-Aware Placement approach

in DRAM (RAPID) and Refresh Incessantly but Occasionally (RIO) policy is proposed by

28

Baek et al. [76]. These two before mentioned approaches are two such Retention based

solutions that work on minimizing device’s refresh rate by isolating pages requiring frequent

refreshes.

Error Tolerance: Some applications like machine learning, media processing and unstructured

information analysis can tolerate shortcomings in some of their data and still they produce

acceptable outcomes. Approximate computation [77, 78] makes use of such approximate data

to find out the tradeoffs among performance, energy, and accuracy. So, DRAM cells storing

such error-tolerant data are not required to be refreshed as frequently as cells storing critical

data. The number of cells falling into fault-tolerant category depends on application’s

characteristics. Liu et al. [79] proposed approach that partitions DRAM banks into two regions,

i.e., critical and noncritical regions. The proposed approach, Flikker, extends the self-refresh

time in order to refresh non-critical regions less frequently. Proposed solution focuses on

smartphones that keeps DRAM in self-refresh mode when in idle state, similar technique can

be applied to auto refresh mode in operating mode. DRAM must be repartitioned if workload

characteristics change in such a way that more data becomes critical. Such partitioning is coarse

grained and it simplifies hardware and reduces area overhead.

Access Recency: DRAM accesses recharge data stored in cell so subsequent refresh operation

to same row is not required and may be postponed. The amount of rows influenced depends on

how many various rows are retrieved within the maximum refresh period, which may be few

for many workloads. Ghosh et al. [80] presented Smart Refresh approach that maintains per-

row timeout counter in memory controller and divides the refresh period into phases. During

each phase the memory controller decrements the counter and when counter reaches zero value

it issues RAS-only refresh. In [81], Emma et al. proposed cleverer refresh policies for

embedded DRAM caches. ECC ensures error tolerance and timestamp guide scheduling

selective refreshes. In [82] Agrawal et al. similarly work on eDRAM caches with Refrint.

Authors incorporated eager writeback policy for rarely used lines additionally with maintaining

access recency. Limited rows are there in eDRAM so overhead for tracking an information in

eDRAM is much more bearable than information tracking overhead for DRAM based main

memory.

Validity: If operating system does not allocate memory addresses then refreshes made to

corresponding addresses are wasteful. Many researchers work on software approaches that

attempt to initiate refreshes only for memory addresses with valid data. The policies based on

validity of data is sensitive to the total memory usage of the computing system. In addition to

variable retention aware policy, Ohsawa et al. in [73] presented a Selective Refresh

29

Architecture (SRA) approach that uses an A bit per row and accordingly decide whether to

refresh it or not. In this scheme modification to ISA is made so that the compiler, operating

system, or memory controller can prevent refreshes to invalid data. Isen and John [83],

proposed a combination of hardware/software approach ESKIMO that make use of SRA for

tracking data significance. For an instance, in newly allocated memory addresses the values of

uninitialized data are insignificant. The information regarding allocation and de-allocation of

virtual addresses is maintained with operating system. Baek et al. [76] propose Placement-

Aware Refresh In situ (PARIS) that uses physical memory usage information maintained at

operating system instead of virtual addresses. PARIS maintains RD bits in the memory

controller. The storage overheads is reduced by tracking valid bits for coarse row granularities.

However, using coarse row granularity for maintaining valid bits increases unnecessary

refreshes.

30

CHAPTER 3

DRAM SCHEDULER OPTIMIZED FOR ROW BUFFER HITS AND

FAIRNESS AMONG THREADS

3.1 Impact of Row Buffer Hits on DRAM Performance

Row buffer hit is condition in which the address being requested by memory access is already

present in the sense amplifier. In this case minimum number of operations are required to be

performed to service a memory request. How prioritizing row buffer hits affects the behaviour

of DRAM in terms of energy consumption and performance is evaluated first to identify its

role in efficient memory scheduling. The dynamic energy consumed to perform column read

command (to read data from cell) on DRAM memory cell is given by

dataNDDRD TVIIE *)(3DD4R (3.1)

where: IDD4R denotes current withdrawn to perform column read and IDD3N corresponds to

current withdrawn in active standby mode. Time taken to transfer data in M column accesses

is represented by Tdata and is given by (3.2).

burstdata TMT

(3.2)

 Tburst represents data transfer latency and is given by (3.3)

2
clk

burst

t
BLT

(3.3)

Along with ERD additional dynamic energy (EDQ) is also expended to read data out from DRAM

cell, given by (3.4).

dataDQSDQRDQDQ TNNPE)()(

(3.4)

where, PDQ(R) represents power consumed per pin while extracting output [84]. NDQ(R) denotes

number of data pins and NDQS corresponds to number of strobe pins.

When writing data into DRAM cell, dynamic energy EWR is expanded and is given by (85).

dataNDDWDDWR TVIIE)(34

(3.5)

where, IDD4W and IDD3N represents write current drawn and stand by current drawn during Tdata.

31

While writing data, write termination energy is also spent to writes, (3.6).

dataDMDQSDQWDQterm TNNNPE)()(

(3.6)

In equation (6), NDM represents number of data mask pins and NDQ(M) denotes power per pin

during write termination.

Equation (3.7) and equation (3.8), gives dynamic energy consumption during read miss and

write miss.

DQRDDDreadmissDRAM EEEE 0)((3.7)

termWRDDwritemissDRAM EEEE 0)(
(3.8)

where,

)))((1(2300 rcRASrcNDDRASNDD
rc

DDDD tVttItI
t

IE
 (3.9)

where, IDD0 is average current drawn during issuing activate command. trc is delay between two

activate command. After delay of tras activate command is preceded by precharge command.

Dynamic energy spent in row hit situation, i.e., read hit and write hit, is in the form of dynamic

energy consumed to perform read column access and write column access, respectively.

Dynamic energy consumed in read hit access and write hit access is given by (3.10) and (3.11)

DQRDreadhitDRAM EEE)(
(3.10)

termWRwritehitDRAM EEE)(
(3.11)

By analysing equation (3.7), (3.8) and (3.10), (3.11), it is clearly revealed that row buffer hits

require lesser number of operations to access the desired page.

3.1.1 Motivational Results

We start by analysing the impact of row buffer hits on DRAM performance. For conducting

such analysis we simulated and compared existing memory scheduling policies that are using

this feature with ones that do not take advantage of row buffer hits. We simulated chosen

scheduling policies on cycle accurate DRAM’s main memory system simulator, USIMM [86].

In USIMM, memory controller issues device level memory commands and this decision is

dependent on present status of channel(s), rank(s) and bank(s) of main memory system. In order

32

to conduct comparative evaluation we simulated workloads using proposed scheduling

approach and same workloads using existing scheduling approach under two different memory

configuration, i.e., single-channel memory configuration and four-channel memory

configuration. In single-channel memory configuration, memory system is formulated with one

channel and that channel two ranks are present and in each rank four banks are present. In four-

channel memory configuration, memory system is composed of four channels and in each

channel two ranks are there and in each rank four banks are present. In simulator power related

calculations are performed on the basis of Micron’s power calculation methodology. The

detailed information regarding power simulation are included in [57].

Table 3.1 Workload Description

Trace File(s)

Workloads with
Single-Channel

m/m
Configuration

Workloads with
four-Channel

m/m
Configuration

comm2 1C_1Chn_1 1C_4Chn_1

comm1 comm1 2C_1Chn_1 2C_4Chn_1

comm1 comm1 comm2 comm2 4C_1Chn_1 4C_4Chn_1

fluid swapt comm2 comm2 4C_1Chn_2 4C_4Chn_2

face face ferret ferret 4C_1Chn_3 4C_4Chn_3

black black freq freq 4C_1Chn_4 4C_4Chn_4

stream stream stream stream 4C_1Chn_5 4C_4Chn_5

fluid fluid swapt swapt comm2 comm2
ferret ferret - 8C_4Chn_1

fluid fluid swapt swapt comm2 comm2
ferret ferret black black freq freq comm1

comm1 stream stream
- 16C_4Chn_9

Result Analysis

Table 3.2, brings out the outcomes for simulated scheduling policies in respect of row buffer

hit rate. The outcomes in Table 3.2, highlights that RLDP scheduling policy stems to highest

page hit rate. Subsequently PRWL scheduling algorithm conducted better in terms of overall

page hit rate. Execution of close page policy is least amongst all simulated scheduling policies.

Amid all simulated policies RLDP and PRWL prefers row buffer hits over other memory read

33

and write commands, however, FCFS and close page policy does not utilize such feature,

therefore the results received for row buffer hits reveals the similar pattern.

Table 3.2 Comparative statement of simulated scheduling policies on the basis of row

buffer hit

Workload

Read Hit Rate Write Hit Rate

FCFS Close RLDP PRWL FCFS Close RLDP PRWL

MT-c1 0.0033 -0.0290 0.0144 -0.0356 -0.2097 -0.2099 -0.0345 -0.4018

4C_1Chn_4 0.6291 0.5178 0.5709 0.527 0.1603 0.1508 0.3823 0.1356

2C_1Chn_1 0.5996 0.4846 0.5053 0.4746 -0.1653 -0.2475 0.1673 0.1274

4C_1Chn_1 0.5294 0.4167 0.4728 0.4272 -0.1619 -0.2084 0.1164 -0.2847

1C_1Chn_1 0.5749 0.4605 0.4743 0.4498 -0.2850 -0.2890 0.0854 -0.0189

4C_1Chn_3 0.6996 0.5952 0.6543 0.6011 0.3990 0.3860 0.5761 0.3563

4C_1Chn_2 0.5545 0.4430 0.4982 0.4528 -0.0861 -0.1163 0.1861 -0.1125

4C_1Chn_5 0.6461 0.5340 0.5930 0.5444 0.1837 0.1662 0.3985 0.1452

MTc-4 0.0185 0.0073 0.0065 0.0002 -0.6412 -0.7449 0.0091 -0.0476

4C_4Chn_4 0.0479 0.0057 0.0096 0.0026 -0.4024 -0.4406 0.0129 -0.0300

2C_4Chn_1 0.0595 0.0074 0.0063 0.0038 -0.0707 -0.1321 0.0968 0.0075

4C_4Chn_1 0.0141 0.0041 0.0041 -0.0001 -0.4801 -0.5352 0.0242 -0.0254

1C_4Chn_1 0.0160 0.0026 0.0026 0.0016 -0.0699 -0.0853 0.0040 -0.0013

4C_4Chn_3 0.0638 -0.0038 0.0130 -0.0013 -0.3775 -0.4282 0.0534 -0.0613

4C_4Chn_2 0.0197 0.0025 0.0038 -0.0002 -0.3988 -0.4230 0.0034 -0.0315

4C_4Chn_5 0.0466 0.0043 0.0085 0.0002 -0.3885 -0.4572 0.0097 -0.0595

8C_4Chn_1 0.0074 -0.0058 0.0025 -0.0091 -0.4052 -0.4768 -0.0037 -0.1556

16C_4Chn_9 -0.0140 -0.0222 -0.0025 -0.0270 -0.2988 -0.3438 -0.0169 -0.3256

 1-Channel

 4-Channel

0.5296

0.0280

0.4279

0.0002

0.4729

0.0054

0.4301

-0.0029

-0.0206

-0.3533

-0.0460

-0.4067

0.2347

0.0193

-0.0067

-0.0730

Average 0.2509 0.2132 0.2132 0.1896 -0.2054 -0.2464 0.1150 -0.0435

34

Influence of row buffer hits on Dynamic RAM based main memory system’s energy utilization

and performance is analysed by evaluating performance metrics like, energy-delay product,

total execution time, and maximum slowdown time.

Energy-Delay Product

The results obtained are depicted in Figure 3.1 for EDP reveals that RLDP and PRWL

consumed less energy than FCFS and close page policy while maintaining the performance

level for all simulated scenarios. In Figure 3, results convey that RLDP rationalized EDP by

17.33% and 12.95% in one-channel memory configuration when compared with FCFS and

close page policy, respectively. 14.62% and 10.09% decrease in EDP is achieved when PRWL

scheduling policy is compared to FCFS and close policy in single- as well as four- channel

memory configurations, respectively.

1 channel 4 channel overall

E
n
e
rg

y
 D

e
la

y
 P

ro
d
u
c
t

0

5

10

15

20

25

30

FCFS

Close

RLDP

PRWL

Figure 3.1 EDP (Js) Comparison

35

FCFS Close

E
ne

rg
y

D
el

ay
 P

ro
du

ct

0

2

4

6

8

10

12

14

16

18

20

RLDP

PRWL

Figure 3.2 % decrease in EDP for 1-channel configuration.

Results obtained after simulation in 4-channel configuration, Figure 3.2 depicts that 21.84%

and 10.98% reduction in EDP is observed when RLDP is compared to FCFS and close policy,

respectively, in 4-channel configuration. Whereas, PRWL reduced EDP by 20.81% and 9.53%,

when compared to FCFS scheduling policy and close page policy, respectively in 4-channel

configuration.

FCFS Close

E
ne

rg
y

D
el

ay
 P

ro
du

ct

0

5

10

15

20

25

RLDP

PRWL

Figure 3.3 % decrease in EDP for 4-channel configuration

36

FCFS Close

En
er

gy
 D

el
ay

 P
ro

du
ct

0

5

10

15

20

25

RLDP

PRWL

Figure 3.4 % of overall decrease in EDP

In total RLDP has reduced EDP by 19.97% and PRWL has reduced EDP by 18.17% in

comparison with FCFS scheduling policy. Similarly, 11.93% and 9.95% total reduction in EDP

has been observed when RLDP and PRWL is compared to close page scheduling policy, Figure

3.4.

Total Execution Time

The results shown in Figure 3.5 reveal that the performance of RLDP is best among all

simulated scheduling policies for both memory configurations. After RLDP, PRWL performed

better than other simulated policies. RLDP took 8.94% and 6.75% less time to complete their

execution in comparison to FCFS and close scheduling policy, respectively, in single-channel

memory configuration. Whereas, 7.86% and 5.64% reduction in execution time is observed

when PRWL is compared to FCFS and close page policy, respectively, Figure 3.6.

1 channel 4 channel Overall

To
ta

l E
xe

cu
tio

n
Ti

m
e

0

500

1000

1500

2000

2500

3000

3500

FCFS

Close

RLDP

PRWL

Figure 3.5 Total Execution Time (mCyc) Comparison

37

FCFS Close

T
ot

al
 E

xe
cu

ti
on

 T
im

e

0

2

4

6

8

10

RLDP

PRWL

Figure 3.6 % decrease in Total Execution Time for 1-channel configuration

In 4-channel memory configuration 10.89% and 10.49% reduction in execution time is

observed when RLDP and PRWL is compared to FCFS scheduling policy, respectively. When

RLDP is compared to close, 5.38%, and when PRWL is compared to close policy 4.96%

reduction in execution time is observed, Figure 3.7.

FCFS Close

T
ot

al
 E

xe
cu

ti
on

 T
im

e

0

2

4

6

8

10

12

RLDP

PRWL

Figure 3.7 % decrease in Total Execution Time for 4-channel configuration

38

RLDP reduced execution time of workloads by 9.99% and 6.05%, in total when compared to

FCFS scheduling policy and close page policy, respectively. When PRWL is compared to

FCFS scheduling policy 9.30% reduction in execution time is observed, whereas, with respect

to close page policy 5.33% reduction in execution time can be seen, Figure 3.8. Both RLDP

and PRWL prioritize row buffer hits which further lead to reduced execution time because of

reduced service time required to complete requests made for main memory. Row buffer hits

require least number of operations for servicing a memory request.

FCFS Close

To
ta

l E
xe

cu
tio

n
Ti

m
e

0

2

4

6

8

10

12

RLDP

PRWL

Figure 3.8 % of Overall decrease in Total Execution Time

Maximum Slowdown Time

The results obtained for maximum slowdown time reveals that the performance of RLDP is

best among all scheduling policies simulated for evaluation. After RLDP, PRWL scheduling

policy is fair while issuing memory requests intended for memory, Figure 3.9.

1 channel 4 channel Overall

M
ax

im
um

 S
low

do
wn

 T
im

e

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

FCFS

Close

RLDP

PRWL

Figure 3.9 Maximum Slowdown Time Comparison

39

FCFS Close

M
ax

im
um

 S
lo

w
do

w
n

T
im

e

0

2

4

6

8

10

RLDP

PRWL

Figure 3.10 % decrease in Maximum Slowdown Time for 1-channel configuration.

Figure 3.10, shows that 8.89% and 7.4% decrement in maximum slowdown time is obtained

for single-channel memory configuration when RLDP is compared to FCFS and PRWL is

compared to FCFS, respectively. In comparison to close page policy 6.82% and 6.06%

reduction is found when RLDP and PRWL is compared to close page policy.

FCFS Close

M
ax

im
um

 S
lo

w
do

w
n

T
im

e

0

2

4

6

8

10

12

RLDP

PRWL

Figure 3.11 % decrease in Maximum Slowdown Time for 4-channel configuration

40

In 4-channel memory configuration, 11.02% decreased maximum slowdown time is obtained

when RLDP is compared to FCFS scheduling policy and 5.04% reduced maximum slowdown

time is obtained with respect to close page policy. When PRWL is compared to FCFS

scheduling policy 9.4% reduction in maximum slowdown time is obtained. In comparison to

close page policy, 3.36% reduced maximum slowdown time is obtained, Figure 3.11. Overall,

9.95% reduction in maximum slowdown time is obtained when RLDP is compared to FCFS

scheduling policy and 5.98% reduced maximum slowdown time is obtained when RLDP

compared to close page policy. When PRWL is compared with FCFS and close scheduling

policy 8.4% and 4.71% reduction in maximum slowdown time is observed, Figure 3.12.

FCFS Close

M
a
x
im

u
m

 S
lo

w
d
o
w

n
 T

im
e

0

2

4

6

8

10

12

RLDP

PRWL

Figure 3.12 % decrease in overall Maximum Slowdown Time

Conclusion

The performance metrics chosen for evaluating the performance are not fully independent.

These metrics affect the performance of each other. The scheduler exploiting maximum row

buffer hits requires least number of operations to service a memory request which leads to

reduced execution time required to complete operation of requests. Less number of operations

required for service of a memory request may lead to reduced energy consumption also. Among

all simulated policies, the performance of RLDP is best. This is because RLDP prioritizes row

buffer hits, prioritizes read requests over writes and delayed close page policy. Similarly,

PRWL also works on improving row hits and improves bank level parallelism. So, we

41

summarize that both memory scheduling policies, i.e., RLDP as well as PRWL focuses on

reducing the number of operations required to service a memory request because of which both

RLDP scheduler and PRWL scheduler performed better than FCFS scheduling policy and

close page scheduling policy. FCFS and close scheduling policies treat each memory request

equally. They do not prioritize row hit and read requests over other memory requests. Hence,

for an efficient scheduler, in terms of energy consumption as well as performance, row buffer

hits should be prioritized over other memory accesses.

3.2 Impact of Inter-thread Fairness on DRAM Performance

The DRAM based main memory is a system’s resource that is being shared by all concurrently

executing threads in chip multiprocessor system. Main memory resource is shared by all

concurrently running threads to fetch the required data and to store the intermediate results

produced during the execution the threads. In chip multiprocessor system multiple cores are

integrated onto single chip. These multiple chips facilitates multiple threads to run

simultaneously for faster and more energy efficient execution [42]. In single core system only

single thread run at a time so there exists no contention for accessing the main memory

resource. So, with increase in number of cores the necessity of an efficient as well as intelligent

scheduler is also increasing. If memory scheduler does not schedules memory requests

intelligently then for some threads starvation condition may arise while others running parallel

may get unfair priority. So, the starved threads derives to increased maximal slowdown time

which additionally leads to increased execution time and energy consumption. So, a scheduler

is said to be efficient in terms of energy and performance, if in addition to prioritizing row hits,

it also considers fairness among threads.

Concurrently executing applications on multiple cores contend with each other for main

memory resource causing inter-thread interference. Interference among threads results in

increased wait time for some threads. The increased stall time of a thread is because of two

factors, i.e., when other thread’s requests are prioritized Tinterf(others) and stall time due to

conflicts generated from same thread Tinterf(own).

)(int)(intint ownerfotherserferf TTT

(3.13)

Tinterf(others) is further due to two factors, i.e., Tinterf(bus), interference due to wait time in bus and

halt time if interference occurs in DRAM bank, Tinterf(bank).

42

)(int)(intint)(buserfbankerferf TTothersT

(3.14)

Every read request or write request is issued to DRAM bank through DRAM bus. The DRAM

bus remains unavailable for other requests during this transfer period (Tbus cycles). The value

Tbus depends on type of DRAM used in memory subsystem. Tbus value for DDR2 SDRAM is

given by

2
BLTbus (3.15)

3.2.1 Motivational Results

To analyse the impact of inter-thread fairness, we conducted a comparative analysis among

scheduling policies exploiting thread fairness with scheduling policies in which inter-thread

fairness is ignored. Table 3.3, presents the simulation environment and simulated policies used

for evaluation. Among simulated scheduling policies FCFS and close page policies do not

ensure fairness among threads, whereas, FR-FCFS and PBFS scheduling policy ensures

fairness among threads.

Table 3.4, describes the workloads simulated on USIMM simulator under two memory

configurations, i.e., one having one channel in memory system and other having four channels

in memory system to evaluate the impact of inter thread fairness on DRAM’s performance.

Dual Data Rate-3 DRAM based main memory system is simulated for evaluation. Workloads

are formed as the combination of traces, Table 3.4. Traces are extracted from PARSEC [87]

and commercial transaction processing workload benchmarks. These workloads are executed

using selected scheduling policies and then their performance is evaluated in terms of selected

performance metrics.

Table 3.3 Simulation Parameters

Parameter Description

Examined Schedulers FCFS, Close, FR-FCFS, PBFS

Simulator USIMM

Processor Clock Speed 3.2GHz

Memory Bus Speed 800 MHz (plus DDR3)

Cache lines per row 128

43

Table 3.4 Workload Description

Selected Trace (s)
Workloads with

Single-Channel m/m
Configuration

Workloads with
four-Channel m/m

Configuration

comm2 1Core_1Chn_1 1Core_4Chn_1

comm1 comm1 2Core_1Chn_1 2Core_4Chn_1

comm1 comm1 comm2 comm2 4Core_1Chn_1 4Core_4Chn_1

fluid swapt comm2 comm2 4Core_1Chn_2 4Core_4Chn_2

face face ferret ferret 4Core_1Chn_3 4Core_4Chn_3

black black freq freq 4Core_1Chn_4 4Core_4Chn_4

stream stream stream stream 4Core_1Chn_5 4Core_4Chn_5

fluid fluid swapt swapt comm2 comm2 ferret ferret - 8Core_4Chn_1

fluid fluid swapt swapt comm2 comm2 ferret ferret
black black freq freq comm1 comm1 stream stream

- 16Core_4Chn_9

The evaluation is conducted on the basis of behaviour metrics like total execution time that

depicts total time taken by simulated threads for completing their execution, maximum

slowdown time, maximum stall time experienced by simultaneously executing threads, energy-

delay product, revealing energy consumed during execution and delay in executing last thread.

These performance metrics are inter-dependent on each other. If the threads are interfering with

each other to access main memory scheduler then due to contention their maximum slowdown

time would be more which further leads to increased execution time and power consumption.

It may further impact energy consumed by scheduling policy and performance of schedulers.

So, for efficient servicing of memory accesses, memory scheduling policies should be fair

while scheduling memory requests generated to access main memory resource.

Memory Configuration 1-channel configuration, 4-channel configuration

Write Queue Capacity 64

Number of Ranks per channel 2

Number of Banks per channel 8

44

Total Execution Time

Evaluation made in terms of total execution time depicts that PBFS performed best among all

simulated policies. In comparison to FCFS scheduling policy 5.96%, 8.81% reduction in total

execution time is obtained in 1-channel, 4-channel memory configuration. In total, 7.46% less

time is consumed by PBFS scheduling policy when compared to FCFS scheduling policy.

When PBFS is compared to close page policy 3.70%, 3.28%, reduced execution time is

obtained, in 1-channel, 4-channel memory configuration. Overall, 3.40% reduction in

execution time obtained when PBFS is compared to close page policy. This behaviour of PBFS

is because it tries to ensure fairness among threads on the basis of priority among threads.

Memory intensive threads are given higher priority than compute intensive threads. PBFS tries

to ensure fairness among threads to avoid starvation experienced by threads executing

simultaneous with each other. Which results in decreased execution time of threads.

Figure 3.13 Total Execution Time (mCyc) Comparison

Energy-Delay Product

As shown in Figure 3.14, PBFS has consumed least amount of energy while maintaining the

performance during execution. This behaviour of PBFS is shown because it tries to maintain

fair environment among threads running along each other which leads to reduced congestion

45

observed by threads hence reduced energy-delay product. In 1-channel memory configuration

and 4-channel memory configuration 9.68% and 16.97% reduction is observed when PBFS is

compared to FCFS scheduling policy, whereas 4.89%, 5.14% is obtained when compared to

close page policy. In terms of energy-delay product, overall 13.82% and 5.16% reduction is

obtained when PBFS is compared to FCFS scheduling policy and close page policy,

respectively.

Figure 3.14 EDP (Js) Comparison

Maximum Slowdown Time

As shown in Figure 3.15, PBFS has observed least slowdown. A scheduling policy is said to

be fairer if it shows least maximum slowdown. Scheduler being fairer among all simulated

policies observes less stall time as compared to other scheduling policies not ensuring fairness

among threads. In terms of maximum slowdown time, total, 6.92% reduction is observed when

compared to FCFS scheduling policy and 2.42% decreased maximum slowdown time is

observed when PBFS is compared to close page policy.

46

Figure 3.15 Maximum Slowdown Time Comparison

Conclusion

In CMP the threads processing on several cores professes for the common system resources

and may intervene with one another for acquiring them. In absence of a genuine memory

scheduling policy it is possible that some threads are unjustly computed, leading to a prolonged

stall time for other threads. Extended pause time to access memory, results in enhanced

maximum slowdown time which further marshals increment in execution time and therefore

results in escalated energy consumption. Hence, a noble memory scheduler is required to be

legitimate in terms of scheduling threads.

3.3 Proposed Memory Access Scheduling Algorithm

In order to achieve inter-thread fairness and increased performance or decreased energy

consumption we propose a scheduling policy named Energy-Efficient Fairness-Aware

Memory Access Scheduling (EEFA). The flow chart of proposed scheduler is presented in

Figure 3.16.

Proposed scheduling policy tries to ensure that each thread gets equal chance to access shared

main memory sub-system by giving more priority to requests generated from threads blocking

reorder buffer head. In proposed scheduling policy row buffer hit requests are prioritized over

other memory accesses henceforth results in reduced average access latency of memory request

47

Operation Start

Is m/m request to

service?

WQ_len > HG?Drain Write Drain Read

Issuable m/m

write hit?

Issuable m/m read

hit?

Stop

WQ_len<MD?
ROB request

already in service?

Issue

doable read

PRE or

ACT

Issue

request

Issue

request

Issue write

based on FCFS

Issue read

based on FCFS

((Rd_len==0||(W

Q_len>HG))

WQ_len < LO?

1

1

NY

Y Y

N

N

N

N

Y

Y

Y

N

Y

Y

N

N

Figure 3.16 Flow Chart of Energy-Efficient Fairness-Aware Memory Access Scheduling

48

and power consumption during servicing the requests. Another key aspect covered by proposed

scheduler is to prioritize memory reads over writes during memory request scheduling.

Memory read requests largely impacts the system’s performance by halting the processor

during servicing the read requests, whereas memory writes requests do not stops the processing

of processor. As memory writes do not halt the processor during execution so they are not on

the critical for system’s performance. Because of this memory read requests should be given

high priority than memory write requests. But scheduling of memory write requests to store

the required data is also important, as if write queue gats completely filled then it may stop the

processing of processor. Hence memory writes can’t be ignored completely. This scenario

results in a situation where it becomes difficult to decide that when we should schedule memory

write requests. In conventional memory access schedulers [29, 30, 42, 67, 88, 89, 90] memory

write requests and memory read requests are served in batches. In drain-write mode memory

writes are served and in read mode memory reads are served and these modes are strictly

separated from one another. Here exists the opportunity to enable parallelism at bank level.

Bank level parallelism is enabled by pre-issuing issuable read commands while servicing the

write requests on finding command bus is idle. Along with this inter-thread fairness and row

buffer hits are also facilitated in the proposed scheduler. Bank level parallelism is also included

in proposed scheduler.

The proposed memory scheduling policy enhances system fairness, energy consumption and

decreases execution time for chosen workloads and multi-core environment for varied memory

configurations.

3.3.1 Prioritizing Read Requests over Writes

Memory read requests are more important for the performance of computing system than

memory write operations. In proposed scheduling approach memory reads are given high

priority over write requests. In proposed scheduling algorithm memory read requests are

scheduled first unless memory write requests reaches the high watermark in write queue. When

the write queue touches high watermark, i.e., it is about to be full, memory scheduler enters in

drain-write mode and starts servicing memory write requests.

3.3.2 Row Buffer Hit

In proposed scheduler row buffer hits are increased to ensure that minimum number of

operations are required to service memory requests. To enhance row hits, memory hits, i.e.,

read hits and write hits are prioritized than other memory read/write accesses requested to main

49

memory for service. Row buffer hits requires minimum amount of time and takes least amount

of energy to service a memory request as only column access read strobe operation is required

to be issued in order to fetch the data [91] and column access write strobe required to issued,

in order to store data. Proposed scheduling tries to maximize row buffer hits.

3.3.3 Fairness among Threads

In proposed scheduling policy inter-thread fairness is provided by facilitating equal opportunity

to each thread running simultaneously with each other and waiting for being serviced by

memory system. Inter-thread fairness is accomplished by giving high priority to requests

blocking the reorder buffer head. So, the requests queued in the middle or at the end of reorder

buffer also get chance to access the shared main memory resource. Row buffer is blocked by

memory intensive threads during execution as they tend to produce more memory requests than

compute intensive threads. Therefore, by servicing requests generated by reorder buffer head

compute intensive threads observe less stall time to service main memory resource.

3.3.4 Bank Level Parallelism

In addition to above mentioned features proposed scheduling algorithm also exploits bank level

parallelism.

In conventional scheduling approach, in drain-write mode only memory writes are serviced,

memory read requests are not serviced during this mode. As memory reads and writes are

serviced in bursts. In proposed memory access scheduling approach, scheduler issues timing

constraint satisfying issuable read commands on finding idle memory cycles and when write

requests reach low threshold value, i.e., memory writes are nearly drained. Memory controller

opens the sense simplifier for forthcoming memory read requests by pre-issuing issuable read

commands during drain-write mode. Pre-scheduling of schedulable memory read commands

may result in reduced read request service latency and partial enhancement in read-write

parallelism.

This read-write interleaving may cause increased service time overhead in terms of additional

bus turnaround delay. This effect is rationalized by ensuring that only those memory read

commands issued during write mode that do not cause data bus switch its direction, i.e., only

PRE and ACT commands are issued during this period. PRE and ACT commands do not cause

data bus to change its direction, hence do not result in turnaround delay.

50

3.4 Experimental Evaluation Methodology

Proposed scheduling policy is built on a device level memory command simulator named

USIMM. In USIMM, memory controller schedules device level memory operations based on

current status of main memory system, i.e., on the basis of nature of channel(s), rank(s) and

bank(s). In order to conduct comparative evaluation we simulated workloads using proposed

scheduling approach and same workloads using existing scheduling approach under two

different memory configuration, i.e., single-channel memory configuration and four-channel

memory configuration. In single-channel memory configuration, memory system is formulated

with one channel and in that channel two ranks are present and in each rank four banks are

present. In four-channel memory configuration, memory system is composed of four channels

and in each channel two ranks are there and in each rank four banks are present. In simulator

power related calculations are performed on the basis of Micron’s power calculation

methodology. The detailed information regarding power simulation are included in [57].

3.4.1 Benchmarks: Characteristics and Classification

A set of benchmarks derived from PARSEC benchmark suite were used to constitute

workloads. The workloads were run to conduct comparative evaluation. Description of

benchmarks is provided in Table 3.5. Experiments were carried out in varied core environment,

i.e., ranging from one, two, four, eight and sixteen cores in order to simulate multi-threaded

environment. Workload details are provided in Table 3.6. For better understanding,

nC_mChan_i, convention is used to represent n-core, m-channel simulation running workload

i. For calculating maximum slowdown time MT-Canneal workload is not used because only

multithreaded workloads are taken to calculate maximum slowdown time.

Table 3.5 Benchmark Description

Benchmark Trace Driven Application Domain

Blackscholes Black Financial Analysis

bodytrack Body Computer Vision

Facesim Face Animation Physics

Ferret Ferret Similarity Search

Fluidaminate Fluid Animation Physics

51

Streamcluster Stream Data Mining

Swaption Swapt Financial Analytics

Canneal Canneal Engineering

Table 3.6 Simulated Workloads Description

Traces Workloads with 1-Channel

configuration

Configuration File

Workloads with 4-Channel

Configuration

comm2 1Core_1Chan_1 1Core_4Chan_1

comm1 comm1 2Core_1Chan_1 2Core_4Chan_1

comm1 comm1 comm2 comm2 4Core_1Chan_1 4Core_4Chan_1

fluid swapt comm2 comm2 4Core_1Chan_2 4Core_4Chan_2

face face ferret ferret 4Core_1Chan_3 4Core_4Chan_3

black black freq freq 4Core_1Chan_4 4Core_4Chan_4

stream stream stream stream 4Core_1Chan_5 4Core_4Chan_5

fluid fluid swapt swapt comm2

comm2 ferret ferret

- 8Core_4Chan_1

fluid fluid swapt swapt comm2

comm2 ferret ferret black black

freq freq comm1 comm1 stream

stream

- 16Core_4Chan_9

3.4.2 Performance Analysis Metrices

We comparatively analysed the performance of proposed scheduling approach with chosen

existing scheduling policies, FCFS, Close and PBFS by simulating workloads described in

Table 3.2. The comparative performance is evaluated based on selected performance

parameters like total execution time, energy delay product, maximum slowdown time, page hit

rate and total memory system power consumption.

Total Execution Time: Total execution time includes time consumed by all threads running

simultaneously to complete their execution.

Energy-Delay Product: EDP for a simulation is calculated by multiplying the energy

consumed for that simulation and the delay to finish the last program in that workload. The

52

objective of achieving reduced energy consumption while maintaining performance is captured

by this performance metric [92]. A scheduling policy is more efficient in terms of energy and

performance if its energy delay product is less.

Maximum Slowdown Time: This performance metric is used to measure the fairness among

threads [93]. A simulation environment is fairer if maximum slowdown time is less. To achieve

fairness among threads by reducing interference among threads stall time experienced by each

thread running simultaneously should be curtailed rather considering stall time in total.

Maximum slowdown time represents maximum of slowdown time experienced by each thread

running simultaneously. Slowdown time is measured by dividing stall time experienced by

thread when running simultaneously with other threads (Tshared) by stall time experienced by

thread when running alone (Talone). Slowdown time for a thread can be calculated by equation

3.16.

 𝑆𝑙𝑜𝑤𝑑𝑜𝑤𝑛𝑇𝑖𝑚𝑒 =
𝑇𝑠ℎ𝑎𝑟𝑒𝑑

𝑇 𝑎𝑙𝑜𝑛𝑒
 (3.16)

Row hit rate: Row hit is a scenario in which the address being requested by a memory request

is already present in the row buffer. In this case least number of steps are required to be

performed for servicing a memory request. Row hit rate is a total of read hit rate and write hit

rate. Read hit represents page hits obtained while servicing read requests and write hit

represents page hits obtained while servicing write requests. Formula for computing read hit

rate and write hit rate is given by equation 3.17 and equation 3.18.

 𝑅𝑒𝑎𝑑 𝑃𝑎𝑔𝑒 𝐻𝑖𝑡 𝑅𝑎𝑡𝑒 =
𝑁𝑜𝑟𝑒𝑎𝑑𝑐𝑜𝑚𝑛𝑑𝑠

−𝑟𝑒𝑎𝑑𝑎𝑐𝑡−𝑠𝑝𝑒𝑐𝑢𝑙𝑎𝑡𝑖𝑣𝑒𝑎𝑐𝑡

𝑁𝑜_𝑟𝑒𝑎𝑑𝑐𝑜𝑚𝑛𝑑𝑠
 (3.17)

 𝑊𝑟𝑖𝑡𝑒 𝑃𝑎𝑔𝑒 𝐻𝑖𝑡 𝑅𝑎𝑡𝑒 =
𝑁𝑜𝑤𝑟𝑖𝑡𝑒𝑐𝑜𝑚𝑛𝑑𝑠

−𝑤𝑟𝑖𝑡𝑒𝑎𝑐𝑡

𝑁𝑜𝑤𝑟𝑖𝑡𝑒𝑐𝑜𝑚𝑛𝑑𝑠

 (3.18)

where, readact, represents number of activate commands issued to bring required row in sense

amplifier for servicing read requests and speculativeact, represents speculative activates issued

by memory controller.

Total memory System Power Consumption: Total memory system power consumption

represents total power consumed by main memory system during execution. Memory system

power consumption is a combination of power consumed by different components in terms of

read power, write power, refresh power, activate power, background power and terminate

power. Total memory system power consumption is power consumed by all memory chips,

53

i.e., power consumed by one memory chip multiplied by total number of memory chips present

in memory system.

3.5 Result Evaluation

Simulated scheduling policy’s results are evaluated by comparing it with three already

implemented memory access scheduling policies, FCFS, Close-page policy and PBFS

scheduler.

3.5.1 Total Execution Time

The simulation scenario revealed in Figure 3.17, in terms of execution time shows that

proposed scheduling approach showed best performance amongst all chosen scheduling

policies.

1 channel 4 channel overall

T
o

ta
l E

xe
cu

tio
n

 T
im

e

0

1000

2000

3000

4000

FCFS

Close

Credit-fair

Power Down

PBFS

Proposed

Figure 3.17 Total Execution Time (mCyc) comparison

Proposed scheduler performed best among all simulated schedulers for both memory system

configurations. In comparison to FCFS memory scheduling approach, proposed scheduling

policy decreases the total execution time by 7.2% for single-channel memory configuration

and 10.2% for 4-channel memory configuration. In total, proposed scheduler has shown 8.8%

enhancement in terms of total execution time when compared to FCFS approach. In

comparison to close page policy proposed memory access scheduling approach has curtailed

the total execution time by 4.82%. Similar simulation scenario is observed when comparison

is made with respect to PBFS memory access scheduler. 1.42% and 1.52% deduction in total

54

execution time is observed with respect to PBFS scheduling approach for single-channel

memory configuration and 4-channel memory configuration. In total 1.47% reduction is

observed in comparison to PBFS scheduling policy.

1 Channel 4 Channel overall

%
 d

e
c
re

a
s
e
 i

n
 T

o
ta

l
E

x
e
c
u
ti

o
n
 T

im
e

0

2

4

6

8

10

12

FCFS

Close

PBFS

Figure 3.18 % decrease in Total Execution Time

This behaviour is shown by proposed algorithm is because proposed scheduler tries to utilize

maximum row buffer hits. Along with this proposed scheduler itemizes read requests over write

which reduces processor’s halt time and therefore final execution time is also reduced.

3.5.2 Maximum Slowdown Time

Figure 3.19, reveals the results obtained in terms of maximal slowdown time. This simulation

results obtained depicts that for maximal slowdown time proposed scheduler is better than

FCFS, Close and PBFS scheduling approach. This simulation trend shows that proposed

scheduling policy increases the fairness and improves the scheduling environment for all

simulated threads. On average proposed scheduler performs 0.79% and 1.72% better than

PBFS for single channel memory configuration and four channel memory configurations,

respectively. Proposed scheduler has reduced overall maximum slowdown time by 1.65%

55

when compared to PBFS. Figure 3.20, presents the same simulation scenario in terms of

maximal slowdown time in relation to close page scheduling approach and FCFS scheduling

policy.

1 channel 4 channel overall

M
a
x
im

u
m

 S
lo

w
d
o
w

n
 T

im
e

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

FCFS

Close

Credit-fair

Power Down

PBFS

Proposed

Figure 3.19 Maximum Slowdown Time comparison

In comparison with close page policy 5.3% reduction in maximum slowdown time is seen in

single-channel memory configuration, whereas, for 4-channel memory configuration 4.2%

deduction is observed. In total 4.03% deduction is observed. Similarly, with respect to FCFS

scheduling policy 7.4% reduced maximum slowdown time is found in 1-channel configuration.

Proposed scheduler reduced maximum slowdown time by 10.24% in comparison to FCFS

scheduling policy for 4-channel memory configuration. Overall, 8.48% reduction is achieved

when compared to FCFS scheduler.

56

1 Channel 4 Channel overall

%
 d

ec
re

as
e

in
 M

ax
im

um
 S

lo
wd

ow
n

Ti
m

e

0

2

4

6

8

10

12

FCFS

Close

PBFS

Figure 3.20 % decrease in Maximum Slowdown Time

The observed simulation trend is achieved because proposed scheduling approach tries to attain

maximum inter-thread fairness by prioritizing reorder buffer head requests. Due to increased

level of fairness, stall time experienced by threads waiting for accessing main memory resource

in reorder buffer is now reduced, which further leads to reduced slowdown time for threads

and hence minimized maximum slowdown time.

3.5.3 Energy-Delay Product

 In terms of EDP performance metric again proposed scheduling approach proved to be best

among all simulated scheduling policies, Figure 3.21, reveals the results and presents that

proposed scheduler has decreased EDP by 17.92% in comparison to FCFS scheduling

approach. And with respect to PBFS scheduler also proposed scheduling policy has rationalized

EDP by 5.14%, for 1-channel configuration. When comparison is made with respect to PBFS

scheduling policy 4.44% deduction is achieved in 4-channel memory confirmation and in total

proposed scheduler deducted energy-delay product by 4.76% in comparison to PBFS

scheduling policy. Overall, proposed approach has reduced energy-delay product by 9.68% in

comparison to close page approach and 4.76% when compared to PBFS scheduling algorithm.

This improvement in terms of energy-delay product stems due to considerable reduction in

number of operations achieved by proposed scheduling approach. Proposed scheduling policy

has reduced the number of operations required to service a memory request by exploiting

maximum row buffer hits. Reductions in number of operations further results in rationalized

energy consumption.

57

Figure 3.21 EDP (Js) comparison

In addition, proposed scheduler is able to achieve fairness among threads by reducing thread’s

waiting time in reorder buffer. Reduced stall time of threads leads to reduced slowdown time

observed by threads which further results in curtailed delay in complete execution of a thread.

3.5.4 Total Memory System Power Consumption

As depicted earlier, proposed memory scheduling approach improves system’s performance

for all workloads under both memory configurations in comparison to FCFS scheduler, Close

page policy and PBFS scheduling approach. As depicted in Figure 3.22, total memory system

power consumption is marginally increased with respect to FCFS policy but this increment is

not consistent. Whereas, in overall scenario when compared to close page scheduling approach,

proposed policy has reduced memory system power consumption by 1.74%. Whereas, when

comparison is made with respect to PBFS scheduling policy proposed scheduling reduced

power consumed by memory system. With respect to PBFS scheduling approach 7.012%

decrement in total memory system power consumption is observed in 1-channel memory

configuration. For 4-channel memory configuration 4.83% reduced memory system power

consumption is observed. In total, proposed scheduling policy is able to reduce total memory

system power consumption by 5.58% with respect to PBFS scheduling approach.

58

 Figure 3.22 Total Memory system Power (W) comparison

Reduction in memory system power consumption is achieved because proposed scheduler

improves row buffer hits that further leads to reduced number of operations required to service

memory requests. Reduced number of operation leads to reduced power consumption required

to service memory requests.

3.5.5 Row Hit Rate

The results revealed in Table 3.7, shows that proposed scheduling approach performed best

amongst all simulated scheduling approaches when evaluated in terms of row hits, i.e.,

summation of both read hit rate as well as write hit rate. Proposed scheduler has achieved

highest row hit rate. As shown in Table 3.7, taking read hit rate in consideration proposed

policy has performed best and same simulation scenario can be observed for write hit rate also,

because in proposed scheduler row hit requests are prioritized over other memory commands.

Proposed scheduler pre-issues issuable read commands while serving writes in write-drain

mode and writes are almost drained. By pre-issuing issuable read commands, the row buffer is

kept open for forthcoming memory read requests.

59

Table 3.7 Row Hit Rate

Workload

Read Page Hit Rate Write Page Hit Rate

FCFS Close PBFS Proposed FCFS Close PBFS Proposed

MT-c1 0.0033 -0.0290 -0.045 -0.0255 -0.2097 -0.2099 -0.934 -0.0859

4C_1Chn_4 0.6291 0.5178 0.503 0.5388 0.1603 0.1508 -0.032 0.3198

2C_1Chn_1 0.5996 0.4846 0.480 0.4788 -0.1653 -0.2475 -0.358 0.1457

4C_1Chn_1 0.5294 0.4167 0.389 0.4413 -0.1619 -0.2084 -0.834 0.0307

1C_1Chn_1 0.5749 0.4605 0.496 0.4518 -0.2850 -0.2890 -0.107 0.0691

4C_1Chn_3 0.6996 0.5952 0.552 0.6187 0.3990 0.3860 0.238 0.4918

4C_1Chn_2 0.5545 0.4430 0.419 0.4645 -0.0861 -0.1163 -0.432 0.1045

4C_1Chn_5 0.6461 0.5340 0.510 0.5548 0.1837 0.1662 -0.03 0.3223

MTc-4 0.0185 0.0073 -0.0095 0.0038 -0.6412 -0.7449 -0.089 -0.0003

4C_4Chn_4 0.0479 0.0057 -0.0093 0.0066 -0.4024 -0.4406 -0.089 -0.0034

2C_4Chn_1 0.0595 0.0074 0.0066 0.0052 -0.0707 -0.1321 0.092 0.1193

4C_4Chn_1 0.0141 0.0041 -0.0063 0.0032 -0.4801 -0.5352 -0.036 0.0270

1C_4Chn_1 0.0160 0.0026 0.00004 0.0019 -0.0699 -0.0853 -0.001 0.0041

4C_4Chn_3 0.0638 -0.0038 -0.0301 0.0062 -0.3775 -0.4282 -0.196 0.0118

4C_4Chn_2 0.0197 0.0025 -0.1003 0.0028 -0.3988 -0.4230 -0.354 -0.0210

4C_4Chn_5 0.0466 0.0043 -0.0435 0.0051 -0.3885 -0.4572 -2.467 -0.0115

8C_4Chn_1 0.0074 -0.0058 -0.0123 -0.0038 -0.4052 -0.4768 -0.065 -0.0427

16C_4Chn_9 -0.0140 -0.0222 -0.0151 -0.0194 -0.2988 -0.3438 -0.128 -0.0684

 1-Channel

 4-Channel

0.5296

0.0280

0.4279

0.0002

0.1543

0.1850

0.4404

0.0012

-0.0206

-0.3533

-0.0460

-0.4067

-0.281

-0.582

0.1748

0.0015

Average 0.2509 0.1903 0.1713 0.1964 -0.2054 -0.2464 -0.3234 0.0785

60

3.6 Conclusion

Memory access latency, energy consumption while servicing memory requests and memory

capacity to support multi-threaded environment are major memory design concerns these days.

Amongst these prime factors, memory latency and energy consumption can be optimized by

efficiently and intelligently re-scheduling the memory access requests. We propose a memory

access scheduling approach that significantly reduces the memory access latency and energy

consumption of DRAM main memory while servicing memory requests while creating a fair

environment for each thread. In proposed scheduling approach prioritize row hits are prioritized

over other memory requests to obtain reduced total execution time and energy delay product.

Along with aforementioned goals, bank-level parallelism is also exploited to make optimal use

of available system’s resources. Among a varied variety of chosen workloads using both

memory system configurations for 1-, 2-, 4-, 8- and 16-core environment, we showed that

proposed scheduling approach is consistently able to facilitate

 high level of inter-thread fairness, 1.63%, 8.46%, 4.03% of improvement in terms of

fairness is observed in comparison to PBFS, close and FCFS scheduling policy.

 improved energy-delay product, 4.76% reduction in energy delay product is observed

when compared to PBFS.

 rationalized total execution time, 1.47%, 8.8%, 4.82% of improvement in terms of total

execution time is observed in comparison to PBFS, FCFS and close scheduling policy

 improved row buffer hits, 12.78% improvement in read page hit rate is observed

compared to PBFS.

 reduced total memory system power consumption, 4.83% reduction in total memory

system power consumption is observed when compared to PBFS.

61

CHAPTER 4

DRAM SCHEDULER OPTIMIZED FOR READ-WRITE SWITCHES

In current scenario, energy consumption, performance and capacity of main memory system

are key aspects that affect computing system design. These days, computing systems are

facilitated with multiple cores. Multicore system enables simultaneous execution of multiple

applications. These concurrently running applications interfere at main memory. Main memory

is a major resource demanded by running threads because it stores data structures that are

required for execution of an application. Main memory sub-system’s performance and energy

consumption can be improved by rationalizing the number of operations required to access its

memory contents and by limiting the delay to service the memory access. It can be achieved

by intelligently scheduling the memory requests and it is underlying memory access scheduler

that decides the scheduling of memory accesses. We proposed a memory access scheduling

scheme, EEPAF, for limiting the energy consumption and refining the performance of main

memory. EEPAF, prioritizes reads over writes, implements delayed write drain policy, exploits

row buffer hits, increases bank level parallelism and ensures fairness among threads. The

results quantify the main memory energy consumption for different workloads under varied

core environment and demonstrate significant reduction in power consumption, energy-delay

product, and execution time, while improving performance.

4.1 Proposed Memory Access Scheduler

4.1.1 Baseline Scheduler

We consider a baseline scheduler proposed earlier in previous chapter, which minimally

switches between read and write drain mode by first servicing read and write requests in bursts

and second by pre issuing issuable read commands during write drain mode. In previously

proposed scheduler memory reads are given more preference than memory writes, because

memory reads are more significant for improved system’s performance. When processor issues

memory read request, it stops its execution waiting for results fetched from main memory in

response to issued memory read instruction. To prioritize memory read accesses the scheduler

always enter in read drain mode (in which only read instructions are serviced) unless write

queue is about to full. If write queue is about to be full, scheduler enters in drain write mode.

While servicing memory requests row buffer hits are prioritized over other memory read/write

requests as row hits requires less number of steps to perform hence reduced service time as

62

well as reduced related power consumption. These two factors collectively results in reduced

energy consumption of the memory system. After prioritizing row buffer hits in order to ensure

thread fairness memory accesses issued from threads blocking the reorder buffer are serviced.

This is so because memory intensive threads tends to block reorder buffer and compute

intensive threads sometimes enter into starvation state. To ensure that such starvation condition

do not arise, memory requests blocking the reorder buffer are serviced first than other memory

requests. After servicing the requests generated from reorder buffer other memory read/write

requests are serviced. If no row hit request is there or request generated from reorder buffer is

already in service the scheduler issues requests to service in FCFS manner. The requests that

arrives first are serviced first. In proposed scheduler bank level parallelism is achieved by

interleaving doable reads and writes. In write drain mode on finding idle cycle EEPAF issues

non-conflicting read commands opening the sense amplifier for upcoming read requests. This

write-read interleaving helps to exploit bank level parallelism and also increases read hits for

upcoming read requests.

4.1.2 Reduced Read-Write Switching

In proposed memory access scheduler, EEPAF, delayed write drain policy is employed on top

of baseline scheduler. Delayed write drain policy further prioritizes read requests and exploits

row buffer hit. In addition, it reduces the frequency of entering in write drain mode which leads

to reduced read-write switching. In conventional scheduling policies once all read requests are

served, i.e., read queue gets empty, the scheduler enters into write drain mode. In proposed

scheduler instead of immediately entering into write mode, scheduler delays entering in write

drain mode and waits for incoming read requests. Delayed write drain is applied only when

memory traffic is not heavy otherwise conventional drain policy is employed. Whether the

traffic is heavy or not, depends on historic memory request frequency. For a certain amount of

time memory requests issued for a particular channel are observed, if memory requests exceeds

a certain threshold value memory traffic is considered heavy otherwise not. So, by extending

read drain mode proposed scheduler prioritizes read requests, more read hits are achievable

now and considerably reduces latency caused due to bus turnaround time. Reduced turnaround

time is achieved by reducing the frequency of switching between servicing memory reads and

writes. Delayed write drain policy enhanced the scheduler’s ability to reduce energy

consumption and performance. Flow chart of our implemented scheduling policy is given in

Figure 4.1.

63

Operation Start

Is m/m request to

service?

WQ_len > HG?Drain Write Drain Read

Issuable m/m

write hit?

Issuable m/m read

hit?

Stop

WQ_len<MD?
ROB request

already in service?

Issue

doable read

PRE or

ACT

Issue

request

Issue

request

Issue write

based on FCFS

Issue read

based on FCFS

((Rd_len==0||(W

Q_len>HG))

WQ_len < LO?

1

1

NY

Y Y

N

N

N

N

Y

Y

Y

N

Y

Y

N

N

((m/m

traffic!=heavy)&&(

WQ_len<HG))

N Y

Figure 4.1 Flow Chart of EEPAF

64

4.2 Methodology

In this section, we at first briefly describe the system configuration and workloads used for

evaluating the performance of proposed scheduler. Then we present the performance metrics

used for conducting quantitative analysis of EEPAF.

4.2.1 System Configuration and Workloads

We build our proposed scheduler on simulator named USIMM. USIMM directs device level

memory commands based on current memory status. To evaluate proposed scheduler

experiments are run using two memory configurations, Table 4.1 provides details of both

memory configurations. In simulator power related calculations are made on the bases of

micron’s power calculation methodology.

We evaluate the performance of EEPAF in multicore environment varying from 1, 2, 4, 8 and

16 cores for varied variety of workloads. Multithreaded workloads from commercial

transaction processing (e.g., comm1 and comm2) and PARSEC (e.g., black, face, ferret, fluid,

freq, stream, swapt, MT*-canneal) are used for simulation. Using before mentioned trace files

ten different workload combinations are made and simulated for both memory combinations

in varied core environment.

4.2.2 Metrics

We quantitatively compare EEPAF with four previously proposed memory access schedulers,

i.e., FCFS, close, RLDP and PBFS. The comparison is conducted in terms of power

consumption, fairness and performance. We use energy-delay product to capture the goal of

improved performance at reduced energy consumption or same energy consumption [92]. To

measure unfairness among threads, maximum slowdown time performance metric is used [93].

Total memory system power consumption is used to calculate power consumed in memory

system. In addition to before mentioned metrics, total execution time performance metric is

used to capture the thread’s execution time.

4.3 Evaluation

We evaluated sensitivity of proposed scheduler EEPAF, to varying core count and memory

configuration. For analyzing the impact of memory configuration, we run experiments using

both two memory configurations, i.e., configuration-1 and configuration-2 (details in Table

4.1). Sensitivity to core count is evaluated by varying number of cores using simulation. For

quantitative analysis, we evaluated EEPAF in comparison to four previously proposed

65

schedulers (FCFS, Close, RLDP and PBFS) in terms of Memory system power consumption,

Energy Delay Product, Total Execution Time and Maximum Slowdown Time.

Table 4.1 Memory Configurations

Parameters Configuartion-1 Configuration-2

Processor clock speed 3.2GHz 3.2GHz

Processor ROB size 128 160

Memory bus speed
800 MHz (plus

DDR)

800 MHz (plus

DDR)

Memory channels 1 4

Ranks per channel 2 2

Banks per Rank 8 8

Cache lines per row 128 128

4.3.1 Memory System Power Consumption

For both memory configurations, proposed scheduler outperforms all simulated memory access

policies under multi-core environment in terms of memory system power consumption. Figure

4.2, depicts the performance of EEPAF in comparison to simulated schedulers for i-channel

memory configuration and varied core count.

Here exception is FCFS scheduling policy. The performance of FCFS scheduling policy is

better than EEPAF in terms of memory system power consumption because FCFS employs

simple mechanism and does not exhaust power to limit other factors. On analyzing the

simulation trend we find that there is increase in FCFS power consumption as core count

increases. For 4-core environment FCFS power consumption is greater than EEPAF. This

because of the fact that FCFS does not work well in multicore environment due to thread’s

interference. With increase in number of cores, simultaneously running threads also increases.

These parallel executing threads contend with each other for accessing main memory resource.

If memory scheduling policy is not fair while scheduling memory accesses then some threads

may feel starvation condition, which further leads to increased power consumption. FCFS is

simplest scheduling policy. It does not ensures fairness among threads while scheduling

requests generated by these memory requests hence consumes more power with increased core

count.

66

1-core 2-core 4-core Overall

M
e

m
o

r
y
 S

y
s
te

m
 P

o
w

e
r
 C

o
n
s
u
m

p
ti
o

n
 (

W
)

0

5

10

15

20

25

FCFS

Close

RLDP

PBFS

Proposed

Figure 4.2 Comparison based on Memory System Power Consumption using memory

configuration-1

Figure 4.3, depicts the simulation trend obtained in terms of memory system power

consumption for simulated scheduling policies in 4-channel memory configuration. For 4-

channel memory configuration proposed scheduler consumed less power when compared to

close page policy, RLDP scheduling policy and PBFS scheduler. But in comparison to FCFS

scheduling approach marginal increase in power consumption is observed.

67

1-core 2-core 4-core 8-core 16-core Overall

M
e
m

o
ry

 S
ys

te
m

 P
o
w

e
r

C
o
ns

um
p
tio

n
(W

)

0

20

40

60

80

FCFS

Close

RLDP

PBFS

Proposed

Figure 4.3 Comparison based on Memory System Power Consumption using memory

configuration-2

1-core 2-core 4-core 8-core 16-core overall

T
o
ta

l
M

e
m

o
ry

 S
y
st

e
m

 P
o
w

e
r

C
o
n
su

m
p
ti

o
n

0

20

40

60

80

FCFS

Close

RLDP

PBFS

Proposed

Figure 4.4 Overall Memory System Power Consumption

68

Simulation trend obtained for all simulated scheduling policy as whole, depicted by Figure 4.4

conveys that in total proposed scheduler consumed less power than close page policy, RLDP

and PBFS scheduling policy. However, marginal increase in power consumption is observed

when compared to FCFS scheduling policy.

4.3.2 Energy Delay Product

The results shown in Figure 4.5, for Energy Delay Product reveals that proposed scheduler’s

performance is best among all memory access scheduling policies (i.e., FCFS, Close, RLDP

and PBFS) for configuration-1 and configuration-2, memory configurations.

Figure 4.5, depicts the simulation trend obtained in terms of energy delay product in memory

configuration-1, facilitating one channel in memory system. As per obtained results, proposed

scheduler performed best among all simulated policies. In memory configuration-1, proposed

scheduler reduced energy consumption while maintaining performance of the system more as

compared to all simulated scheduling policies. Despite of increased power consumption in

comparison to FCFS, proposed scheduling policy is able to reduce energy delay product

because proposed scheduler has managed to reduce total execution time required to complete

execution of simulated workloads.

1-core 2-core 4-core Overall

E
n

e
rg

y
 D

e
la

y
 P

ro
d

u
c
t

(J
s
)

0

1

2

3

4

5

6

FCFS

Close

RLDP

PBFS

Proposed

Figure 4.5 Comparison based on Energy Delay Product using memory configuration-1

69

Figure 4.6, depicts the simulation trend obtained in terms of energy delay product in memory

configuration-2. The simulation trend shown in Figure 4.7, reveals that in multi-channel

environment proposed scheduling policy outperforms all simulated schedulers. Using

configuration-2, in comparison to PBFS, RLDP, Close and FCFS, EEPAF reduced energy

delay product by 3.5%, 0.41%, 10.16% and 21.05% respectively.

1-core 2-core 4-core 8-core 16-core Overall

E
n

e
r
g

y
 D

e
la

y
 P

r
o

d
u

c
t

(J
s
)

0

2

4

6

8

10

FCFS

Close

RLDP

PBFS

Proposed

Figure 4.6 Comparison based on Energy Delay Product using memory configuration-2

In total, proposed scheduler has shown most reduction in energy delay product as compared to

all simulated policies, Figure 4.7. For uni-core environment 8.5% and 2.5% reduction in energy

delay product is observed when compared to PBFS and RLDP, respectively. With respect to

PBFS 5.1%, 6.08%, 5.88%, 1.84% reduction in energy-delay product is observed in 2-, 4-, 8-,

16- core environment. In total 4.2% and 0.12% reduction in energy delay product is observed

with respect to PBFS and RLDP, respectively.

70

1-core 2-core 4-core 8-core 16-core overall

E
n

e
r
g

y
 D

e
la

y
 P

r
o

d
u

c
t

(J
s

)

0

2

4

6

8

10

12

FCFS

Close

RLDP

PBFS

Proposed

Figure 4.7 Overall Energy Delay Product

4.3.3 Total Execution Time

The simulation trend seen in Figure 4.10, reveals that overall performance of proposed

scheduler is better than PBFS, FCFS and close page policy. Proposed scheduling policy shows

significant reduction in execution time required by workloads to complete their execution. In

1-channel environment proposed scheduler reduced total execution time when compared to

FCFS, PBFS and close page policy, Figure 4.8. However, when compared to RLDP scheduling

policy proposed scheduler has shown increase in total execution time. For memory

configutaion-2, also same simulation trend is seen. In 4-channel memory configuration,

proposed approach performed best among all simulated policies in terms of total execution

time. Proposed scheduler took less time as compared to close, RLDP and PBFS scheduling

policy but marginal increase in execution time is observed when compared to RLDP scheduling

policy to complete execution of simulated workloads.

71

1-core 2-core 4-core Overall

T
o

ta
l E

x
e

c
u

ti
o

n
 T

im
e

 (
1

0
 M

 c
y

c
)

0

100

200

300

400

500

600

FCFS

Close

RLDP

PBFS

Proposed

Figure 4.8 Comparison based on Total Execution Time using memory configuration-1

1-core 2-core 4-core 8-core 16-core Overall

T
o
ta

l
E

x
e
cu

ti
o
n
 T

im
e
 (

1
0
 M

cy
c)

0

200

400

600

800

1000

1200

FCFS

Close

RLDP

PBFS

Proposed

Figure 4.9 Comparison based on Total Execution Time using memory configuration-2

72

As a whole, Figure 4.10, proposed scheduling policy shows significant reduction in execution

time, i.e., 10.06%, 4.85% and 0.43% when compared to FCFS, close and PBFS scheduling

policies respectively. In comparison to RLDP scheduling policy, proposed approach shows

1.10% increase in execution time. But, if we consider energy consumption then proposed

scheduler reduced energy consumption in comparison to RLDP while maintaining performance

of the memory system depicted by energy-delay product performance metric. Increased

complexity of proposed scheduling policy resulted in increased total memory system power

consumption.

1-core 2-core 4-core 8-core 16-core overall

T
o
ta

l
E

x
e
c
u
ti

o
n
 t

im
e
 (

1
0
 M

 c
y
c
)

0

200

400

600

800

1000

1200

1400

FCFS

Close

RLDP

PBFS

Proposed

Figure 4.10 Overall Total Execution Time

4.3.4 Maximum Slowdown Time

For maximum slowdown time performance metric, EEPAF showed best performance in

comparison to other simulated memory access schedulers for memory configuration-1.

Proposed scheduler reduced stall time observed by threads running simultaneously

significantly in varied core environment. In memory system using 1-channel proposed

73

scheduler reduced thread’s waiting time, i.e., proposed scheduler is able to ensure fair

environment for scheduling of requests generated for main memory system. The results

obtained for simulated policies in terms of maximum slowdown time is revealed by Figure

4.11. In memory configuration-2 under varied core environment, proposed scheduling policy

outperforms all simulated scheduling approaches, i.e., in 4-channel memory configuration also

proposed scheduler performed best among simulated approaches, shown in Figure 4.12.

2-core 4-core Overall

M
a

x
im

u
m

 S
lo

w
d

o
w

n
 T

im
e

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

FCFS

Close

RLDP

PBFS

Proposed

Figure 4.11 Comparison based on Maximum Slowdown Time using memory

configuration-1

By limiting maximum slowdown time, EEPAF managed to reduce un-fairness among

simultaneously running threads in multicore platform.

As depicted by Figure 4.13. In comparison to PBFS proposed memory scheduling policy

reduced unfairness among threads by 1.82%, 3.5%, 0.81%, 0.59% 1-, 2-, 4-, 8- and16-, core

environment. In total, 0.6% reduction in maximum slowdown time is obtained when compared

to PBFS scheduling policy.

74

Figure 4.12 Comparison based on Maximum Slowdown Time using memory

configuration-2

2-core 4-core 8-core 16-core Overall

M
a
x
im

u
m

 S
lo

w
d
o
w

n
 T

im
e

0.0

0.5

1.0

1.5

2.0

FCFS

Close

RLDP

PBFS

Proposed

Figure 4.13 Overall Maximum Slowdown Time.

2-core 4-core 8-core 16-core Overall

M
a
x

im
u

m
 S

lo
w

d
o

w
n

 T
im

e

0

1

2

3

4

5

6

FCFS

Close

RLDP

PBFS

Overall

75

4.4 Conclusion

We introduce energy-efficient performance aware fair memory scheduler, EEPAF. The

detailed analysis conducted across a wide variety of workload in varied core environment

reveals that EEPAF significantly reduces energy consumption and improves performance of

memory system while maintaining fairness among threads. EEPAF reduces the issue of energy

consumption by rationalizing power consumption and execution time of a thread. Reduction in

power consumption is achieved by limiting the operations required to service the issued

memory request. Reduction in number of operations is achieved by maximizing row hits.

Whereas, thread’s execution time is reduced by i) reducing processor’s stall time (by

prioritizing reads over writes) ii) minimizing the slowdown time of a thread (reducing

unfairness) iii) enhancing bank level parallelism (write-read interleaving) and iv) reducing

requests service time (exploiting row hits). EEPAF does not adversely affect the performance

of system while reducing energy consumption because it considers both quantities, i.e., power

and execution time while scheduling commands. Conclusion can be drawn from performed

analysis that for multicore environment EEPAF can be an efficient and efficacious memory

access scheduling strategy. In future, further more efficient memory schedulers can be

explored. Also interaction of EEPAF with other scheduling policies can be an interesting area

to work on.

76

CHAPTER 5

A DRAM SCHEDULER OPTIMIZED FOR DRAM

ACCESS LATENCY

To improve the performance and energy consumption of chip multiprocessor (CMP) system,

memory request serving latencies should be minimized. These latencies can be minimized by

scheduling appropriate memory command at appropriate time. We proposed a scheduler that

reduces latency related to serving memory read requests by delaying switching into write drain

mode when memory traffic is not heavy and write queue is not full. Memory reads are more

important to handle than memory writes for system’s performance. Further, precharge and

activate operations are performed using constant stride prefetcher. In idle memory cycles the

scheduler issues row precharge commands using cache prefetching technique based on Global

History Buffer. Authors in [94] have used stride detector and Global History Buffer based

speculative precharges and activates, but they treat memory reads and memory writes equally.

Whereas, proposed scheduler in this paper prioritizes reads over writes for better system

performance. Our evaluations show that proposed scheduling policy significantly outperforms

previous schedulers [94, 95] in varied multicore environments in terms of performance as well

as energy consumption.

5.1 Proposed Scheduling Policy

Proposed scheduling policy is a combination of delayed write drain policy [96], constant stride

prefetcher [97] and global history buffer based prefetching technique [98]. So, the proposed

scheduler is divided into three entities and their issuing power is as per the listing below:

 Delayed write drain and FR-FCFS based scheduler.

 Constant stride prefetcher based predictor.

 Close page policy based on global history buffer based prefetcher.

5.1.1 Delayed Write Drain and FR-FCFS based Base Scheduler

Delayed write drain policy is based on the assumption that while serving read requests in read

mode, read queue gets empty, it is more beneficial to wait for upcoming requests than

immediately entering in write-drain mode. It is so, because reads are more critical for system’s

performance than writes.

77

Operation Start

Is m/m request to

service?

WQ_len > HG?Drain Write Drain Read

Issuable m/m

write hit?

Issuable m/m read

hit?

Stop

WQ_len < LO?
Issue CSP based

PRE and ACT

Issue

request

Issue read

based on FCFS

Issue write

based on

FCFS

((Rd_len==0||(W

Q_len>HG))

GHB based

issuable PRE?

1

NY

Y Y

N

N

N

Y

Y

N

Y

Y

N

((m/m

traffic!=heavy)&&(

WQ_len<HG))

N Y

Issuable rd

command?
Y

N

N
Issue GHB

based PRE

Issuable wr

command?
Y

1

2

2

N

Draining

reads?

N

Y

3

3

 Figure 5.1 Flow chart of proposed scheduling approach

When no read requests arrive in certain amount of time or when write queue gets full up to

high watermark, write drain mode is activated. Delayed write drain mode is applied adaptively

78

according to memory request traffic. If memory request traffic is heavy, then, in this scenario

it is better to service write requests immediately after read mode rather than waiting for more

read request’s arrival. Whereas, when there is no massive read/write traffic then delayed write

drain is activated. Whether the memory request traffic is high or low, it is dependent on historic

request frequency. Requests are observed for some CPU cycles (in this paper 10k CPU cycles),

if number of request for a particular channel exceeds a threshold limit (200 in our approach),

delayed write drain is activated. In proposed scheduler read requests and write requests are

served in bursts to avoid delay encountered due to switching of bus direction. Scheduler enters

in write drain mode when write queue is about to be full, i.e., reaches high watermark. In write

drain mode writes are serviced in FR-FCFS manner until lower threshold limit (low watermark)

is met. When in write drain mode no write request can be issued in any memory cycle then in

that idle cycle issuable (precharge or activate) commands are issued in accordance with

pending read requests. In case of read mode, the scheduler issues read hit requests first then

older read requests are served. If no pending read request can be issued in any memory cycle,

then, in that idle memory cycle non-conflicting issuable write commands (precharge command)

are issued. If there is no pending read requests in read queue and if delayed write drain can be

activated, scheduler waits for upcoming read requests, otherwise enters drain write mode. The

other entities of scheduler issues commands only when there are no command issuable by base

scheduler. The flow chart of proposed scheduler is depicted in Figure 5.1.

5.1.2 Stride Prefetcher based Precharge/Activate Command Predictor

Stride prefetcher is implemented by maintaining a constant stride prefetch (CSP) table for

holding stride related history. CSP table contains previous stride value, last address accessed

and a found bit, Figure 5.2. Existing constant stride between memory access requests having

same value of instruction program counter are stored in it. When the scheduler goes through

the read queue during read mode and write queue during write drain mode, on encountering a

memory request having same stride value as previous stride value in CSP table, the found bit

is set.

Figure 5.2 Constant Stride Table

79

Initially, all constant stride table entries are set to zero when the scheduler goes through

read/write queue for detecting issuable row hits. After issuing issuable row hits when the

scheduler looks through read/write queue for checking any other command issuable during that

phase constant strides are detected in current read queue or write queue. If no issuable

command is found, the scheduler then goes through CSP table entries. With respect to every

entry for which found bit is set, scheduler issues precharge or activate commands to the rows

of banks at x+y, x+2y, …., x+dy physical addresses, where, x is last address accessed value in

CSP table, y is previous stride value in CSP table and d is degree of prediction.

If a memory access prediction corresponds to different channel, then it is stored in separate

array and can be read by scheduler if there is no issuable command while issuing commands

in that channel.

5.1.3 Prefetcher based Close Page Policy

In this paper, prefetcher used global history buffer [89], which is earlier used for data cache

prefetching. GHB stores prefetch history. GHB prefetcher is implemented in two levels, Figure

5.3.

Figure 5.3 Global History based Close Page Predictor

80

 Index Table: Index table has capacity of 1024 entries and references to GHB. Index

table can be accessed with a key, eight least significant bits of the key are xor of

instruction program counter and memory address of memory request, top two most

significant bits corresponds to thread identifier of memory request.

 Global History Buffer: GHB is a FIFO table having 512 entries and is maintained as

circular buffer. It holds 512 most recent memory requests. Each entry in GHB table is

linked to previous entry having same index table key using a pointer.

GHB is maintained for read requests. At onset of every memory cycle, prefetcher adds new

request in GHB table. When there is no command that can be issued, GHB prefetcher tries

to issue precharges to close the pages. Scheduler first accesses the head of the GHB table,

i.e., the most recent request and then follows the link downwards to find older memory

requests, if any. Scheduler closes the pages of older memory requests which do not conflict

with pending read/write command.

5.2 Methodology

In this section we provide the pertinent details about simulation environment, simulated

workloads and evaluation metrics used during quantitative analysis of proposed scheduling

policy.

The proposed scheduling policy is built on device level main memory commands simulator

named USIMM. Proposed scheduling policy is simulated under two memory system

configurations, one with single channel containing eight banks per rank and four ranks per

channel, mem-config-1. In this memory configuration address mapping is enabled in order to

maximize row hits. Second memory system setup simulated for evaluation supports four

channels and each channel is further configured same as first configuration, mem-config-4. In

second memory configuration address mapping is set to 0 so as to increase memory access

parallelism.

The proposed scheduling policy is evaluated in terms of performance and energy consumption

for chip multiprocessor systems using workloads consisting of multithreaded programs. The

workloads are constituted with trace files of PARSEC [87] benchmark suite representing

applications from diverse domains such as image processing, animation physics, financial

analysis etc. Trace files are obtained using Simics [99] and are described in Table 5.1.

81

The performance and energy consumption of proposed scheduling policy is analysed in terms

of total execution time, row buffer hits, energy-delay product and total memory system power

consumption. The evaluation is made under various multicore environments, i.e., 2-core, 4-

core and 8-core.

Table 5.1 Benchmark Description

 Benchmark Application Domain

Blackscholes
Financial Analysis

bodytrack
Computer Vision

Facesim
Animation Physics

Ferret
Similarity Search

Fluidaminate
Animation Physics

Streamcluster
Data Mining

Swaption
Financial Analytics

Canneal
Engineering

transaction processing workload
Server

5.3 Result Analysis

Quantitative analysis of proposed scheduling approach is made to check the impact of varying

core count and memory configuration on system’s performance and energy consumption. For

comparative analysis, we compare proposed approach with two existing schedulers, scheduler-

1: FR-FCFS [30] and scheduler-2: scheduling approach proposed in [95]. Comparative analysis

is made in terms of execution time, row hits, power consumption and energy-delay product.

5.3.1 Total Execution Time

The simulation trend seen in Figure 5.6, reveals that overall performance of proposed scheduler

is better than scheduler-1 and scheduler-2. Proposed scheduling policy shows significant

reduction in execution time required by workloads to complete their execution. In 1-channel

environment proposed scheduler reduced total execution time when compared scheduler-1,

Figure 5.4. For memory configutaion-1, 0.037% increase in total execution time is observed

when compared to scheduler-2, whereas, 45.63% decrease is found when compared to

scheduler-1.

82

In 4-channel memory configuration, proposed approach performed best among all simulated

policies in terms of total execution time, Figure 5.5. Proposed scheduling approach took least

time to complete execution of workloads in memory system comprised of 4 channels. Proposed

scheduler took 0.34% less time as compared to scheduler-2, in 4-channel memory

configuration. However, when comparison is made with respect to scheduler-1, 0.71%

decrement in execution time is observed to complete execution of simulated workloads.

Figure 5.4 Total Execution time based comparison for mem-config-1

As a whole, Figure 5.6, proposed scheduling policy shows significant reduction in total

execution time. When compared to scheduler-1, 26.88% reduction in total execution time is

observed. Whereas 0.16% less execution time, when compared to scheduler-2 scheduling

policy.

83

Figure 5.5 Total Execution time based comparison for mem-config-4

Figure 5.6 Total time consumed during execution

84

5.3.2 Row Hits

For both simulated memory configurations, scheduling policy proposed in this paper performed

better than all simulated schedulers under varied core environment in terms of row hits, Figure

5.7. In terms of read row hits, proposed scheduler performed better than scheduler-1 and its

performance is comparable to scheduler 2. Proposed scheduler shows, 1.01%, overall increase

in row hits when compared to scheduler-1 and in mem-config-1.

Figure 5.7 Read Page Hit Rate for mem-config-1

5.3.3 Energy-Delay Product

The simulation trends, Figure 5.10, obtained for energy-delay product can be summarized as,

proposed scheduler reduces energy consumption in both memory configurations for all

simulated core environments. Overall, 62%, 56.4%, 0.93%, decrease in energy consumption is

observed in 2-core, 4-core and 8-core environment in comparison to scheduler-1. From the

results obtained it is observed that proposed scheduler out-performs all simulated schedulers in

terms of energy-delay product.

85

The results have shown in Figure for Energy Delay Product reveals that proposed scheduler’s

performance is best among all memory access scheduling policies (i.e., scheduler-1 and

scheduler-2) for configuration-1 and configuration-2, memory configurations.

Figure 5.8, depicts the simulation trend obtained in terms of energy delay product in memory

configuration-1, facilitating 1 channel in memory system. As per obtained results, proposed

scheduler performed best among all simulated policies. In memory configuration-1, proposed

scheduler reduced energy consumption by 0.065% and 69.3% when compared to scheduler-2

and scheduler-1, respectively, while maintaining performance of the system more as compared

to all simulated scheduling policies.

Figure 5.8 Energy Delay Product based comparison for mem-config-1

Figure 5.9, depicts the simulation trend obtained in terms of energy delay product in memory

configuration-2. The simulation trend shown in Figure 5.9, reveals that in multi-channel

environment proposed scheduling policy outperforms all simulated schedulers. Using

configuration-2, in comparison to scheduler-1 and scheduler-2, proposed scheduler reduced

energy delay product by 3.5% and 0.41%, respectively.

86

Figure 5.9 Energy Delay Product based comparison for mem-config-4

Figure 5.10 Total Energy Delay product

87

In total, proposed scheduler has shown most reduction in energy delay product as compared to

all simulated policies. 47.5% and 0.84% reduction in energy delay product is observed with

respect to scheduler-1 and scheduler-2, respectively.

5.3.4 Total Memory System Power Consumption

Fig. 5.13, depicts the performance of proposed scheduling approach in terms of memory power

consumption in comparison to selected schedulers chosen for comparative study under multi-

core environment and both memory sub-system setups. By result analysis it is depicted that

proposed scheduler consumed more power than all simulated scheduling approaches. This is

because of the increase caused in hardware of the system to implement prefetchers. In 1-channel

memory configuration, Figure 5.11, 25.78% increase in memory power consumption is

observed in comparison to scheduler-1 and 0.052% increment is observed when compared to

scheduler-2. In 4-channel memory configuration, Figure 5.12, 0.42% increase in power

consumption is observed with respect to scheduler-2. Total 8.6% increment in power

consumption is found when compared to scheduler-1 and 0.2% increment is observed when

compared to scheduler-2.

Figure 5.11 Memory System Power Consumption based comparison for mem-config-1

88

Figure 5.12 Memory System Power Consumption based comparison for mem-config-4

Figure 5.13 Total power consumed by Memory System

89

5.4 Conclusion

In this section, we propose a memory scheduler that issues commands on the basis of delayed

write drain and FR-FCFS policy to the memory. Scheduler uses prefetching techniques that are

earlier used for data cache prefetching. Prefetching techniques are used for predictive row

precharge/activate operations. From implementation aspect, the scheduler is easy to

implement, and its memory requirement is also very less. In comparison with scheduler-1

memory scheduling approach, overall, proposed scheduling approach rationalizes total

execution time by 26.8%, 0.161% in mem-config-1 and mem-config-4, respectively, whereas,

in comparison to scheduler-2 our scheduling policy decreases total execution time by 0.34% in

mem-config-4. We can see that proposed scheduler performed better in terms of execution time

in multi-channel configuration than single channel memory system. In terms of power

consumption performance of proposed scheduler is better in comparison to other simulated

policies. Proposed scheduler consumed less amount of power considering the increase in

hardware. Also, the proposed scheduler successfully achieved increased row hits than

scheduler-1 and scheduler-2. This increase in performance is because proposed scheduler

issues speculative precharge and activate commands. Moreover, row hit read/write commands

are prioritized over memory requests. Proposed approach consumed least amount of energy

among all simulated policies, i.e., overall, 47.54%, 0.827% less in comparison to scheduler-1

and scheduler-2, respectively. Delay in entering in write drain mode also helps to achieve

increased performance in terms of energy consumption, row hits and execution time. In future,

proposed approach can be attached with other scheduling policies to make it more efficient.

Further, appropriate scheduling mechanisms can also be incorporated to improve performance

degradation in terms of energy as well power consumption due to refresh operations.

90

CHAPTER 6

MANAGING REFRESH INDUCED PENALITIES IN DRAM BASED

MAIN MEMORY SYSTEM

Increased use of big data applications results in increasing demand for larger and faster main

memory system. DRAM based main memory system is chosen to satisfy these growing needs

because of its low service latency as well as high density. But DRAM cell being volatile in

nature requires periodic refreshes to retain its data. The periodic refresh operations negatively

affect the performance and power consumption of the system. Earlier, refresh caused power

and performance overheads were not paid much attention but with increased capacity and speed

of DRAM based main memory system, these overheads have also increased significantly.

Increased usage of memory intensive applications, increase in number of cores for faster and

efficient processing and growth in I/O speed capabilities have resulted in significant

development in main memory capacity and bandwidth availability. Computing systems used

these days use DRAM based main memory system. DRAM is preferred over SRAM (Static

Random Access Memory) because of its comparatively higher density and preferred over non-

volatile memory technologies like phase change memory, MRAM and flash memory etc.

because it is having lower latency, higher tolerance and bandwidth. Advancement in DRAM

technology for increased capacity speed resulted in inclined power and performance overhead.

6.1 Proposed Scheduling Policy

In proposed scheduling policy refreshes are managed to reduce refresh caused energy and

performance overhead of the DRAM based main memory system. Refreshes are managed by

issuing write commands to banks that are undergoing refresh operation. By parallelizing write

commands with refresh operation. By parallelizing write commands with refresh operation

memory cycle that was earlier wasted in conventional scheduling policy for refreshes is now

utilized to service memory write requests. By parallelizing memory writes with refresh

operations performance overhead is reduced by reducing memory write service latency. In

proposed scheduling policy first read requests are prioritized over write requests by always

entering in drain read mode unless write queue is about to be full. If write queue is about to be

full, i.e., write requests are above high watermark, scheduler starts issuing write requests to be

serviced until write requests get less than low watermark. When in write drain mode, row hit

91

write requests are serviced first then other write requests. If there is no other row hit write

request available then writes are issued in FCFS manner. If scheduler is in drain write mode

and there is no issuable write command then precharge and activate commands based on

constant stride prefetching are issued to open and close rows. If constant stride prefetcher based

precharge and activate commands are not issuable then global history buffer based precharge

command is issued to close the rows. When in read mode, first read hit requests are served then

if no read hit request is left, reads are served in first come first serve manner. If read queue is

about to be empty and write queue is not yet full then in this case if memory traffic is also not

heavy then instead of entering in drain write mode immediately, memory controller stays in

read mode and waits for upcoming read requests. Here, again read requests are prioritized over

write requests because reads are more critical for system’s performance. If write queue is full

or memory traffic is not heavy then scheduler simply enters in drain write mode and starts

servicing write requests. If read queue is not empty and there is no issuable read requests then

constant stride prefetcher based precharge and activate commands are issued. If constant stride

prefetcher based commands are also not issuable then global history buffer based precharge

commands are issued speculatively.

Figure 6.1 Memory Controller Transition States

In proposed scheduler along with read drain mode and write drain mode two more controller

states are added, i.e., pre-refresh and refresh states. In pre-refresh state memory controller stops

issuing write command to the banks that are not refresh target in upcoming refresh cycle. In

refresh state the banks that are not refreshed are capable servicing issued write requests while

banks undergoing refresh operation do not service any read/write command. Figure 6.1,

92

describes the transition criteria and transition between memory controller states. The flow chart

for proposed scheduling policy is detailed in Figure 6.2.

Figure 6.2 Proposed Scheduling Approach

Operation Start

Is m/m request to

service?

WQ_len > HG?Drain Write Drain Read

Issuable m/m

write hit?

Issuable m/m read

hit?

Stop

WQ_len < LO?
Issue CSP based

PRE and ACT

Issue

request

Issue read

based on FCFS

Issue write

based on

FCFS

((Rd_len==0||(W

Q_len>HG))

GHB based

issuable PRE?

1

NY

Y

Y
N

N

N

Y

Y

N

Y

Y

N

((m/m

traffic!=heavy)&&(

WQ_len<HG))
N

Y

Issuable rd

command?

Y

N

N

Issue GHB

based PRE

Issuable wr

command?
Y

1

2

2

N

Draining

reads?

N

Y

3

3

(WQ>th)&&

RefQ>0

Before

Refresh

Refresh

issuable?

Y

 Refresh

N

Y

N

93

6.2 Evaluation Methodology

The proposed scheduling policy is simulated on DRAM based main memory scheduler named

USIMM. Simulation environment considered for comparative evaluation of proposed

evaluation is presented in Table 6.1. The proposed scheduler is comparatively analyzed in

comparison to existing scheduling policies, scheduler-1[100], scheduler-2[101] and scheduler-

3[102] in terms of energy delay product, total execution time, maximum slowdown time and

total memory system power consumption.

Table 6.1 Memory Configuration

Parameters Configuration

Processor clock speed 3.2GHz

Processor ROB size 160

Memory bus speed 800 MHz (plus DDR)

Memory channels 4

Ranks per channel 2

Banks per Rank 8

Cache lines per row 128

6.2.1 Energy-Delay product

In terms of EDP performance metric, proposed scheduling approach proved to be best among

all simulated scheduling policies, Figure 6.3, reveals the results and presents that proposed

scheduler has rationalized EDP by 3.3% with respect to scheduler-1. With respect to scheduler-

2 and scheduler-3, proposed scheduling policy has decremented EDP by 1.33%.

Figure 6.3 Comparison based on Energy-Delay Product

94

This improvement in terms of energy-delay product stems due to considerable reduction in

number of operations achieved due to prefetching based pre-charge and activate command

scheduling. Reductions in number of operations further results in reduced execution time which

may further lead to curtailed energy consumption.

6.2.2 Total execution time

The simulation scenario presented in Figure 6.4, depicts that proposed scheduling approach has

shown best performance among all simulated scheduling approaches in terms of total execution

time. In comparison to scheduler-1, scheduler-2, scheduler-3, proposed scheduling policy

reduces the total execution time by 1.22%, 0.95% and 0.6% respectively. Parallelizing writes

and pre-issuing constant stride prefetch based precharge and activate commands helps to

reduce memory cycles required to complete execution of simulated workload. Servicing write

requests along with bank refreshes utilizes idle memory cycle time and benefits in achieving

reduced execution time of programs.

Figure 6.4 Comparison based on Total Execution Time

6.2.3 Maximum Slowdown time

Figure 6.5, reveals the results obtained in terms of maximum slowdown time. The simulation

trend obtained presents that for maximum slowdown proposed scheduler is better than

scheduler-1 and scheduler-3. With respect to scheduler-1, proposed scheduling approach has

reduced maximum slowdown time by 0.21%, whereas in comparison to scheduler-3 a drop of

95

1.04% in terms of maximum slowdown time is observed. However, when compared to

scheduler-2, 0.3% marginal increase in maximum slowdown time is observed, because

scheduler-2 ensures fairness among threads, whereas in proposed scheduling policy fairness is

not key concern.

Figure 6.5 Comparison based on Average Maximum Slowdown Time

6.2.4 Total Memory System Power consumption

Proposed memory scheduling approach improves system’s performance for all simulated

workloads under considered memory configuration in comparison to simulated schedulers, i.e.,

scheduler-1, scheduler-2 and scheduler-3. As shown in Figure 6.6, total memory system power

consumption is marginally increased with respect to scheduler-2 and scheduler-3. Whereas,

when compared to scheduler-1, 1.23% deduction in total memory system power consumption

is observed. The increase in power consumption is due to constant stride prefetcher and global

history buffer implementation. The increased components consume more power for

prefetching operations which introduces marginally increased power consumption overhead.

But we want to evaluate proposed scheduling policy in terms of its impact on both energy as

well as performance (service latency) and this performance goal is captured by energy-delay

96

product and in terms of EDP proposed approach has shown best behaviour among all simulated

environment.

Figure 6.6 Comparison based on Total Memory System Power Consumption

6.2.5 Conclusion

The scheduler proposed in this chapter utilizes delayed write drain policy to prioritize read

requests over writes, uses prefetching based precharge and activate operations and parallelizes

write operations with refresh operation to compensate idle memory cycle time. Reads are

preferred over write requests to achieve performance benefits as read affects overall

performance of a computing system significantly than write operations. For prefetching

constant stride prefetching and global history buffer based prefetcher is used. Whereas to

implement parallelized write operations with reads in addition to read and write states, two

more controller states are added. By parallelizing writes with refresh operation, memory cycle

that earlier wasted for refresh operation in conventional scheduling approach, is now utilized

for servicing memory write requests, which further helps to achieve reduced execution time for

any program. Prefetching helps to reduce number of operations required to complete execution

of a program. Reduced number of operations causes reduced execution time which may further

benefit in terms of energy delay product. But extra components introduced in terms of

prefetcher causes comparatively increased power consumption. But the increase in power

consumption is marginal which do affect the energy consumption and performance of a system.

97

Proposed scheduler reduces total execution time by 1.22%, 0.95% and 0.6% in comparison to

scheduler-1, scheduler-2 and scheduler-3, respectively. In terms of energy delay product,

3.27%, 1.33%, 1.33% reduction is observed in comparison to scheduler-1, scheduler-2 and

scheduler-3.We conclude that proposed scheduler is able to provide reduced execution time,

and performance benefit in terms of energy consumption and service latency (EDP) while

showing slight increment in power consumption.

98

CHAPTER 7

CONCLUSION AND FUTURE SCOPE

This chapter concludes the various topics covered in this thesis and future prospects of

proposed scheduling policies. In this thesis, we discuss novel memory scheduling policies that

further extend the state-of-art. Main memory is a major contributor in overall system’s energy

consumption. To rationalize main memory’s energy consumption and to improve its

performance memory scheduling has received significant attention. Through the policies we

have proposed in this research work, we draw attention to scheduling policies that are capable

of maximizing performance benefits and restraining the power consumption while meeting the

timing intricacies of the DRAM devices.

7.1 Summary

 We conclude work done in this dissertation as follows

 In chapter 3, proposed scheduling policy tries to maximize row buffer hits and fairness

among simultaneously executing threads. Proposed scheduling policy is facilitated with

features like prioritizing reads over write requests, preferring row hit memory requests

over other memory accesses, improved bank level parallelism and ensuring fair

execution environment by scheduling requests that block reorder buffer head. The

proposed scheduling policy not only ensures improved performance and reduced

energy consumption but also increased bank level parallelism and thread fairness. The

conducted comparative analysis of proposed scheduling policy reveals that proposed

scheduler improves energy-delay product by 4.76% in comparison to PBFS. The results

found after simulation supports the fact that proposed scheduler provides more fair

simulation environment as it decreases maximum slowdown time observed by

executing threads by 1.63% when compared to PBFS and by 4.03% when compared to

close page policy. The simulation trend observed for total execution time supports the

fact that it decreases total execution time by 1.47% when compared to PBFS and by

4.82% with respect to close page policy. The results obtained supports that proposed

scheduling policy improves row hits and fairness among threads during execution.

 The scheduling policy proposed in chapter 4 tries to reduce read-write switching of

command and data bus. First, read-write switching is reduced by serving read requests

99

and write requests in bursts. Then by issuing issuable precharge and activate commands

when in drain mode and at the end of it. One more factor incorporated to reduce read-

write switching is by delaying entering in write mode when serving reads and read

queue is empty and memory traffic is not heavy. By delaying entering in write drain

mode not only read-write switching is curtailed but also reads are prioritized over write

requests. The proposed scheduling policy is then evaluated in terms of total execution

time, energy-delay product and maximum slowdown time to analyse the impact of

proposed scheduling policy on memory system’s performance and power consumption.

The conducted comparative analysis reveals the fact that that proposed scheduler

reduces total execution time by 0.6%, maximum slowdown time by 0.59% and energy-

delay product by 4.2% when compared to PBFS.

 The scheduler proposed in chapter 5, improves memory access latency of memory

commands by prefetching upcoming memory requests and issuing precharge and

activate commands accordingly. The precharge command is issued to rows that are not

to be used by upcoming requests while activate command is used to bring the rows in

sense amplifier that are to be used by upcoming memory requests. Prefetching is

constant stride based and global history buffer based. In addition to prefetching delayed

write drain policy is incorporated to further enhance system’s performance by

prioritizing read requests. By evaluating the results obtained after simulating proposed

scheduler it is found that proposed scheduling approach is able to reduce total execution

time by 0.7% in comparison to scheduler-1 and by 26.8% in comparison to scheduler-

2. In addition to reducing execution time, proposed scheduler is able to achieve

performance benefit depicted by performance metric energy delay product.

 The scheduler proposed in chapter 6, reduces main memory’s energy and performance

overhead introduced due to DRAM refreshes. Proposed scheduler parallelizes memory

write operation with memory refreshes in addition to constant stride prefetching and

global history buffer based close page policy. Only writes are overlapped with refresh

operation because writes are not critical for system’s performance as reads are. So, we

can delay issuing writes to banks that are not going to be refreshed in upcoming refresh

cycle and servicing them when refresh operation is performed on other banks. Proposed

approach is able to achieve 1.23% power consumption reduction and 3.27% curtailed

energy consumption when compared to scheduler-1.

100

7.2 Future Scope

In this section we elaborate that how emerging trends may lead to various applications of

memory scheduling strategies.

7.2.1 Scheduling for Heterogeneous Platform

Advancement in technology have facilitated the researchers to architect computing system in

which different types of blocks lie on same die. For instance, AMD’s fusion series of APU’s

(Accelerated Processing Units) integrates a GPU along with CPU having multiple cores.

Integration of GPU and CPU has led researchers to think about memory architecture in more

detail. In Fusion series, the GPU as well as CPU shares a common memory controller. Both

GPU and CPU have different requirements in terms of memory. GPU(s) are more memory

latency tolerant than CPUs while requiring more bandwidth. A memory scheduling policy

should be able to satisfy the needs of both clients. i.e., C.P.U. as well as G.P.U. We plan to

investigate the applicability of proposed scheduling policy in such heterogeneous environment

where C.P.U. and G.P.U. work together contending for same memory resource and having

different expectation from memory system.

7.2.2 Scheduling for Mobile Devices

A lot of emphasis have been laid on memory controller’s design with respect to large servers.

However, mobile devices are growing very fast and hence they require equal attention for

efficient performance and energy consumption. With respect to mobile devices, first memory

access scheduler should be simple in order to save chip area, second scheduler should be more

energy efficient than performance oriented. So, memory scheduling techniques should focus

on reducing energy consumption but performance drop should not be large.

7.2.3 Scheduling for Emerging Non Volatile Memory Technologies

Due to increased demand of large capacity of main memory system as well as restrained energy

consumption, researchers these days are exploring the possibility of using non-volatile memory

technologies such as Phase Change Memory, memristor etc. as an replacement to DRAM. To

benefits of both memory technologies, i.e., DRAM as well as non-volatile memory technology

researchers are opting hybrid main memory system also. So, a memory scheduling policy

should be able to satisfy future memory trends also. In order to facilitate so, proposed

scheduling policies can be analyzed to check their impact in hybrid (DRAM + non-volatile

memory based) main memory system.

101

7.2.4 Scheduling for Hybrid Memory Cubes

Hybrid memory cube [103] is a memory technology in which multiple layers of DRAM are

stacked on a logic layer. The HMC device is connected to processors. The problem in using

HMC is distribution of work responsibilities between memory controllers lying on chip as well

as one on the logic layer of HMC. To solve this dilemma one approach is implementation of

transaction scheduler in logic layer of HMC. This enables on-chip memory controller to decide

thread priorities and command scheduler to decide which policies are to be implemented for

HMC DRAM layers. Scheduling policies should be able to support such computing

environment. Work can further be extended to support HMC memory technology.

102

REFERENCES

1. C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, and T. Keller, “Energy

management for commercial servers,” IEEE Computer, 36(12):39–48, 2003.

2. JEDEC, “JEDEC solid state technology association." http://www.jedec.org.

3. JEDEC Solid State Technology Association, “DDR3 SDRAM specification,” Tech.

Rep. JESD79-3E, Arlington, 2010.

4. JEDEC Solid State Technology Association, “DDR4 SDRAM specification,” Tech.

Rep. JESD79-4, Arlington, 2012.

5. Micron, “DDR4 - Advantages of Migrating from DDR3," 2013.

6. JEDEC, “Migrating to LPDDR3", 2012.

7. JEDEC, “Wide IO SDR Standard - JESD229", 2010.

8. A. Carroll and G. Heiser, “An analysis of power consumption in a smartphone,” In

Proc. USENIXATC 2010.

9. O. Vargas, “Achieve minimum power consumption in mobile memory subsystems,"

March 2006, EE Times Asia.

10. C. H. van Berkel, “Multi-core for mobile phones," In Proc. DATE 2009.

11. T. Vogelsang, “Understanding the energy consumption of dynamic random access

memories," In Proc. MICRO 2010.

12. H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu, "Memory power

management via dynamic voltage/frequency scaling," In Proc. ICAC 2011.

13. I. Hur and C. Lin, “A comprehensive approach to DRAM power management," In Proc.

HPCA 2008.

14. E. Cooper-Balis and B. Jacob, “Fine-grained activation for power reduction in DRAM,"

IEEE Micro, vol. 30, May 2010.

15. S. Min, H. Javaid, and S. Parameswaran, “XDRA: Exploration and optimization of last-

level cache for energy reduction in DDR DRAMs," In Proc. DAC 2013.

16. H. Huang, K. G. Shin, C. Lefurgy, and T. Keller, “Improving energy efficiency by

making DRAM less randomly accessed," In Proc. ISLPED 2005.

17. K. T. Malladi, I. Shaeer, L. Gopalakrishnan, D. Lo, B. C. Lee, and M. Horowitz,

“Rethinking DRAM power modes for energy proportionality," In Proc. MICRO 2012.

18. K. Fang and Z. Zhu, “Conservative row activation to improve memory power

efficiency," In Proc. ICS 2013.

103

19. N. Aggarwal, J. Cantin, M. Lipasti, and J. Smith, “Power-efficient DRAM speculation,"

In Proc. HPCA 2008.

20. K. K.W. Chang, D. Lee, Z. Chishti, C. Wilkerson, A. Alameldeen, Y. Kim, and O.

Mutlu, “Improving DRAM performance by parallelizing refreshes with accesses," In

Proc. HPCA 2014.

21. M. Xie, D. Tong, Y. Feng, K. Huang, and X. Cheng, “Page policy control with memory

partitioning for DRAM performance and power efficiency," In Proc. ISLPED 2013.

22. X. Li, G. Jia, C. Wang, X. Zhou, and Z. Zhu1, “A scheduling of periodically active

rank of DRAM to optimize power efficiency," In Proc. Highly-Reliable Power-

Efficient Embedded Designs 2013.

23. S. Mittal, “A survey of architectural techniques for DRAM power management," In Int.

J. High Perform. Syst. Archit., vol. 4, December 2012.

24. S. Kim, S. Kim, and Y. Lee, “DRAM power-aware rank scheduling," In Proc. ISLPED

2012.

25. C. Ma and S. Chen, “A DRAM precharge policy based on address analysis," In Proc.

DSD 2007.

26. M. Awasthi, D. W. Nellans, R. Balasubramonian, and A. Davis, “Prediction based

DRAM row-buffer management in the many-core era," In Proc. PACT 2011.

27. ITRS, “International technology roadmap for semiconductors, 2009 edition.” [Online],

Available: http://www.itrs.net/Links/2009ITRS/Home2009.htm

28. O. Mutlu and T. Moscibroda, “Stall-time fair memory access scheduling for chip

multiprocessors,” in Proc. 40th Annu. IEEE/ ACM Int. Symp. Microarchit., 2007, pp.

146–16.

29. O. Mutlu and T. Moscibroda, “Parallelism-aware batch scheduling: Enhancing both

performance and fairness of shared DRAM systems,” in Proc. 35th Annu. Int. Symp.

Comput. Archit., 2008, pp. 63–74.

30. S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens, “Memory access

scheduling,” in Proc. 27th Annual Int. Symposium Computer Architecture, 2000, pp.

128–138.

31. O. Mutlu, and T. Moscibroda, Microsoft Technology Licensing LLC, “Parallelism-

aware memory request scheduling in shared memory controllers”, U.S. Patent

9,588,810, 2017.

32. J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “PIM-Enabled Instructions: A Low-Overhead,

Locality-Aware Processing-in-Memory Architecture,” in ISCA, 2015.

http://www.itrs.net/Links/2009ITRS/Home2009.htm

104

33. D. Lee, Y. Kim, G. Pekhimenko, S. Khan, V. Seshadri, K. Chang, and O. Mutlu,

“Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Case,” in

HPCA, 2015.

34. O. Mutlu and L. Subramanian, “Research Problems and Opportunities in Memory

Systems,” SUPERFRI, 2014.

35. P. Nair, C.-C. Chou, and M. K. Qureshi, “A Case for Refresh Pausing in DRAM

Memory Systems,” in HPCA, 2013.

36. Y. Kim, V. Seshadri, D. Lee, J. Liu, and O. Mutlu, “A case for exploiting subarray-

level parallelism (SALP) in DRAM,” in Proc. ISCA, 2012.

37. L. Subramanian et al., “The blacklisting memory scheduler: Achieving high

performance and fairness at low cost,” in ICCD, 2014.

38. K. K. Chang, “Understanding and Improving the Latency of DRAM-Based Memory

Systems,” Ph.D. dissertation, Carnegie Mellon Univ., 2017.

39. D. T. Wang, “Modern Dram Memory Systems: Performance Analysis and a High

Performance, Power-Constrained Dram Scheduling Algorithm”, Ph.D. dissertation,

Univ. of Maryland, 2005.

40. A. N. Udipi, N. Muralimanohar, N. Chatterjee, R. Balasubramonian, A. Davis, and N.

Jouppi, “Rethinking DRAM design and organization for energy-constrained multi-

cores,” in Proc. ISCA, 2010.

41. J. Stuecheli, D. Kaseridis, D. Daly, H. Hunter, and L. John, “The Virtual Write Queue:

Coordinating DRAM and Last-Level Cache Policies,” In Proceedings of ISCA, 2010.

42. O. Mutlu and T. Moscibroda, “Stall-time fair memory access scheduling for chip

multiprocessors,” in Proceedings of the 40th International Symposium on

Microarchitecture, pp. 208–222, Dec. 2007.

43. B. Jacob, S. W. Ng, and D. T. Wang, “Memory Systems - Cache, DRAM, Disk”, 2008.

44. B. Fanning. Method for Dynamically Adjusting a Memory System Paging Policy, 2003.

United States Patent, Number 6604186-B1.

45. O. Kahn and J. Wilcox, “Method for Dynamically Adjusting a Memory Page Closing

Policy”, United States Patent, Number 6799241-B2, 2004.

46. T. Rokicki, “Method and Computer System for Speculatively Closing Pages in

Memory”, 2002. United States Patent, Number 6389514-B1.

47. V. Stankovic and N. Milenkovic, “DRAM Controller with a Close-Page Predictor”, In

Proceedings of EUROCON, 2005.

105

48. Y. Xu, A. Agarwal, and B. Davis, “Prediction in dynamic sdram controller policies”,

In Proceedings of SAMOS, 2009.

49. T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder, “Discovering and

Exploiting Program Phases”, In IEEE Micro, volume 23, pages 84–93, 2003.

50. I. Bhati, M.-T. Chang, Z. Chishti, S.-L. Lu, and B. Jacob, “DRAM Refresh

Mechanisms, Penalties, and Trade-Offs,” in IEEE Transactions on Computers, 2015.

51. S. Khan, D. Lee, Y. Kim, A. R. Alameldeen, C. Wilkerson, and O. Mutlu, “The Efficacy

of Error Mitigation Techniques for DRAM Retention Failures: A Comparative

Experimental Study,” in SIGMETRICS, 2014.

52. J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, and O. Mutlu, “An Experimental Study of Data

Retention Behavior in Modern DRAM Devices: Implications for Retention Time

Profiling Mechanisms,” in ISCA, 2013.

53. J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “RAIDR: Retention-Aware Intelligent

DRAM Refresh,” in ISCA, 2012.

54. M. Patel, J. S. Kim, and O. Mutlu, “The Reach Profiler (REAPER): Enabling the

Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions,” in

ISCA, 2017.

55. JEDEC, “DDR3 SDRAM Standard - JESD79-3E", 2010.

56. J. W. Janzen, “Calculating Memory System Power for DDR”, Micron Technology Inc.,

TN-46-03, October 2003.

57. Micron Technology Inc., “Calculating Memory System Power for DDR3,” Technical

Note, TN-41-01, 2007.

58. Micron System Power Calculator. http://goo.gl/4dzK6.

59. B. K. Mathew, S. A. McKee, J. B. Carter, and A. Davis, “Design of a parallel vector

access unit for sdram memory systems,” in Proceedings of the Sixth International

Symposium on High-Performance Computer Architecture, pp. 39 –48, Jan 2000.

60. S. A. Moyar, “Access ordering and effective memory bandwidth,” Technical Report

TR CS-93-18, April 1993.

61. S. A. McKee and W. A. Wulf, “Access ordering and memory-conscious cache

utilization,” in Proceedings of the First International Symposium on High-Performance

Computer Architecture, pp. 253 –262, Jan 1995.

62. S. I. Hong, S. A. McKee, M. H. Salinas, R. H. Klenke, J. H. Aylor, and W. A.Wulf,

“Access order and effective bandwidth for streams on a direct rambus memory,” in

http://goo.gl/4dzK6

106

Proceedings of the Fifth International Symposium on High-Performance Computer

Architecture, pp. 80 –89, Jan 1999.

63. Z. Zhu and Z. Zhang, “A performance comparison of dram memory system

optimizations for smt processors,” in Proceedings of the 11th International Symposium

on High-Performance Computer Architecture, pp. 213 –224, 2005.

64. A. El-Moursy, R. Garg, and D. H. Albonesi, “Compatible phase co-scheduling on a

cmp of multi-threaded processors,” in International Parallel and Distributed Processing

Symposium, 2006.

65. H. Zheng, J. Lin, Z. Zhang, and Z. Zhu, “Memory access scheduling schemes for

systems with multi-core processors,” in 37th International Conference on Parallel

Processing, 2008.

66. O. Mutlu and T. Moscibroda, “Parallelism-aware batch scheduling: Enhancing both

performance and fairness of shared dram systems,” in 35th Annual International

Symposium on Computer Architecture, 2008.

67. Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter, “Atlas: A scalable and high-

performance scheduling algorithm for multiple memory controllers,” The 16th

International Symposium on High-Performance Computer Architecture, 2010.

68. Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter, “Thread cluster memory

scheduling: Exploiting differences in memory access behaviour,” The 43rd Annual

International Symposium on Computer Architecture, 2010.

69. J. Stuecheli and D. Kaseridis, “Elastic refresh: Techniques to mitigate refresh penalties

in high density memory”, In MICRO, pages 375–384, Dec 2010.

70. J. Mukundan, H. Hunter, K.-h. Kim, J. Stuecheli, and J. Martinez, “Understanding and

mitigating refresh overheads in high-density DDR4 DRAM systems”, In International

Symposium on Computer Architecture, pages 48–59, Jun 2013.

71. T. Hamamoto, S. Sugiura, and S. Sawada, “On the retention time distribution of

dynamic random access memory (DRAM)”, IEEE Transactions on Electron Devices,

45(6):1300–1309, 1998.

72. K. Kim and J. Lee, “A new investigation of data retention time in truly nanoscaled

DRAMs”, IEEE Electron Device Letters, 30(8):846–848, 2009.

73. T. Ohsawa, K. Kai, and K. Murakami, “Optimizing the DRAM refresh count for

merged DRAM/logic LSIs”, In International Symposium on Low Power Electronics

and Design, pages 82–87, Aug 1998.

107

74. J. Liu, B. Jaiyen, R. Veras, and O. Mutlu, “RAIDR: Retention-aware intelligent DRAM

refresh”, In International Symposium on Computer Architecture, pages 1–12, June

2012.

75. R. Venkatesan, S. Herr, and E. Rotenberg, “Retention-aware placement in DRAM

(RAPID): software methods for quasi-non-volatile DRAM,” In High-Performance

Computer Architecture, pages 155–165, Feb 2006.

76. S. Baek, S. Cho, and R. Melhem, “Refresh now and then”, IEEE Transactions on

Computers, 2013.

77. A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and D. Grossman,

“EnerJ: approximate data types for safe and general low-power computation,” In

Programming Language Design and Implementation, pages 164–174, Jun 2011.

78. H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architecture support for

disciplined approximate programming”, In Architectural Support for Programming

Languages and Operating Systems, pages 301–312, Mar 2012.

79. S. Liu, K. Pattabiraman, T. Moscibroda, and B. Zorn, “Flikker: Saving DRAM refresh-

power through critical data partitioning”, In Architectural Support for Programming

Languages and Operating Systems, pages 213–224, Mar 2011.

80. M. Ghosh and H. Lee, “Smart refresh: An enhanced memory controller design for

reducing energy in conventional and 3D die-stacked drams”, In MICRO, pages 134–

145, Dec 2007.

81. P. Emma, W. Reohr, and M. Meterelliyoz, “Rethinking refresh: Increasing availability

and reducing power in DRAM for cache applications”, IEEE Micro, 28(6):47–56, 2008.

82. A. Agrawal, P. Jain, A. Ansari, and J. Torrellas, “Refrint: Intelligent refresh to minimize

power in on-chip multiprocessor cache hierarchies,” In High-Performance Computer

Architecture, pages 400–411, Feb 2013.

83. C. Isen and L. John, “ESKIMO: Energy savings using semantic knowledge of

inconsequential memory occupancy for DRAM subsystem”, In MICRO, pages 337–

346, Dec 2009.

84. Micron Technology, Inc., “Calculating memory system power for DDR2”, Technical

Note, 2007. http://www.micron.com.

85. T. Moscibroda and O. Mutlu, “Memory performance attacks: Denial of memory service

in multi-core systems,” in Proc. 16th USENIX Security Symp. USENIX Security

Symp., pp. 18:1– 18:18, 2007.

http://www.micron.com/

108

86. N. Chatterjee, R. Balasubramonian, M. Shevgoor, S. Pugsley, A. Udipi, A. Shafiee, K.

Sudan, M. Awasthi, and Z. Chishti, “USIMM: the Utah SImulated Memory Module,”

Technical report, University of Utah, 2012. UUCS-12-002.

87. C. Bienia, S. Kumar, J. P. Singh, and K. Li., “The PARSEC Benchmark Suite:

Characterization and Architectural Implications,” in Proceedings of PACT, 2008.

88. K. Fang., N. Iliev, E. Noohi, S. Zhang, Z. Zhu, “Thread-Fair Memory Request

Reordering,” 3rd JILP Workshop on Computer Architecture Competitions(JWAC-3):

Memory Scheduling Championship (MSC), July 2012.

89. Y. S. Moon, Y. Kwon, H.-S. Kim, D.-G. Kim, H. H. Lee and K. Park, “The Compact

Memory Scheduling Maximizing Row Buffer Locality,” In 3rd JILP Workshop on

Computer Architecture Competitions: Memory Scheduling Championship, MSC,

2012.

90. R. Ausavarungnirun, K. K.-W. Chang, L. Subramanian, G. Loh, and O. Mutlu, “Staged

memory scheduling: Achieving high performance and scalability in hetergenous

systems,” in Proc. ISCA, 2012.

91. Micron, “1Gb DDR2 SDRAM Component: MT47H128M8HQ-25”, May 2007.

http://download.micron.com/pdf/datasheets/dram/ddr2/1GbDDR2.pdf.

92. R. Gonzalez and M. Horowitz, “Energy Dissipation in General Purpose Processors,” in

proceedings of the IEEE Symposium on Low Power Electronics, Oct. 1995, pp. 12-3.

93. M. A. Bender, S. Chakrabarti, and S. Muthukrishnan, “Flow and stretch metrics for

scheduling continuous job streams,” in Proceedings of the ACM Symposium on

Discrete Algorithms (SODA), 1998.

94. M.J. Khurshid, M. Chainani, A. Perugupalli and R. Srikumar, “Stride-and Global

History-based DRAM Page Management,” in 3rd JILP Workshop on Computer

Architecture Competitions: Memory Scheduling Championship, MSC.

95. S. Rixner, “Memory controller optimizations for web servers”, in Proceedings of the

37th annual IEEE/ACM International Symposium on Microarchitecture, IEEE

Computer Society, pp.355–366, December 2004.

96. C. Natarajan, B. Christenson and F. Briggs, "A study of performance impact of memory

controller features in multiprocessor server environment", WMPI-3, 2004.

97. S. Kim, A. Veidenbaum, “Stride-directed Prefetching for Secondary Caches”, in

proceedings of International Conference on Parallel Processor, pp. 314-321. IEEE,

1997.

http://download.micron.com/pdf/datasheets/dram/ddr2/1GbDDR2.pdf

109

98. K. Nesbit and J.E. Smith, “Data Cache Prefetching Using a Global History Buffer”, in

proceedings of the 10th Annual International Symposium on High Performance

Computer Architecture, pp. 144-154, July 2001.

99. Wind River Simics Full System Simulator http://www.windriver.com/products/simics/.

100. A. Modgil, V.K. Sehgal, and Nitin, “Energy-Efficient fairness-aware memory

access scheduling”, in 2nd International Conference on Computers and Management

(ICCM), RTU Kota, India, 28-29 December, 2016.

101. A. Modgil and V.K. Sehgal, “Energy-Efficient Performance-Aware Fair

Memory Access Scheduling on Multicore Platform (EEPAF)", Journal of

Telecommunication, Electronic and Computer Engineering (JTEC), 9(3-6), pp. 61-66,

2017.

102. A. Modgil and V.K. Sehgal, “Improving the performance of Chip

Multiprocessor by Delayed Write Drain and Prefetcher based Memory Scheduler”, in

2nd IEEE International Conference on Electronics, Communication and Aerospace

Technology, Coimbatore, Tamilnadu, India, 29-31 March, 2018.

103. J. Jeddeloh and B. Keeth, “Hybrid Memory Cube – new DRAM architecture

increases density and performance,” in Symposium on VLSI Technology, 2012.

http://www.windriver.com/products/simics/

110

LIST OF PUBLICATIONS

Conferences:

1. A. Modgil, Nitin, and V.K. Sehgal, “Understanding and Analyzing the Impact of

Memory Controller’s Scheduling Policies on DRAM’s Energy and Performance”, in

Procedia Computer Science, vol. 70, pp. 399-406, 2015.

2. A. Modgil, V.K. Sehgal, and Nitin, “Energy-Efficient fairness-aware memory access

scheduling”, in 2nd International Conference on Computers and Management (ICCM),

RTU Kota, India, 28-29 December, 2016.

3. A. Modgil and V.K. Sehgal, "Energy-Efficient Performance-Aware Fair Memory

Access Scheduling on Multicore Platform (EEPAF)", in International Conference on

Recent Innovation in Computer Science and Information Technology (RICSIT),

Himachal Pradesh University, Shimla, India, 19 May, 2017.

4. A. Modgil and V.K. Sehgal, “Improving the performance of Chip Multiprocessor by

Delayed Write Drain and Prefetcher based Memory Scheduler”, in 2nd IEEE

International Conference on Electronics, Communication and Aerospace Technology,

Coimbatore, Tamilnadu, India, pp. 1864-1869, March 2018.

Journals:

1. A. Modgil and V.K. Sehgal, “Energy-Efficient Performance-Aware Fair Memory

Access Scheduling on Multicore Platform (EEPAF)", Journal of Telecommunication,

Electronic and Computer Engineering (JTEC), 9(3-6), pp. 61-66, 2017. (Scopus Index)

2. A. Modgil, V. Sehgal, and N. Chanderwal, "Energy-Efficient Fairness-Aware Memory

Access Scheduling", International Journal of Services Technology and Management

(IJSTM). (Scopus Index).

Communicated Papers:

3. A. Modgil and V. Sehgal, “Managing refresh penalty of DRAM based main memory

system", in IEEE letter on electron devices.

