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ABSTRACT 

 

Picrorhiza kurroa and P. scrophulariiflora are the two endangered species of genus Picrorhiza 

which possess a broad range of pharmacological activities. Picroside-I (P-I) is an important 

iridoid glycoside used in several herbal formulations for treatment of various disorders. P-I is 

synthesized in shoots of P. kurroa and P. scrophulariiflora. Over exploitation of these species 

necessitates the development of conservation strategies and enhanced production of secondary 

metabolites.  

 

No information exists on molecular basis of improving shoot biomass and P-I biosynthesis in 

different morphogenetic stages of P. kurroa and P. scrophulariiflora; thus, limiting genetic 

interventions towards genetic improvement of these plant species. Therefore, shoot development 

along with P-I biosynthesis was studied in different morphogenetic stages of P. kurroa and P. 

scrophulariiflora. Expression analysis of genes involved in primary metabolism viz. RBA, HisK, 

CytO, HK, PK, ICDH, MDH and G6PDH showed high transcript abundance in MS and FD 

stages vis-à-vis shoot development in P. kurroa and P. scrophulariiflora. Genes such as HMGR, 

PMK, DXPS, ISPE, GS, G10H, DAHPS and PAL of MVA, MEP, iridoid and 

shikimate/phenylpropanoid pathways showed significant modulation of expression in SP, MS 

and FD stages in congruence with P-I content as compared to CM stages of P. kurroa and P. 

scrophulariiflora. Quantitative expression analysis of secondary metabolism genes at two 

temperatures revealed that 7 genes viz. HMGR, PMK, DXPS, GS, G10H, DAHPS and PAL 

showed 47-87 and 38-73 folds high expression in fully developed shoots of P. kurroa and P. 

scrophulariiflora, respectively originated from leaf explants at 15 ± 2 °C compared to 25 ± 2 °C. 

Further screening of these genes at species level showed their high expression pattern in P. 

kurroa (6-19 folds) vis-à-vis P. scrophulariiflora that was in corroboration with P-I content.  

 

Moreover, limited progress has been made so far with respect to development of rapid and cost 

effective approach for enhancement of shoot biomass vis-à-vis P-I production in these plant 

species under in vitro conditions. So, the effect of seaweed extract (SWE) obtained from 

Kappaphycus alvarezii with and without growth hormones was studied for in vitro propagation 
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and production of P-I in P. kurroa and P. scrophulariiflora. Murashige and Skoog (MS) media 

supplemented with SWE (MSS) showed enhancement of 2.79, 2.61 fold in shoot biomass and 

2.67, 2.61 fold in number of shoots after one month in P. kurroa and P. scrophulariiflora, 

respectively as compared to control C1 at 15 ± 2 °C. MSS with growth hormones also improved 

the plant growth with increment of 2.67, 2.65 fold in shoot biomass and 1.47, 1.37 fold in 

number of shoots after one month in P. kurroa and P. scrophulariiflora, respectively as 

compared to control SM at 15 ± 2 °C. SWE as a medium (SWM) showed comparable results and 

proved to be an economic alternative to MS medium. Both MSS and SWM increased P-I 

accumulation at 25 ± 2 ºC and 15 ± 2 ºC by ~2-4 and ~2-3 folds in P. kurroa and P. 

scrophulariiflora, respectively.  

 

Also, there are no reports on use of seaweed extract as a biostimulant and/or media replacement 

for in vitro micropropagation and P-I production in P. kurroa and P. scrophulariiflora. So, a 

comparative analysis of SWE with other elicitors viz. MeJa, SNP and ABA was carried out to 

identify an efficient elicitor for enhanced plant growth and P-I content in P. kurroa and P. 

scrophulariiflora. Results indicated that treatment with SWE showed highest shoot biomass and 

P-I content in P. kurroa and P. scrophulariiflora plants as compared to SNP, ABA and MeJa. 

Interestingly, SWE modulated all the four integrating secondary metabolic pathways, covering 

almost all critical steps in MEP, MVA, iridoid and shikimate/phenylpropanoid pathways to 

stimulate P-I biosynthesis. SNP targeted MVA/MEP pathways in conjunction with iridoid 

pathway while ABA modulated shikimate/phenylpropanoid pathway to increase the P-I content 

in P. kurroa and P. scrophulariiflora. 

 

Hence, the current study has revealed developmental regulation of P-I biosynthesis in P. kurroa 

and P. scrophulariiflora. Key genes contributing to P-I biosynthesis have been identified which 

could be targeted for enhancing P-I production. This study has also provided a first time insight 

into the potential of SWE as an elicitor as well as an alternative to MS media for enhancing shoot 

biomass and P-I production in P. kurroa and P. scrophulariiflora.  
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CHAPTER 1 

 

INTRODUCTION 

 

Himalayan region has rich diversity of medicinal plants having more than 800 valuable 

medicinal plant species in India. These medicinal herbs are extensively used by the locals as well 

as tribal communities since ancient times for curing various human ailments. Amongst many 

useful herbs, Picrorhiza species have been used in treating various liver disorders. The name has 

been derived from its bitter roots, where “Picros” means bitter, while “rhiza” means root. 

Picrorhiza kurroa Royle ex Benth and P. scrophulariiflora Pennell (family Scrophulariaceae) 

are the two important species of genus Picrorhiza which have been widely used in traditional as 

well as in modern medicinal system in India, China, Tibet and Nepal [1]. P. kurroa is distributed 

in Western Himalayas at 3,000–4,300 m altitude, while P. scrophulariiflora is restricted to 

Eastern Himalayas at 4,300–5,200 m altitude (Fig. 1.1). Both species contain various 

pharmaceutical compounds like picroside I (P-I), picroside II (P-II), kutkoside, vanillic acid, 

phenylethanoids, apocynin, androsin, cucurbitacins, picrotin, picrotoxinin, etc. P-I and P-II are 

the main bioactive constituents of these species, which are used in various herbal formulations 

such as Picroliv, Katuki, Arogya, Kutaki, Livocare, Livomap, Livomyn, Livplus, Pravekliv and 

Vimliv for the treatment of liver diseases, fever, allergy, hepatitis-B, leukoderma, gastrointestinal 

and urinary disorders etc [1-2]. They also possess anti-oxidant, immunomodulatory, anti-

malarial, anti-inflammatory, anti-cancerous, neuroprotective, anti-asthmatic and anti-diabetic 

properties [3]. The rhizomes of Picrorhiza have been used as adulterant for Gentiana kurrooa 

[4]. P. kurroa and P. scrophulariiflora are freely traded as 'kutki' leading to estimated 

consumption of 416 MT by herbal industries in India [5]. However, the consumption is much 

higher today as the annual growth rate of herbal medicines has increased in recent years with 

20% leading to increase in demand for medicinal plants by 11.1% [6]. P. kurroa and P. 

scrophulariiflora are self-regenerating in nature, but overexploitation and indiscriminate as well 

as unscientific collection practices has led to considerable depletion of their natural populations. 
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As a result, P. kurroa and P. scrophulariiflora plants have been listed as endangered species by 

International Union for Conservation of Nature and Natural Resources [7] and red data book of 

endangered species, respectively [8]. Therefore, immediate thrust has to be given for their 

conservation, micropropagation and enhancement of in vitro production of secondary 

metabolites.  

 

 

Fig. 1.1 Mature field grown plants of P. kurroa (a) and P. scrophulariiflora [1] (b) 

 

Different tissue culture techniques including micropropagation, synthetic seed production, 

conservation of germplasm through encapsulated microshoots, plant regeneration via direct and 

indirect organogenesis have been employed for conservation of P. kurroa and P. 

scrophulariiflora [8-16] but limited progress has been made so far with respect to development 

of an efficient approach for enhancing secondary metabolite production in these plant species 

under in vitro conditions. 

 

P. kurroa and P. scrophulariiflora share almost similar chemical composition in terms of 

biological activities and phytoconstituents [1]. The biosynthesis and accumulation of P-I and P-II 

take place differentially in different tissues of these species viz. P-I in shoots and P-II in roots or 

stolons, whereas both accumulate in rhizomes [3, 11-12, 17-18]. P-I is a monoterpenoid 

glycoside which possess anti-microbial, anti-inflammatory, anti-cancerous properties and is also 

used for the treatment of hepatitis B [19-21]. The biosynthesis of P-I involves non-mevalonate 

(MEP), mevalonate (MVA), shikimate/phenylpropanoid and iridoid pathways [22-23] (Fig. 1.2). 

Iridoid backbone of P-I is derived from geranyl pyrophosphate (GPP) by condensation of 

a b



 

5 
 

isopentenyl pyrophosphate (IPP) and dimethylallyl diphosphate (DMAPP) via MVA and MEP 

pathways [24]. Biosynthesis of P-I involves the synthesis of iridoid moiety from GPP through 

series of oxidation and cyclization steps followed by condensation of glucose moiety and 

cinnamate from phenylpropanoid pathway [25-26]. Recently, studies related to NGS 

transcriptome analysis for picrosides production, differential biosynthesis of picrosides and 

involvement of primary metabolic enzymes vis-à-vis picrosides content have provided valuable 

cues towards P-I production [18, 22-23, 27] but these studies have limited their interest towards 

P. kurroa, thereby neglecting the species diversity and leaving P. scrophulariiflora unexplored. 
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Fig. 1.2 Linking of primary and secondary metabolic pathways integrating to P-I biosynthesis. 

The metabolic network has been reconstructed by including glycolysis (blue color), TCA cycle 

(pink color), pentose phosphate pathway (purple color), MVA (black color), MEP (brown color), 

shikimate/phenylpropanoid (green color) and iridoid pathways (red color). Single and multiple 

steps were indicated by solid and dotted lines, respectively [27]  
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The biosynthesis and accumulation of medicinally important metabolites have been reported to 

occur in different tissues and organs of plants and is largely influenced by the developmental 

stage of a particular organ/tissue [28]. P-I biosynthesis occur in differentiated tissue (shoot) 

rather than the undifferentiated mass of cells suggesting growth and developmental stages 

playing imperative role in regulation of P-I production [11]. The environmental factors such as 

high altitude and seasonal variations complicate the process of understanding biology of P-I 

biosynthesis in P. kurroa and P. scrophulariiflora; hence, cell cultures offer a suitable biological 

system under homeostasis wherein the morphogenetic events and developmental fate of 

regenerating tissues can provide the clear picture of P-I biosynthesis. However, no molecular 

data is available till date to fully substantiate the developmental stages vis-à-vis P-I biosynthesis 

in P. kurroa and P. scrophulariiflora under in vitro conditions. Therefore, the role of key genes 

as regulatory or control points for P-I production can be ascertained by unraveling the dynamics 

of P-I biosynthesis at different developmental stages of P. kurroa and P. scrophulariiflora. 

 

Moreover, there is dearth of knowledge on development of rapid and cost effective 

micropropagation technique for enhancing shoot biomass along with secondary metabolite 

production in P. kurroa and P. scrophulariiflora. Since in vitro grown shoots of these species 

produce P-I, they can be used as promising alternative to the plants grown in natural habitat. 

Seaweed extracts have been reported to influence plant growth and development, early shoot 

formation and enhanced secondary metabolite production in various plant species such as 

Lycopersicon esculentum, Brassica oleraceae, Arabidopsis thaliana etc [29-31]. Seaweeds are 

macroscopic, multicellular marine alga whose extracts contains macronutrients, micronutrients, 

amino acids, vitamins, cytokinins, auxins, gibberellins, carbohydrates, betaines, and abscisic 

acid-like growth substances [32]. These components enhance plant growth and development by 

improving N and S uptake along with their assimilation, basal metabolism and transportation of 

various nutrients. Commercially available seaweed extracts are mainly derived from brown and 

red alga such as Ascophyllum nodosum, Macrocystis pyrifera, Ecklonia maxima, Lithothamnium 

calcareum, Porphyra perforate, Kappaphycus alvarezii, Gracilaria salicornia, Gelidiella 

acerosa [32-33]. As of now, no information exists on use of seaweed extracts for plant biomass 

and P-I enhancement in in vitro grown P. kurroa and P. scrophulariiflora plants. Therefore, 

seaweed extracts can be evaluated as a biostimulant or a cost effective alternative to Murashige 
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and Skoog medium (MS medium) [34] for enhancing shoot biomass along with P-I production in 

P. kurroa and P. scrophulariiflora. 

 

A number of different elicitors such as abscisic acid (ABA), salicylic acid, methyl jasmonate 

(MeJA), sodium nitroprusside (SNP), hydrogen peroxide, yeast extract, chitin and chitosan have 

been investigated for plant based secondary metabolite production. ABA, MeJa and SNP are 

known to increase oxidative stress by initiating signal transduction processes which mediates 

various pathophysiological and developmental processes, thereby triggering secondary 

metabolism for production of bioactive compounds [35]. Elicitors enhance secondary 

metabolites content by regulating the expression of genes involved in biosynthesis of plant 

secondary metabolites [35]; therefore, understanding the molecular basis of their biosynthesis in 

context to elicitor treatment is required for the metabolic engineering of iridoid glycosides in P. 

kurroa and P. scrophulariiflora. Singh et al. [36] have studied the regulation of MVA and MEP 

pathway genes vis-à-vis picrosides content in response to different modulators in P. kurroa but 

their study did not provided the information of their effects in vivo which could benefit the 

micropropagation of Picrorhiza species with increased P-I content. Therefore, comparative 

analysis of seaweed extract with different elicitors including ABA, MeJa and SNP can aid in 

identification of an efficient elicitor which could elicit shoot biomass and P-I content in P. 

kurroa and P. scrophulariiflora. Hence, the effect of seaweed extract and other elicitors on P-I 

production can be ascertained by expression analysis of key genes of MVA, MEP, iridoid and 

shikimate/phenylpropanoid pathways for P-I biosynthesis in these species under in vitro 

conditions. 

 

Thus, the current research work focused on in vitro studies for growth and development status 

along with molecular aspects for P-I production in P. kurroa and P. scrophulariiflora. Genes of 

primary and secondary metabolic pathways involved in shoot development and P-I biosynthesis 

in different morphogenetic stages of P. kurroa and P. scrophulariiflora, starting from explants 

through de-differentiation of original explants into callus mass and then re-differentiation of 

callus into shoot primordia and fully developed shoots under in vitro conditions were identified. 

Effects of different temperatures and explants were also studied at different developmental stages 

of P. kurroa and P. scrophulariiflora to ascertain the role of key genes involved in P-I 
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biosynthesis. Moreover, potential of seaweed extract as a biostimulant with MS medium was 

evaluated for enhancement of shoot biomass and P-I content in in vitro grown P. kurroa and P. 

scrophulariiflora plants. For in vitro mass propagation of these species, seaweed extract has also 

been investigated as a nutrient medium alternative to MS medium. Further, a comparative 

analysis of seaweed extract with other elicitors viz. MeJa, SNP and ABA was carried out to 

identify an efficient elicitor for enhanced plant growth and P-I content in P. kurroa and P. 

scrophulariiflora. Expression analysis of key genes was also done to evaluate the effect of 

different elicitors on MEP, MVA, iridoid and shikimate/phenylpropanoid pathways involved in 

P-I biosynthesis.  

 

Therefore, the current work was undertaken to fill the research gaps in knowledge on P-I 

biosynthesis with the following objectives:  

 

Objective 1: Understanding P-I biosynthesis in different in vitro morphogenetic stages of P. 

kurroa and P. scrophulariiflora  

Objective 2: Investigating the effect of seaweed extract for increase in biomass and P-I 

production in P. kurroa and P. scrophulariiflora  

Objective 3: Discerning the expression status of key pathway genes vis-à-vis P-I biosynthesis in 

P. kurroa and P. scrophulariiflora 
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CHAPTER 2 

 

REVIEW OF LITERATURE 

 

Medicinal plants have been used by mankind for the treatment of various ailments since ancient 

times. The traditional systems of medicines such as Unani, Ayurveda and ancient texts like Rig 

Veda, Atharva Veda, Charaka Samhita and Sushruta Samhita mention the properties and use of 

various plants as medicines. According to World Health Organization (WHO), 80% population 

of developing countries cannot access the expensive modern pharmaceutical products and rely on 

traditional medicine to meet their primary healthcare needs [37]. These herbal medicines are 

relatively cheaper and safer than synthetic or modern medicines [38-39]. Higher plants also 

contribute directly or indirectly in about 25% of modern medicine [40]. Around the world, 

21,000 plants have been listed for medicinal purposes by the WHO and among these, 2500 

species are in India; 150 species being used commercially on a fairly large scale [41].  

 

The therapeutic value of medicinal plants is attributed to the presence of secondary metabolites. 

All biochemical processes in plant cell can be conditionally classified as primary and secondary 

metabolism. Compounds and processes which are necessary for growth, development and 

breeding belong to primary metabolism. It includes the metabolism of proteins, nucleic acids, 

carbohydrates, lipids and essential for basic photosynthetic or respiratory processes. On the other 

hand, secondary metabolism is not directly essential for plant cell life and function in defence 

(against herbivores, microbes, viruses or competing plants), signalling (to attract pollinating or 

seed dispersing insects/birds) and chemical adaptations to environmental stresses [42-43]. Plants 

generally produce many secondary metabolites which are biosynthetically derived from primary 

metabolites. The pattern of secondary metabolites in a given plant is complex and can vary in a 

tissue- and organ specific way during different developmental stages [43]. Classification of 

secondary metabolites may be based on the chemical structure or biological characteristics of 

substances. In general, three big groups of secondary compounds can be assigned: terpenoids 

(derived from acetyl coenzyme A or glycolysis cycle intermediates), phenolics (aromatic rings 
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bearing a hydroxyl functional group) and alkaloids (nitrogen containing compounds). Their 

number in plants is estimated to be more than 500,000 [44]. 

 

These pharmacologically active compounds are derived either from different organs like leaves, 

stem, bark, root, flower, seed or whole medicinal plant, which are required for herbal drug 

formulations. As per the estimates, world market for plant derived drugs by year 2050 is likely to 

reach ~US $5 trillion. Therefore, the demand of high-yield/high-quality medicinal plants will 

continue to increase in future. Today, only 10% of all medicinal plant species used are cultivated, 

with by far the larger majority being obtained from wild collections [45]. The rising demand of 

plant-based drugs is creating heavy pressure on some selected high-value medicinal plant 

populations in the wild. Harvesting from the wild has led to loss of genetic diversity and habitat 

destruction of many plant species. Slow growth rate, complex accumulation patterns, low 

population densities and narrow geographic ranges of medicinal plants are making them more 

prone to extinction [46]. Also, uneconomical chemical synthesis (mainly for large complex 

molecules), non-availability of uniform and unadulterated quality plant material in sufficient 

quantities impedes in meeting the ever increasing industrial demands. Therefore, 

biotechnological tools offer an excellent platform for production of desirable natural products by 

enhancing their biosynthesis and accumulation. Plant tissue culture techniques in combination 

with molecular techniques can help in understanding the process of biosynthesis and 

accumulation of secondary metabolites along with the multiplication and conservation of 

medicinal plants.  

 

Out of many important medicinal plants in present era, Picrorhiza genus finds a key position for 

conservation and enhancement of secondary metabolite production. The current status of 

literature on various aspects of Picrorhiza research has been reviewed as under: 

 

2.1 Picrorhiza 

 

The genus Picrorhiza belongs to the tribe Veroniceae of Scrophulariaceae family. This family is 

arranged in the order Scrophulariales, subclass Asteridae and class Dicotyledonae of the 

Angiospermae according to the taxonomical system of Cronquist. The genus Picrorhiza was 
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considered monotypic, with only P. kurroa species, until Pennell [47] noted P. scrophulariiflora 

(originally written as “P. scrophulariaeflora”) the second species of this genus. Recently, 

Picrorhiza tungnathii has also been identified in Western Himalayas from Uttarakhand, India 

[48]. In Indian languages, the common names of P. kurroa and P. scrophulariiflora are „Kutki‟ 

and „Nepalese Kutki‟, respectively. Both species are quite similar in morphology and known by 

same vernacular names. Their vernacular names include „Kutki‟ in Nepali and Hindi, „Katuki‟ in 

Bengali, „Karu‟ in Punjabi, „Putising‟ in Dzongkha; „Katurohini‟ in Sanskrit and „Hellebore‟ in 

English [1]. It is called „Hun-hunglien‟ in China, „Kaur‟ in Kashmir Himalayas, „Kadu‟ in 

Himachal Himalayas and „Kadvi‟ in Uttarakhand Himalayas. Both species grow in Himalayan 

region in rocky slopes as well as in organic soils but are mostly found on the rocky crevices. 

 

2.2 P. kurroa  

 

P. kurroa is a perennial herb and propagates through seeds and stolons. Stolons eventually 

mature into a rhizome with independent shoots and roots. These separate looking plants at above 

ground level are actually joined together by stolons and when get detached from the mother 

stock, becomes independent plants (Fig. 2.1) [49]. It yields off-shoots of 5-9 cm in length from 

joints of rhizomes with leaf blades 7–11 cm in length. Leaves are basal, spathulate to narrow 

elliptic, coarsely saw-toothed and narrowed to a winged stalk. Its flowers are sessile, 

zygomorphic, bilipped, bisexual, pale or purplish blue in color and appear in June through 

August. Corolla is 4-5 mm long, 5-lobed, nearly actinomorphic and stamens are didynamous 

with 2 long (15.50 mm) and 2 short (13.25 mm) stamens. The flower architecture prefers mostly 

cross-pollination but self-pollination also occurs to some extent. Manual harvesting of the plant 

takes place in October through December [1, 49-50]. 
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Fig: 2.1 Mature P. kurroa plant showing different organs 

 

2.3 P. scrophulariiflora  

 

P. scrophulariiflora is about 10-20 cm in height and have stout creeping rootstock with jointed 

and zigzag growing underground rhizomes. Propagation occurs through seeds and rhizomes. Its 

leaves are basal, oblanceolate or narrowly spathulate, serrated in upper half and 10–14 cm in 

length. Flowers are dark blue-purple in color. Corolla is 9-10 mm long, 4-lobed, bilabiate and 

stamens are slightly didynamous and equalling corolla in size. Flowering time is from July 

through August. Fruits are capsule of 6-10 mm and fruiting occurs is October through 

November. Seeds are pale brown in color and 1 x 0.8 mm in size. Harvesting time is September 

through December [1, 51-52] 

 

2.4 Geographical distribution 

 

P. kurroa grows naturally in dry western Himalayan region and can be found from Kashmir to 

Kumaon [47] and Pakistan to Uttarakhand [51] at 3000-4300 m altitudes, while P. 

Stolon

Rhizome

Young plantlet

Shoot
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scrophulariiflora is distributed from moist Eastern Himalaya to mountains of Yunnan at 4300-

5200 m altitudes [47] (Fig. 2.2; Table 2.1). 

 

 

Fig. 2.2 Distribution of Picrorhiza species in the Himalayan region: ▬ ▬ P. kurroa; ▬▬ P. 

scrophulariiflora [50] 

 

Table 2.1 Distribution of P. kurroa and P. scrophulariiflora in the Himalayan region 

 

 State/Country Location Reference 

P. kurroa Jammu & 

Kashmir 

Pir Panjal range [53-54] 

Gumri , Kolohoi, Zojpal, Sonsa Nag  [55-56] 

Himachal 

Pradesh 

Pangi, Bharmour, Lahaul, Dauladhar 

valleys 

[57] 

Lahaul, Kinnaur, Kulu, Rohru, Kangra, 

Pangi, Bharmour  

[58] 

GHNP, Dhauladhar WLS, Kugti WLS [59-60] 

Uttarakhand Harsil, Raithal, Sukhi, Sayara, Tehri-

Garhwal in Bhagirathi Valley 

[61] 
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Kedarnath, Har-ki-dun, Ponwati, Tali, 

Harshil, Gangotri in Garhwal Hills  

[54] 

Kumaon hills [53] 

VOF NP, Kedarnath WLS, NDBR, 

alpine ranges of Ralam, Dhauli, Kali 

valleys 

[62-64] 

P. scrophulariiflora Nepal Bagmati zone, Rasuwa, Langtang, 

Gorkha, Gosaikunda, Jaljale Himal, 

Jaljale–Tin Pokhari, Jumla, Karnali, 

Laurivinayak, Murkhagari, Thaple 

Himal 

[50, 65-67] 

Sikkim Naku Chhu, North Sikkim,  East 

Sikkim, Zemu valley, Llonakh, 

Choktsering Chhu, North of Jongri, 

Gamothang (Gopethang), Jongri 

(Dzongri), Jongri-Olothang, Preig 

Chu–Jongri (Prek Chhu) 

[47, 53, 68-

69] 

Bhutan Bhutan [70] 

 

2.5 Phytochemistry of P. kurroa and P. scrophulariiflora 

 

The genus Picrorhiza has been widely studied for its various phytoconstituents. A total of 132 

constituents have been identified from different parts of plants such as rhizomes, roots, leaf, stem 

and seeds [3]. P. kurroa and P. scrophulariiflora have similar chemical composition but P. 

scrophulariiflora contains additional compounds such as phenylethanoids, glycosides and 

plantamajoside [1, 50, 71]. Picrorhiza species have been widely used in pharmaceuticals due to 

presence of various active constituents.  The major classes of chemical compounds isolated from 

these species are iridoid glycosides, cucurbitacins, phenolic and phenylethanoids (Table 2.2). P-I 

and P-II are the two important iridoid glycosides of Picrorhiza species (Fig. 2.3) which are used 

in various herbal formulations. The basic structure of P-I and P-II is same except P-I having 

cinnamate moiety and P-II having vanillate moiety. Kutkin and Picroliv are the main herbal 
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preparations of P. kurroa. Kutkin is a mixture of P-I and kutkoside in a ratio of 1:2 and other 

minor glycosides [72-73], whereas Picroliv is a similar but less purified fraction, having about 

60% of an equal mixture of Picroside-I and kutkoside [74]. 

 

Table 2.2 Major chemical constituents isolated from Picrorhiza species 

 

Class P. kurroa P. scrophulariiflora 

Compound Reference(s) Compound Reference(s) 

Iridoid Picroside I [75] Picroside I [76] 

Picroside II [77] Picroside II [76] 

Picroside III [78] Picroside III [76] 

Picroside V [79] Picroside IV [71] 

Minecoside [80] Minecoside [71] 

Catalpol [81] Catalpol [17] 

Kutkoside [72] Specioside [71] 

6-Feruloylcatalpol [80] 6-Feruloylcatalpol [71] 

Pikuroside [82] Pikuroside [83] 

Veronicoside  [80] Acubin [84] 

 Verminoside [71] 

Cucurbitacins  Arvenin  

 

[80] Arvenin [84] 

2-β-glucosyloxy-

3,16,20,25-

tetrahydroxy-9-

methyl-19-

norlanosta-5, 23- 

diene-22-one 

[80] 2β-

glucopyranosyloxy-3, 

16,20,22-

tetrahydroxy-9-

methyl-19- 

norlanosta-5,24-diene 

[17] 

2-β -glucosyloxy-

3,16, 20,25-

tetrahydroxy-9-

[80] 2-(β-D-

glucopyranosyloxy)-

3,16,20,25-

[71] 
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methyl-19-

norlanost-5-ene- 

22-one 

tetrahydroxy-9-

methyl-19- 

norlansota-5-ene -22-

one 

25-Acetoxy-2-β-

glucosyloxy-

16,20-dihydroxy-

9-methyl-19-

norlanosta- 

5,23-diene-

3,11,22-trione (2-

O-glycolside of 

cucurbitacin B) 

[80] 25- Acetoxy-2β 

glucopayanosyloxy-

3,16, 20-trihydroxy-

9-methyl-19- 

norlansota-5,23diene-

22-one 

[17] 

Phenolics  Picein [80] Picein [85] 

Androsin [80] Androsin [85] 

Ellagic acid  [86] Bergenin [87] 

Vanillic acid [88] Catechin [89] 

Apocyanin [90] Umbelliferon [84] 

 Luteolin [89] 

Phenylethanoids   Scroside A [71] 

Scroside B [71] 

Scroside C [71] 

Scroside D [91] 

Scroside E [91] 

Scroside F [84] 

Scroside G [89] 

Plantamajoside [71] 
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Fig. 2.3 Chemical structures of Picroside-I and Picroside-II 

 

2.6 Medicinal properties of P. kurroa and P. scrophulariiflora 

 

Picrorhiza species have been used in the traditional as well as in modern systems of medicine. P. 

kurroa is used for the treatment of various disorders including liver ailments, fever, asthma and 

jaundice, gastrointestinal and urinary problems, leukoderma, snake bite, scorpion sting etc. [3]. 

Its extracts have anti-inflammatory [92], hepatoprotective [93], immunomodulatory [94], free 

radical scavenging [95], anti-allergic and anti-anaphylactics [96] and anti-hepatitis B surface 

antigen activities [97]. P. scrophulariiflora is used in Tibetan and Chinese traditional medicines 

to treat various ailments and have pharmaceutical value for hepatoprotective [83], 

immunomodulator [98], antidiabetic [99], antioxidant [100], antimalarial [101] and 

neuroprotective [102] activities. Some of the medicinal properties of P. kurroa and P. 

scrophulariiflora extract are listed in Table 2.3. 
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Table 2.3 Major medicinal properties of P. kurroa and P. scrophulariiflora 

 

Property P. kurroa P. scrophulariiflora 

Hepatoprotective [93] [83] 

Antioxidant [100] [100] 

Immunomodulatory [94] [98] 

Antimalarial [103] [101] 

Anti-inflammatory [92] [104] 

Anticancerous [105] - 

Neuroprotective [106] [102] 

Antiasthmatic [107] - 

Antidiabetic [108] [99] 

 

2.7 Medicinal properties of P-I and P-II 

 

2.7.1 P-I 

 

P-I is biosynthesized in shoots of P. kurroa and P. scrophulariiflora [3, 11]. P-I has been found 

to be effective against jaundice and chronic liver injury induced by carbon tetrachloride. It 

enhances humoral immune response and is reported to cure hepatitis B [19]. Singh et al. [109] 

have demonstrated anti-inflammatory activity of P-I in different test models. Rathee et al. [21] 

have reported anti-invasion activity of P-I against MCF-7 cell lines (human breast cancer). It 

inhibits MCF-7 cell invasion, migration and down-regulation of the expression of matrix 

metalloproteinases (MMPs) at mRNA and protein level. 

 

2.7.2 P-II 

 

 Biosynthesis of P-II occurs in roots or stolons of P. kurroa and P. scrophulariiflora [3, 18]. P-II 

reduces the content of free radicals and enhances the activity of antioxidase and GSHPx, thus 

preventing cerebral ischemic injury in rats [110-111]. Guo et al. [112] have shown that P-II 
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downregulates the expression of TLR4, NFκB and TNFα by hampering apoptosis and 

inflammation induced by cerebral ischemic reperfusion injury, thereby improving the 

neurobehavioral function of rats. P-II has also been reported to protect the cardiomyocytes from 

hypoxia induced apoptosis [113]. 

 

2.8 Molecular basis of picrosides biosynthesis 

 

The biosynthesis and accumulation of terpenoids is controlled by structural and regulatory genes 

in different plant species [114]. Various studies have been taken up to understand the molecular 

basis of picrosides biosynthesis. Kawoosa et al. [25] cloned two regulatory genes of terpenoid 

metabolism viz. 3-hydroxy-3-methylglutaryl coenzyme A reductase (pkhmgr) and 1-deoxy-D-

xylulose-5-phosphate synthase (pkdxs) from P. kurroa. Further eight full-length cDNA 

sequences from MEP and MVA pathway including, 1-deoxy-D-xylulose-5-phosphate synthase 

(DXPS), 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXPR), 4-diphosphocytidyl-2-C-

methyl-D-erythritol kinase (CMK), 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDS), 

acetyl-CoA acetyltransferase (ACTH), 3-hydroxy-3-methylglutaryl coenzyme A reductase 

(HMGR), isopentenyl pyrophosphate isomerase (IPPI), geranyl diphosphate synthase (GDPS) 

and two partial sequences viz. PAL, COMT from phenylpropanoid pathway, were cloned and 

their expression analysis vis-à-vis picrosides content was carried out in different tissues [Singh et 

al. 2013]. Pandit et al. [22] cloned five genes of MEP and MVA pathway namely ISPD, MECPS, 

HDS, HMGS and PMK using comparative genomics and did expression analysis of all 15 genes 

of these pathways vis-à-vis picrosides content in different tissues of P. kurroa. Kumar et al. [26] 

for the first time proposed a plausible complete biosynthetic pathway for picrosides biosynthesis 

in P. kurroa using a bio-retrosynthetic approach by assembling the biosynthetic pathway i.e. 

from end-product to their precursor. Bhat et al. [115] cloned phenylalanine ammonia lyase 

(PAL), an important rate-limiting gene from phenylpropanoid pathway and observed its 

expression pattern in relation to picrosides content in different tissues of P. kurroa. Recently, 

Shitiz et al. [23] made an important endeavour towards picrosides biosynthesis in P. kurroa by 

completely elucidating the P-I biosynthetic pathway using NGS transcriptomes and enzyme 

inhibitor studies. Kumar et al. [27] have also determined the gene expression patterns of primary 
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and secondary metabolic pathway genes vis-à-vis P-I content in in vitro grown shoots of P. 

kurroa at different time intervals viz. 0, 10, 20, 30 and 40 days.  

 

2.9 Tissue culture status of P. kurroa and P. scrophulariiflora 

 

Tissue culture techniques offer a useful tool for conservation of germplasm and mass 

propagation of threatened plant species [116-117]. These techniques also help in large scale 

production of high value medicinal plants for their commercialization and sustainable utilization 

in herbal industries. Mondal et al. [1] have reviewed the studies related to shoot proliferation for 

mass propagation of P. kurroa and P. scrophulariiflora under in vitro conditions (Table 2.4). 

First attempt for in vitro proliferation of P. kurroa was done by using shoot tips on MS medium 

supplemented with varying concentrations of Kinetin (KN) (3–5 mg/L) [118]. Later, stem 

cuttings on MS medium containing 6-benzyladenine (BA) (0.11–2.25 mg/L) alone or in 

combination with Indole-3-acetic acid (IAA) (0.02–0.2 mg/L) or gibberellic acid (GA3) (0.03–

0.35 mg/L) [119]; runners, axillary shoots on MS medium containing BA at a lower 

concentration (0.23 mg/L) [120] have been used for the multiplication of P. kurroa. Sood and 

Chauhan [9] developed a low-cost micropropagation protocol for P. kurroa. Direct regeneration 

via shoot organogenesis from leaf explants derived from in vitro grown shoot cultures have been 

reported on Gamborg‟s B5 medium [121] supplemented with 3 mg/L KN and 1 mg/L indole-3-

butyric acid (IBA) [14]. Indirect shoot organogenesis via callus was established from different 

explants including leaf, nodal and root segments of P. kurroa. MS media supplemented with 2, 

4-dichlorophenoxyacetic acid (2, 4-D) (2 mg/L) + IBA (0.5 mg/L) led to high frequency callus 

formation and regeneration of shoots was observed in MS medium containing BA (2 mg/L) + 

KN (3 mg/L) [10, 122]. A regeneration protocol was standardized by using leaves from aseptic 

shoot cultures, raised from ex vitro leaves at 2.32 μM of KN [15]. Sharma et al. [123] reported 

that in vitro-derived nodal explants of P. kurroa cultured on MS medium supplemented with 

0.11 mg/L thidiazuron (TDZ) along with 0.5 mg/L IBA developed somatic embryos. In vitro 

grown microshoots of P. kurroa were also encapsulated in alginate beads for their storage [13]. 

Recently, Chand et al. [124] have reviewed that High Altitude Plant Physiology Research Centre, 

HNB Garhwal University, Srinagar, Uttarakhand (India) has taken an initiative in cultivation of 

P. kurroa which is the first step towards reducing the pressure on wild medicinal plants 
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population, ensuring regular supply of raw material to industries and uplifting the economy of 

local farmers. 

 

On the other hand, very limited work has been done on tissue culture of P. scrophulariiflora. A 

study by Bantawa et al. [4] have reported first time shoot proliferation of P. scrophulariiflora 

using shoot-tips and nodal explants at lower concentrations of KN (0.5 mg/L). Then, a 

reproducible in vitro regeneration system from leaf derived callus was developed for P. 

scrophulariiflora on a Woody Plant Medium (WPM) [125] supplemented with 0.1 mg/L 1-

Naphthaleneacetic acid (NAA) and 0.05 mg/L KN [12]. Bantawa et al. [8] also achieved 

synchronous maturation of somatic embryos from leaf-derived callus by transferring these 

somatic embryos onto a solidified MS medium containing 0.5 mg/L ABA for 2 weeks, followed 

by transfer to a fresh MS medium containing 0.5 mg/L KN for another 4 weeks.  

 

Cell cultures offer a suitable biological system for rapid production of plant metabolites of 

pharmaceutical importance [126]. However, limited information is available on biosynthesis and 

accumulation of P-I and P-II in P. kurroa and no report exist on picrosides production in P. 

scrophulariiflora under in vitro conditions. Sood and Chauhan [11] have reported the 

accumulation of P-I in shoot cultures of P. kurroa with no detection of P-II. The P-I content was 

1.9, 1.5, and 0.04 mg/g dry weight in leaf sections, stem, and root segments, respectively, while 

P-I was absent in callus derived from these explants. Kawoosa et al. [25] have shown that 

picrosides biosynthesis is regulated by light and temperature in in vitro raised P. kurroa plants 

and found high picrosides content in shoots grown at low temperature (15°C) and under 

illumination as compared to 25°C and dark conditions. Sood and Chauhan [127] have also 

reported  highest P-I accumulation in shoots grown at 15°C (2.03 mg/g) as compared to 0.12 

mg/g in shoots formed at 25°C. 

 

In the recent past, several studies related to optimization of genetic transformation protocols have 

been attempted in P. kurroa. Verma et al. [128] for the first time established Agrobacterium 

rhizogenes mediated hairy root cultures of P. kurroa. In terms of biomass and glycoside content, 

superior clone was obtained which superseded all other hairy root clones along with the non-

transformed in vitro-grown control roots of P. kurroa. Mishra et al. [129] and Rawat et al. [130] 
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have also developed hairy root lines of P. kurroa through A. rhizogenes, for picrotin and 

picrotoxinin production. Recently, Verma et al. [131] have reported yield enhancement strategies 

for production of picroliv from hairy root cultures of P. kurroa. A protocol for genetic 

transformation using A. tumefaciens strain GV3101 harboring binary vector pCAMBIA1302 has 

also been developed in P. kurroa [14].  
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Table 2.4 In vitro propagation of Picrorhiza species 

 

Picrorhiza 

Species 

Objective Explant 

type 

Nutrient medium Hardening and 

field transfer 

References 

Shoot 

initiation 

Shoot 

proliferation 

Rooting 

 

P. kurroa 

 

Micropropagation Shoot tips  

 

MS + KN (5 mg/L) + IAA 

(1 mg/L)  

 

MS  + 

NAA(1 

mg/L) 

 

Survival of 86.7%  

was observed after 

transferring the 

rooted plantlets to 

clay pot containing 

sterile sand, soil 

[118] 

Micropropagation Terminal 

and nodal 

cuttings 

MS + BA 

(0.69 

mg/L) 

MS + BA 

(0.23 mg/L) 

MS + NAA 

(0.2 mg/L) 

 [119] 

Plant regeneration 

via callus 

mediated 

organogenesis 

Leaf and 

nodal 

cutting 

from 

mature 

plant 

MS + 2, 4 

D (0.5–2 

mg/L) 

+NAA (4 

mg/L) + 

KN (1 

mg/L) 

MS + 

BA (0.25 

mg/L) 

MS + NAA 

(0.2 mg/L) 

Four-week-old 

plantlets were 

successfully 

established in soil 

[132] 

Micropropagation Nodal MS  + BA (0.23 mg/L) MS + IBA  [120] 
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segments  (3 mg/L) 

Development of a 

low cost 

micropropagation 

technology 

Shoot 

apices 

MS + IAA (2) + KN 

(3 mg/L) + table sugar (3%) 

 

MS + IBA 

(3 mg/L) + 

table 

sugar (3%) 

 [9] 

High frequency 

callus induction 

and plantlet 

regeneration 

Leaf disc, 

nodal 

segment 

and root 

segments 

MS + 2,4 

D  

(2 mg/L) 

+ IBA 

(0.5 mg/L) 

for callus 

induction 

MS + BA 

(2 mg/L) + KN 

(3 mg/L)  

MS + IBA 

(3 mg/L) 

 

Hardening mixture 

used was sand: soil: 

Vermiculite (1:1:1)  

 

[10] 

Micropropagation Nodal 

segments 

 MS + NAA 

(0.6 mg/L) 

MS + NAA 

(0.4 mg/L) 

+ IAA 

(0.1 mg/L) 

+ IBA 

(0.5 mg/L) 

The survival 

percentage was 

81.5% in hardening 

chamber 

[133] 

Micropropagation 

and somatic 

embryogenesis 

Nodal 

segment, 

leaf 

tissue  

MS + KN 

(2 mg/L) 

+ IBA 

(0.5 mg/L) 

MS + KN 

(2 mg/L) + 

IBA (0.5 

mg/L) 

MS + IBA 

(1 mg/L) 

 [123] 
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Micropropagation 

via synthetic 

Seeds 

In vitro 

derived 

leaf, shoot 

tips, nodal 

segments 

Nodal segments on MS + 

TDZ (0.11 mg/L) and IBA 

(0.5 mg/L) for 

somatic embryos 

MS + NAA 

(1 mg/L) 

 [13] 

Plant 

regeneration 

via 

adventitious 

(de novo) 

shoot 

organogenesis 

Leaf 

explants 

from in 

vitro 

shoot 

cultures 

B5 + KN 

(3 mg/L) 

+ IBA 

(1 mg/L) 

 

B5 + KN 

(3 mg/L) + 

IBA 

(1mg/L) 

 

B5 + KN 

(3mg/L) + 

IBA 

(1 mg/L) + 

activated 

charcoal 

(1%) 

 [14] 

A regeneration 

protocol was 

standardized 

Leaf  MS + 

TDZ (0.5 

μM) 

MS + KN 

(2.32 μM) 

Rooting 

was 

observed 

on PGR 

free 

medium. 

The survival of 

plants grown at 

25°C was higher 

(80%) under green 

house conditions as 

compared to plants 

grown at 25°C 

(50%) 

[15] 

P. 

scrophulariiflora 

Micropropagation In vitro 

shoot tips, 

WPM + BA (0.05 mg/L) 

 

MS + NAA 

(1mg/L) 

The regenerated 

plantlets were 

[4] 
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 nodal 

segments 

hardened in plastic 

cups containing 9:1 

virgin soil and sand 

with 97% survival 

Micropropagation Shoot tips, 

nodal 

segments 

 

WPM + 

BA (0.05 

mg/L) 

 

MS + KN (0.5 

mg/L) 

MS + NAA 

(1mg/L) 

Rooted plantlets 

were transferred to 

plastic cups 

containing sterile 

virgin soil and sand 

(9:1) 

[8] 

Plant regeneration 

via callus 

mediated 

organogenesis 

In vitro leaf  

 

WPM + 

NAA 

(0.1mg/L) 

+ KN 

(0.05 

mg/L) 

WPM + BA 

(0.1 mg/L) 

 

WPM + 

NAA (1 

mg/L) 

Survival rate was 

90% and well 

hardened plants 

were distributed to 

the local farmers for 

planting 

[12] 

Plant 

regeneration 

via somatic 

embryogenesis 

In vitro 

leaf 

derived 

callus 

MS + BA 

(0.1–2.0 

mg/L) 

 

MS + ABA 

(0.1–1.0 mg/L) 

 

 Survival rate was 

82% 

[8] 
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2.10 Morphogenesis and developmental status vis-à-vis picrosides biosynthesis 

 

Plants synthesize large numbers of different secondary metabolites out of which some are 

restricted to specific tissues or organs, e.g. benzoyloxylated glucosinolates and proanthocyanids 

are only found in seeds [134-135]. Biosynthesis and accumulation of metabolites is largely 

influenced by the developmental stage of a particular organ/tissue as well as in response to 

external stimuli [28]. Site-specific accumulation of metabolites suggests specialized functions in 

different stages of plant development [136]. There are very few reports showing the influence of 

growth and developmental stages of P. kurroa on P-I content, while no such study has been 

reported for P. scrophulariiflora. The biosynthesis of P-I and P-II is known to occur 

differentially in shoots and roots of P. kurroa wherein P-I accumulates preferentially in shoots 

and P-II in roots of field grown plants of P. kurroa [11, 18]. Sood and Chauhan [11] showed that 

P-I biosynthesis occur in shoots rather than undifferentiated mass of cells. Pandit et al. [18] have 

analyzed P-I and P-II contents in field grown plants of P. kurroa and found 0.05% to 0.76% P-I 

content in shoots; 0.15–0.50 % P-I and 0.1–0.45 % P-II content in rhizomes of different 

developmental stages. However, molecular studies can provide a clear picture of P-I 

biosynthesis. Various environmental factors such as altitude, light, temperature, seasonal 

variations are known to influence the biosynthesis and accumulation of secondary metabolites in 

plants grown in wild, thus complicating the process of understanding biology of P-I biosynthesis. 

Hence, cell culture techniques along with molecular approaches could be efficiently utilized for 

better understanding of P-I biosynthesis at different developmental stages of P. kurroa and P. 

scrophulariiflora.  

 

2.11 Elicitors and biostimulants 

 

2.11.1 Elicitors 

 

Plants grown under tissue culture conditions can be used as a promising alternative for 

metabolites which are not easily available through chemical synthesis or extraction methods. 

However, one of the major obstacles is the low yield of plant secondary metabolites in plant cell 
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cultures. Elicitors have been widely used for production of metabolites under in vitro conditions 

[35]. These are chemicals or biofactors from various sources that can induce physiological and 

morphological responses and secondary metabolites accumulation in plants and/or plant cells in 

vitro. Elicitation is the process of inducing or enhancing secondary metabolites biosynthesis by 

plants to ensure their survival, persistence and competitiveness. Various elicitors such as ABA, 

MeJa, SNP, salicylic acid, hydrogen peroxide, yeast extract, chitin, chitosan etc. have been 

investigated for plant based secondary metabolite production [35, 137]. Elicitors enhance 

secondary metabolites content by triggering signal transduction process that regulates gene 

expression for biosynthesis of plant secondary metabolites [35]. There are very few reports on 

use of elicitors in Picrorhiza species for secondary metabolite enhancement. Recently, Rawat et 

al. [138] have studied the effect of MeJa and yeast extract on production of picrotin and 

picrotoxinin and found yeast extract more efficient than MeJa for their production in roots of P. 

kurroa. Singh et al. [36] have also studied the effect of different modulators viz. hydrogen 

peroxide, MeJa, ABA and salicylic acid on MVA/MEP pathway genes for enhanced production 

of P-I in P. kurroa, but their effect remained unclear in vivo. These findings therefore, will not 

benefit micropropagation of these plant species with high P-I content. 

 

2.11.2 Biostimulants 

 

Various biostimulants are also known to enhance plant growth along with secondary metabolites 

content in plant species. Plant biostimulants contain substance(s) whose function is to stimulate 

natural processes to enhance nutrient uptake, nutrient efficiency, tolerance to abiotic stress, 

facilitating nutrient assimilation, translocation and use, enhance secondary metabolite 

production, improve plant quality and yield [139]. Biostimulants are available in a variety of 

formulations with varying ingredients and include humic substances, amino acid containing 

products and hormone containing products like seaweed extracts [140]. There is no report till 

date on use of any biostimulant for enhancing plant growth and secondary metabolite production 

on Picrorhiza species. 
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2.12 Seaweed extracts 

 

Seaweed extracts have been used for long for the improvement of plant growth and development 

as well as secondary metabolite production [32, 141]. Seaweeds are macroscopic, multicellular 

marine alga and their extracts are widely used as biostimulants for the growth and development 

of plants [142]. Commercially available seaweed extracts are mainly derived from brown and red 

alga such as Ascophyllum nodosum, Macrocystis pyrifera, Ecklonia maxima, Lithothamnium 

calcareum, Porphyra perforate, Kappaphycus alvarezii, Gracilaria salicornia, Gelidiella 

acerosa [32-33] and are reported to contain macronutrients, micronutrients, amino acids, 

vitamins, cytokinins, auxins, gibberellins, carbohydrates, betaines, and abscisic acid (ABA)-like 

growth substances [32, 143-146]. A number of commercial seaweed extract products available 

for use in agriculture and horticulture are reviewed by Khan et al. [32] and have been listed in 

Table 2.5. 

 

Table 2.5 List of commercially available seaweed extract products  

 

Product name Seaweed name Company 

Acadian® Ascophyllum nodosum  Acadian Agritech 

Agri-Gro Ultra  A. nodosum  Agri Gro Marketing Inc. 

AgroKelp  Macrocystis pyrifera  Algas y Bioderivados Marinos, S.A. 

de C.V. 

Alg-A-Mic  A. nodosum  BioBizz Worldwide N.V. 

Bio-Genesis
TM

 High Tide
TM 

 A. nodosum  Green Air Products, Inc.  

Biovita A. nodosum PI Industries Ltd 

Emerald RMA  Red marine algae  Dolphin Sea Vegetable Company  

Espoma A. nodosum The Espoma Company 

Guarantee® A. nodosum Maine Stream Organics  

Kelp Meal A. nodosum Acadian Seaplants Ltd 

Kelpak  Ecklonia maxima BASF 

Kelpro  A. nodosum Tecniprocesos Biologicos, S.A. de 
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 C.V. 

Kelprosoil A. nodosum Productos del Pacifico, S.A. deC.V. 

Maxicrop  A. nodosum Maxicrop USA, Inc. 

Nitrozime A. nodosum Hydrodynamics International Inc. 

Profert® Durvillea Antarctica BASF 

Sea Winner  Unspecified China Ocean University Product 

Development Co., Ltd 

Seanure Unspecified Farmura Ltd. 

Seasol® D. potatorum Seasol International Pty Ltd 

Soluble Seaweed Extract  A. nodosum Technaflora Plant Products, LTD 

Stimplex® A. nodosum Acadian Agritech 

Synergy  A. nodosum Green Air Products, Inc. 

Powdered seaweed extract Kappaphycus alvarezii Sea6 Energy Pvt Ltd 

 

Previous reports have highlighted the importance of seaweed extracts on plant growth and 

development wherein seed germination in Triticum aestivum [147]; in vitro mass propagation of 

Lycopersicon esculentum L. [30] and brinjal [33]; improved yield and fruit quality in winter 

rapeseed [148], Malus domestica [149], strawberry [150], tomato [151-152], spinach [153], okra 

[154], Olea europaea [155], and broccoli [156]; lateral root formation in maize [157], tomato 

[158], Arabidopsis [29], grape [159], strawberry [150], winter rapeseed [148], Norway spruce 

[160], Pinus contorta [161] and leaf chlorophyll content was enhanced upon their treatment 

[148, 153, 162]. Jannin et al. [148] assessed the effects of algal extract through microarray 

analysis and found majority of differentially expressing genes involved in photosynthesis and 

cellular metabolism. Studies have shown that seaweed extract treatment upregulated the 

expression of genes coding for proteins involved in N and S uptake, assimilation and 

transportation, which play major role in growth and development of plant [148, 163-164]. 

 

Seaweed extracts are also reported to enhance secondary metabolite production in variety of 

species including, phenolic and flavonoid compounds in Brassica oleraceae [31], free radical 

scavenging and iron chelating activities in Kappaphycus Doty [165], protection against viral, 

fungal and bacterial infections in Nicotiana tabacum and Cicer arietinum [166-168]. Fan et al. 
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[153] have correlated the increase in antioxidant capacity along with phenolics and flavonoid 

content in seaweed extract treated spinach with increase in transcript abundance of key enzymes 

involved in antioxidative capacity (glutathione reductase) and glycine betaine synthesis (betaine 

aldehyde dehydrogenase and choline monooxygenase). Activity of a key enzyme viz. Chalcone 

isomerase involved in biosynthesis of flavanone precursors and phenyl propanoid plant defense 

compounds also increased upon treatment with seaweed extract. Seaweed extracts have been 

shown to alleviate a variety of abiotic stresses including drought, salinity and extreme 

temperature by inducing genes that code for proteins that are regulatory in nature such as 

transcription factors, protein kinases, phosphatases and other proteins which directly protect 

against stress, including osmoprotectants, detoxifying enzymes and transporters [139]. The 

modes of action of seaweed extracts are not yet well understood, but presence of bioactive 

molecules such as plant growth hormones, unique polysaccharides, polyphenols, betaines, oligo-

alginates (brown algae), oligo-carrageenans (red algae) may play an important role in growth and 

secondary metabolite production [31, 139, 148, 153]. 
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Overall, various studies have been reported on clonal propagation of P. kurroa and P. 

scrophulariiflora but limited efforts have been made for cost effective micropropagation of 

quality plant material with enhanced shoot biomass and secondary metabolite content which can 

be used for the cultivation of these species, thereby can aid in their conservation. Also, molecular 

studies are required for better understanding of P-I biosynthesis and ascertaining the role of 

genes involved in P-I production in Picrorhiza species under in vitro conditions which can aid in 

enhancement of secondary metabolite content. 

 

Thus, the review of literature has shown the following research gaps: 

 

 No information on molecular basis of improving shoot biomass and P-I biosynthesis in 

different morphogenetic stages of P. kurroa and P. scrophulariiflora 

 Limited efforts on development of rapid and cost effective approach for enhancement of 

shoot biomass vis-à-vis P-I production under in vitro conditions in P. kurroa and P. 

scrophulariiflora 

 No information on use of seaweed extract as a biostimulant and/or media replacement for 

in vitro micropropagation and P-I production in P. kurroa and P. scrophulariiflora  
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CHAPTER 3 

 

MATERIAL AND METHODS 

 

3.1 Plant material 

 

P. kurroa and P. scrophulariiflora were procured from Himalayan Forest Research Institute, 

Jagatsukh, Manali, H.P., India and National Bureau of Plant Genetic Resources, New Delhi, 

India, respectively. Both species were cultured and maintained in plant tissue culture chambers 

with subculturing after every 4 weeks at 25 ± 2 °C and 15 ± 2 °C with 70% relative humidity, 16 

h day/8 h night photoperiod at photosynthetic photon flux density of 40 µmol m
-2 

s
-1

 provided by 

cool white fluorescent tubes (Philips, India) on MS medium supplemented with IBA (3 mg/l), 

KN (1 mg/L), sucrose (30 g/L) and agar (9 g/L). The pH was adjusted to 5.7 using 0.1 N HCl or 

0.1 N NaOH and 50 ml of medium was dispensed in each jar prior to autoclaving at 121°C, 15 lb 

inch
-2 

pressure for 20 minutes [10].  

 

3.2 Callus induction  

 

Leaf and root segments (0.5-1 cm each) from 4 to 5 weeks old in vitro grown P. kurroa and P. 

scrophulariiflora cultures were used for callus induction. MS media having different growth 

hormone combinations, sucrose (30 g/L) and agar (9 g/L) were prepared. Different growth 

hormones used were: 2, 4-D (0.50, 1.00, 1.50, 2.00 mg/L) and/or IBA (0.50, 1.00, 1.50, 2.00 

mg/L) and TDZ (0.25, 0.50 and 1.00 mg/L). In all the experiments, 5-6 leaf and root explants 

were taken from both plant species maintained in two plant growth chambers at 25 ± 2 °C and 15 

± 2 °C incubation temperatures. These explants were inoculated on different media combinations 

at aforementioned incubation temperatures, respectively for 4 weeks. Medium without growth 

hormones served as control. Callus initiation started in TDZ containing medium within 10-15 

days and callus mass was achieved in next 15 days for both species at 25 ± 2 °C and 15 ± 2 °C. 
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Cultures were then transferred to shoot induction media. The experiment was performed in 

triplicates and repeated thrice. Samples of both species from different explants at 25 ± 2 °C and 

15 ± 2 °C for different stages viz. explants (EX), callus initiation (CI) and callus mass (CM) 

stages were frozen and kept in -80°C for further experimentation. 

 

3.3 Plant regeneration 

 

The calli initiated from different explants at 25 ± 2 °C and 15 ± 2 °C of both plant species were 

then transferred to MS media supplemented with IBA (1.0, 2.0 mg/L) and/or BAP (0.5, 2.0 

mg/L) and/or KN (0.2, 0.5, 1.0, 2.0, 3.0 mg/L) for regeneration and multiple shoot formation. 

Sucrose (30 g/L) and agar (9 g/L) were invariably added to the media. Cultures were incubated at 

same conditions as described earlier for 4-6 weeks. Medium without growth hormones served as 

control. Regenerated multiple shoots were then transferred to MS medium supplemented with 

IBA (3 mg/L), KN (1 mg/L), sucrose (30 g/L) and agar (9 g/L) for shoot elongation, root 

induction and full growth of both plant species. The experiment was performed in triplicates and 

repeated thrice. Samples of both species from different explants at 25 ± 2 °C and 15 ± 2 °C for 

different stages viz. shoot primordia (SP), multiple shoots (MS) and fully developed (FD) stages 

were frozen and kept in -80°C for further experimentation. 

 

3.4 Preparation of MS media supplemented with seaweed extract as a biostimulant (MSS)  

 

Seaweed extract (SWE) (Appendix Table A1) obtained from red seaweed Kappaphycus alvarezii 

was provided by Sea6 Energy Pvt Ltd. (Bangalore, India). Stock solution of SWE was prepared 

by dissolving 10 g of soluble SWE powder in 10 ml of distilled water by constant stirring with 

magnetic stirrer for 15 minutes followed by filter sterilization with 0.22 µm syringe filters. 

Further, MSS having sucrose (30 g/L), agar (9 g/L), different concentrations of SWE (0.1, 1.0, 

2.0, 3.0 g/L) alone (MSS1 to MSS4) (Table 3.1) and in combination with growth hormones 

(IBA: 3 mg/l and KN: 1 mg/l) (MSS5 to MSS8) (Table 3.2) were prepared. MS media without 

growth hormones (C1) and with growth hormones (SM) were used as control media for analysis. 

In vitro grown P. kurroa and P. scrophulariiflora shoots (0.5-1.0 cm) were cultured on the above 

media combinations in tissue culture chambers maintained at 25 ± 2 °C and 15 ± 2 °C and data 
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was recorded for total plant length, shoot biomass, number of shoots and roots after 10
th

, 20
th

 and 

30
th

 day. Further, to compare the effect of different seaweed extracts on growth of P. kurroa and 

P. scrophulariiflora, shoots of both species were cultured on MS media supplemented with 

optimized concentration of SWE (Kappaphycus alvarezii) and different concentrations of Biovita 

– an Ascophyllum nodosum extract (PI Industries Ltd, Udaipur, India) (MSB1: 0.1% and MSB2: 

0.2%) obtained from (Table 3.3). Data was recorded in triplicates and repeated thrice for total 

shoot biomass after 10
th

, 20
th

 and 30
th

 day at 25 ± 2 °C and 15 ± 2 °C. 

 

Table 3.1 MS medium supplemented with different concentrations of SWE (g/L), sucrose (30 

g/L) and agar (9 g/L) 

 

S. No Medium name Medium composition  

1.  MSS1 MS + SWE (0.1) + sucrose + agar  

2.  MSS2 MS + SWE (1.0) + sucrose + agar  

3.  MSS3 MS + SWE (2.0) + sucrose + agar  

4.  MSS4 MS + SWE (3.0) + sucrose + agar  

5.  C1  MS + SWE (0.0) + sucrose + agar  

 

Table 3.2 MS medium supplemented with different concentrations of SWE (g/L), sucrose (30 

g/L), growth hormones (3 mg/L IBA and 1 mg/L KN) and agar (9 g/L) 

 

S. No Medium name Medium composition  

1.  MSS5 MS + SWE (0.1) + sucrose + IBA + KN + agar  

2.  MSS6 MS + SWE (1.0) + sucrose + IBA + KN + agar  

3.  MSS7 MS + SWE (2.0) + sucrose + IBA + KN + agar  

4.  MSS8 MS + SWE (3.0) + sucrose + IBA + KN + agar  

5.  SM MS + SWE (0.0) + sucrose + IBA + KN + agar  
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Table 3.3 MS medium supplemented with different concentrations of Biovita, sucrose (30 g/L), 

growth hormones (3 mg/L IBA and 1 mg/L KN) and agar (9 g/L) 

 

S. No Medium name Medium composition  

1.  MSB1 MS + Biovita (0.1%) + sucrose + IBA + KN + agar 

2.  MSB2 MS + Biovita (0.2%) + sucrose + IBA + KN + agar 

 

3.5 Preparation of SWE media (SWM) for P. kurroa and P. scrophulariiflora 

micropropagation  

 

Shoot apices of P. kurroa and P. scrophulariiflora (0.5-1.0 cm) were taken and cultured on 6 

different concentrations of SWE (0.01, 0.1, 1.0, 2.0, 3.0, 5.0 g/L), pH 5.7, agar (9 g/L) at 25 ± 2 

°C and 15 ± 2 °C. Optimized concentration (2.0 g/L) of SWE was tested with different 

combinations of sucrose (30 g/L) and growth hormones (IBA: 3 mg/l, KN: 1 mg/l) on solid (with 

agar) and liquid (without agar) media (SWM1 to SWM8). Data was recorded in triplicates and 

repeated thrice for total plant length, shoot biomass, number of shoots and roots on 10
th

, 20
th

 and 

30
th

 day. Results were compared with similar combinations of MS media (MSM1 to MSM8) 

(Table 3.4). 

 

 

 

 

 

 

 

 

 

 

 



 

38 
 

Table 3.4 Different combinations of SWM (SWE 2 g/L) and control media with presence (+) 

and absence (-) of sucrose (30 g/L), growth hormones (3 mg/L IBA and 1 mg/L KN) and agar (9 

g/L) 

S. 

No. 

SWM SWM composition         Control 

media 

Control media composition 

1.  SWM1 SWE - sucrose - growth 

hormones - agar  

MSM1 MS - sucrose - growth 

hormones - agar  

2.  SWM2 SWE - sucrose - growth 

hormones + agar  

MSM2 MS - sucrose - growth 

hormones + agar  

3.  SWM3 SWE + sucrose - growth 

hormones - agar  

MSM3 MS + sucrose - growth 

hormones - agar  

4.  SWM4 SWE + sucrose - growth 

hormones + agar  

MSM4 MS + sucrose - growth 

hormones + agar  

5.  SWM5 SWE - sucrose + growth 

hormones - agar  

MSM5 MS - sucrose + growth 

hormones - agar  

6.  SWM6 SWE - sucrose + growth 

hormones + agar  

MSM6 MS - sucrose + growth 

hormones + agar  

7.  SWM7 SWE + sucrose + growth 

hormones - agar  

MSM7 MS + sucrose + growth 

hormones - agar  

8.  SWM8 SWE + sucrose + growth 

hormones + agar  

MSM8 MS + sucrose + growth 

hormones + agar  

 

3.6 Hardening of in vitro grown plantlets 

 

In vitro grown rooted shoots of P. kurroa and P. scrophulariiflora were gently removed from 

culture vessels, washed under running tap water and transferred to pots containing 

sand:soil:vermiculite (1:1:1) for hardening in greenhouse. The plantlets were covered with glass 

jars for 10-15 days to avoid desiccation. Glass jars were taken off every day for 1-2 h to 

acclimatize them to external environment. Data was recorded in triplicates and repeated thrice 

for percent survival of plants. 
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3.7 Elicitor treatment 

 

To compare the effect of various elicitors with SWE, different concentrations viz. 50, 100 and 

200 µM of ABA (Sigma-Aldrich, USA), SNP (Sigma-Aldrich, USA) and MeJa (Sigma-Aldrich, 

USA) were filter sterilized and employed in optimized MS media. The optimum concentrations 

of elicitors were compared with 2 g/L SWE for plant growth and P-I production. P. kurroa and 

P. scrophulariiflora shoots grown at 25 ± 2 ºC were taken and cultured in the above mentioned 

media supplemented with elicitors at 15 ± 2 ºC. The shoot samples were collected after 30 days 

and data was recorded for total shoot biomass in both plant species. P. kurroa and P. 

scrophulariiflora shoots grown at 15 ± 2 ºC without any elicitor treatment were used as controls. 

The experiment was performed in triplicates and repeated thrice. 

 

3.8 Quantification of P-I by HPLC 

 

P. kurroa and P. scrophulariiflora fresh samples corresponding to different morphogenetic 

stages, shoots grown on different media combinations (Tables 3.1, 3.2 and 3.4) and different 

elicitors (SWE, ABA, SNP, MeJa) were subjected to P-I estimation by HPLC analysis. All the 

samples were ground in liquid nitrogen and 100 mg of powdered sample was percolated in 10 ml 

80% methanol. The samples were vortexed, sonicated for 30 minutes at room temperature and 

filtered through 0.22 µm filter (Millipore). The filtrate was diluted 1:10 for estimation of P-I 

content by following the method described by Sood and Chauhan [11]. P-I quantification was 

done on Waters HPLC System equipped with Waters 515 HPLC pumps, Waters 717 

autosampler, Waters 2996 photodiode array detector and Empower software. For analysis, 20 μl 

of sample was injected into Waters Spherisorb reverse phase C18 column (4.6 mm x 250 mm, 5 

μm). The mobile phase used for the analysis was solvent A (0.05% trifluoro- acetic acid in 

water) and Solvent B (1:1 methanol/acetonitrile mixture). Solvent A and B were used in the ratio 

of 70:30 (v/v). The column was eluted in isocratic mode with a flow rate of 1ml/min at detection 

wavelength of 270 nm. The cycle time of analysis was 30 min at 30°C. The compound was 

identified on the basis of its retention time and comparison of UV spectra with P-I standard (Fig. 

3.1) procured from Chroma Dex, Inc. and calculated in µg/mg fresh weight (FW). The 

experiment was performed in triplicates.  



 

40 
 

 

Fig. 3.1 HPLC chromatogram and absorption spectra of P-I standard 

 

3.9 Selection of genes 

 

Genes pertaining to primary and secondary metabolism in plants such as HK, PK of glycolysis; 

ICDH, MDH of TCA cycle; G6PDH of pentose phosphate pathway; RBA of photosynthetic 

apparatus; ARP, ARF7, CytO of hormone metabolism; HisK involved in signal transduction and 

HMGR, PMK of MVA pathway; DXPS, ISPD, ISPE of MEP pathway; GS, G10H, 10-HGO, IS 

of iridoid pathway; DAHPS and PAL of shikimate/phenylpropanoid pathway were selected to 

study their effect on different morphogenetic stages vis-à-vis shoot regeneration and P-I 

biosynthesis in P. kurroa and P. scrophulariiflora under in vitro conditions. Furthermore, to 

study the effect of different elicitors at molecular level, genes encoding enzymes HMGS, 

HMGR, PMK, DXPS, DXPR, ISPD, ISPE, MECPS, G10H and PAL were selected on the basis 

of their role as rate limiting enzymes for P-I production in both plant species (Table 3.5). 
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Table 3.5 Genes implicated in primary and secondary metabolism in different plant species 

 

S. No. Gene  Plant species Reference 

1.  3-Hydroxy-3-methylglutaryl-CoA synthase (HMGS) P. kurroa [22] 

2.  3-Hydroxy-3-methylglutaryl-CoA reductase (HMGR) P. kurroa [25] 

3.  Phosphomevalonate kinase (PMK)  P. kurroa [22] 

4.  1-Deoxy-D-xylulose-5-phosphate synthase (DXPS) P. kurroa [25] 

5.  1-Deoxy-D-xylulose 5-phosphate reductoisomerase 

(DXPR) 

P. kurroa [22] 

6.  2-C-methylerythritol 4-phosphate cytidyl transferase 

(ISPD) 

P. kurroa [22] 

7.  4-(Cytidine-5-diphospho)-2-C-methylerythritol kinase 

(ISPE) 

P. kurroa [22] 

8.  2-C-methylerythritol-2, 4-cyclophosphate synthase 

(MECPS) 

P. kurroa [22] 

9.  Geraniol synthase (GS) P. kurroa [23] 

10.  Geraniol-10-hydroxylase (G10H) Ophiorrhiza 

pumila 

[169] 

11.  10-Hydroxygeraniol dehydrogenase (10-HGO) P. kurroa [23] 

12.  Iridoid synthase (IS) P. kurroa [23] 

13.  3-Deoxy-D-arabino-heptulosonate 7-phosphate 

synthase (DAHPS) 

A. thaliana [170] 

14.  Phenylalanine ammonia lyase (PAL) P. kurroa [115] 

15.  Hexokinase (HK) P. kurroa [27] 

16.  Pyruvate kinase (PK) P. kurroa [27] 

17.  Isocitrate dehydrogenase (ICDH) P. kurroa [27] 

18.  Malate dehydrogenase (MDH) P. kurroa [27] 

19.  Glucose-6-phosphate dehydrogenase (G6PDH) P. kurroa [27] 

20.  RUBISCO activase (RBA) A. thaliana [171] 

21.  Auxin response protein (ARP) A. thaliana [171] 
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22.  Auxin response factor 7 (ARF7) A. thaliana [171] 

23.  Histidine kinase (HisK) A. thaliana [171] 

24.  Cytokinin oxidase (CytO) A. thaliana [171] 

 

3.10 RNA isolation and cDNA synthesis 

 

Total RNA from P. kurroa and P. scrophulariiflora samples was isolated by using TRIzol
®

 

Reagent (Life Technologies, USA) according to the manufacturer‟s instructions and quality was 

assessed in 1% (w/v) ethidium bromide-stained agarose gel. RNA was quantified using a 

Nanodrop 2000 spectrophotometer (Thermo Scientific, USA). cDNA synthesis was done by 

using Verso cDNA synthesis kit (Thermo Scientific) from total RNA (1 µg) as per 

manufacturer‟s instructions. Concentration of each cDNA sample was adjusted to100 ng/µl for 

expression analysis. 

 

3.11 Quantitative real time-PCR (qRT-PCR) analysis 

 

Primer pairs for HMGR, PMK, DXPS, ISPD, ISPE, HK, PK, GS, G10H, 10-HGO, IS, DAHPS, 

PAL, MDH, ICDH and G6PDH were procured from Pandit et al. [22], Kumar et al. [27] and 

Shitiz et al. [23] while RBA, ARP, ARF7, HisK and CytO genes primers were designed from 

transcriptomic sequences of P. kurroa (data not published) by using Primer3 software [172] 

(Table 3.6). These gene specific primers were tested on cDNA of P. kurroa and P. 

scrophulariiflora samples. The reaction was performed in triplicates on CFX96 system (Bio-

Rad) with protocol: denaturation for 5 min at 94°C, followed by 40 cycles each of denaturation 

for 20 s at 94°C, annealing for 30 s at 48–60°C and elongation for 20 s at 72°C. The 

housekeeping genes, 26S and GAPDH were used as internal controls for calculating transcript 

abundance. The significant differences between replicates were statistically evaluated by 

standard deviation. 
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3.12 Statistical analysis 

 

Data was recorded in triplicates and repeated thrice for P. kurroa and P. scrophulariiflora plants 

grown on MSS and SWM on 10
th

, 20
th

 and 30
th

 day. Descriptive analysis of the data was 

performed using SPSS 17.0. Analysis of variance (ANOVA) with comparative Duncan‟s 

multiple range tests at 5% was used to determine the significance of differences between 

replicates. The expression analysis of the selected genes of primary and secondary metabolic 

pathways in different morphogenetic stages of P. kurroa and P. scrophulariiflora viz. EX, CI, 

CM, SP, MS and FD stages was done in triplicates and demonstrated by heat map. The heat map 

was generated by using GenEx software (V 1.1). 
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Table 3.6 List of primer sequences used in qRT-PCR based expression analysis 

 

Genes Forward Primer (5′-3′) Reverse Primer (5′-3′) Fragment 

Size (bp) 

Annealing 

Temperatures 

(ºC) 

26S CACAATGATAGGAAGAGCCGAC CAAGGGAACGGGCTTGGCAGAATC 500 58 

GAPDH TTGCCATCAATGACCCCTTCA CGCCCCACTTGATTTTGGA 215 56 

HMGS GATGGTGCAAGAAAAGGCAACTAGA GGATATTCACTGGCAAGATTGGGCT 110 54 

HMGR CGTTCATCTACCTTCTAGGGTTCTT GACATAACAACTTCTTCATCGTCCT 100 60 

PMK TGGATGTTGTCGCATCAGCACCTGG GTAATAGGCAGTCCACTCGCTTCAA 100 58 

DXPS ACATTTAAGTTCAAGTCTGGGAGTG ATGTGCACTCTCTTCTCTTTTAGGA 110 55.9 

DXPR GGAGGAACTATGACTGGTGTTCTT  CAGGTCATAGTGTACGATTTCCTCT 110 54.9 

ISPD GAGAAAAGTGTATCTGTGCTTCTTAG AATAACCTGCGGTGTATGCATTTCC 150 56 

ISPE TTCATCTAGATAAGAAGGTGCCAAC CCTCTACCAGTACAATAAGCAGCTC 110 55 

MECPS ATCTATAGCGGCAAACCTACAC ACTTTAGAGAGGGATGGAGGG 110 57.1 

GS TGGGTAGATTAGAAGCCAGA CTGGTGATTTCTACCAGCTC 139 52 

G10H TATCGAGCTTTTCAGTGGAT GATGTGAGTCCTGTCGATTT 136 52 

10-HGO GGTAGTGTTTATTGGTGCAG GATCAACTGATCAAGGTCAA 172 54 

IS AATAAGGCCTTGGTTTATCC TTAGCCTTAGGATCAACTGC 116 49 

DAHPS ACACCATTAAAGCTCCTTGT TAACAGTCTGAGATCCACCA 171 59 

PAL GCAAGATAGATACGCTCTAA GTTCCTTGAGACGTCAAT 136 49 

HK ATGCTCCTTACCTACGTTCA TCCTAACTGAACCCTCAAGA 108 52 
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PK AGCTTGTGGCTAAGTACAGG TCCCCTGAATATGAGACTGT 128 53 

ICDH TCGACATGATAACGTGGATA TGTTATGACCTTGAGGCTCT 112 52 

MDH CTGATTCTCAAGGAATTTGC TACCTGCACTTTCAACCTCT 114 51 

G6PDH GAAACCTGAGCATATTCGAG GTTGTCTGGAACTGTTGGAT 124 52 

RBA GTCAGGGTAAATCATTCCAA ATCGTTGATGAATAGGCAAC 185 52 

ARP ATGGTCCTCTGTTTGTCAAG TGCAGAAGATCCTTCAACTT 199 48 

ARF7 TTCCTATGGCGTCTATGACT TGTTGTTGCAGTCTCTGAAG 199 50 

HisK AGAGGAAGTTTGGGATAAGG AATTGGTGTAGGAACACTGG 157 54 

CytO GAGAGAAAGCTTCGTGAAAA GTTCCTGTTTTCCATCTTGA 179 50 
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CHAPTER 4 

 

RESULTS AND DISCUSSION 

 

4.1 Callus induction and shoot regeneration 

 

Different developmental stages passing through different morphogenetic events wherein de-

differentiation of leaf and root segments into callus mass followed by re-differentiation of callus 

into shoot primordia and fully developed plant were obtained using tissue culture techniques. 

The callus initiation was observed in both leaf and root segments of P. kurroa while only leaf 

segments of P. scrophulariiflora responded to callus induction in all the tested media 

combinations at 25 ± 2 °C and 15 ± 2 °C. This might be attributed to the internal status of plant 

growth regulators towards different plant species and plant segments under same in vitro 

conditions. Growth hormones like 2, 4-D, IBA, NAA and BAP have already been reported for 

callus initiation in P. kurroa and P. scrophulariiflora [10, 12]. Our results showed creamish and 

friable calli on MS media supplemented with different concentrations and combinations of 2, 4-

D and/or IBA while greenish and friable calli were obtained in both species at 25 ± 2 °C and 15 

± 2 °C on MS media containing TDZ (0.5 mg/L). Callus initiation was not observed in leaf and 

root segments of both species on MS basal media without any growth hormone at 25 ± 2 °C and 

15 ± 2 °C.  Leaf and root segments of P. kurroa showed callus initiation within 10-12 and 12-15 

days at 15 ± 2 °C and 25 ± 2 °C, respectively (Fig. 4.1), while P. scrophulariiflora leaf segments 

showed callus initiation in 14-15 days at 25 ± 2 °C and 15 ± 2 °C (Fig. 4.2). Further, callus mass 

was observed in next 10-15 days in both species at 25 ± 2 °C and 15 ± 2 °C on MS media 

supplemented with TDZ (0.5 mg/L). TDZ has been previously reported for callus initiation and 

plant regeneration in various plants species like P. kurroa, Scutellaria baicalensis and Linum 

usitatissimum L. by regulating the morphogenetic systems depending upon its exposure time [15, 

173-175].  
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These calli were then transferred to shoot regeneration media containing MS basal media with 

different concentrations and combinations of IBA, BAP and KN. KN (0.5 mg/L) was found to be 

best hormone for shoot primordia formation in 15-20 days followed by multiple shoot formation 

within next 10-15 days in both species at 25 ± 2 °C and 15 ± 2 °C. Lower concentration of KN 

was found to be better for shoot initiation and multiple shoot formation. Patial et al. [15] have 

also suggested the use of KN at low concentration for shoot initiation from in vitro grown leaves 

of P. kurroa. These multiple shoots were then transferred to rooting medium viz. MS basal 

medium supplemented with IBA (3 mg/L) and KN (1 mg/L) since rooting is required for plant 

development. Fully developed plants with rooting were obtained within next 15-20 days. Leaves 

of fully developed plants of both species were found to be thicker and longer at 15 ± 2 °C 

compared to 25 ± 2 °C. This could be attributed to the accumulation of hemicelluloses at low 

temperature which causes thickening of leaves, thereby increasing plant strength [15].  
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Fig. 4.1 Different developmental stages of P. kurroa at 25 ± 2 °C and 15 ± 2 °C on MS media 

containing different growth hormones: Leaf and root explants on TDZ = 0.5 mg/L represent EX 

stage; Callus initiation and callus mass formation on TDZ = 0.5 mg/L represent CI and CM 

stages, respectively; Shoot primordia and multiple shoot formation on KN = 0.5 mg/L represent 

SP and MS stages, respectively; Shoot elongation, full growth and development on IBA = 3 

mg/L and KN = 1 mg/L represent FD stage (Scale bar = 1 cm) 
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Fig. 4.2 Different developmental stages of P. scrophulariiflora at 25 ± 2 °C and 15 ± 2 °C on 

MS media containing different growth hormones: Leaf explant on TDZ = 0.5 mg/L represent EX 

stage; Callus initiation and callus mass formation on TDZ = 0.5 mg/L represent CI and CM 

stages, respectively; Shoot primordia and multiple shoot formation on KN = 0.5 mg/L represent 

SP and MS stages, respectively; Shoot elongation, full growth and development on IBA = 3 

mg/L and KN = 1 mg/L represent FD stage (Scale bar = 1 cm) 
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4.2 Expression analysis of primary metabolism genes vis-à-vis shoot development in 

different morphogenetic stages 

 

P-I biosynthesis occurs in shoots of P. kurroa and P. scrophulariiflora; therefore, expression 

analysis of 10 genes viz. RBA, ARP, ARF7, HisK, CytO, HK, PK, ICDH, MDH and G6PDH 

was carried out to understand the molecular basis of shoot regeneration in both plant species. 

Results revealed that RBA, HisK and CytO genes showed increased expression viz. 2-4, 2-5 

folds in SP stage; 6-9, 4-6 folds in MS stage; and 7-12, 6-10 folds in FD stage of P. kurroa and 

P. scrophulariiflora, respectively (Fig. 4.3). This might be due to the involvement of these genes 

in shoot development in P. kurroa and P. scrophulariiflora, since RBA is involved in 

photosynthetic function, HisK serve as cytokinin receptor and CytO is responsible for cytokinin 

catabolism, thereby contributing to the regulation of cytokinin-dependent processes [176-178]. 

Further, HK, PK, ICDH, MDH and G6PDH genes of glycolysis, TCA and pentose phosphate 

pathways showed an increase of 2-5, 3-7 folds in MS stage and 5-11, 5-13 folds in FD stage 

compared to CM stage in P. kurroa and P. scrophulariiflora, respectively (Fig. 4.3). Expression 

level of selected genes remained unaltered in CI and CM stages of both plant species which 

could be attributed to the absence of cell programming machinery in callus cultures for 

biosynthesis of P-I [11]. Overall, these genes showed high transcript abundance in MS and FD 

stages vis-à-vis shoot development in P. kurroa and P. scrophulariiflora, thereby regulating the 

supply of precursors for activation of secondary metabolism genes for P-I biosynthesis [179]. 

Matt et al. [180] have showed that levels of chlorogenic acid and nicotine reduced with drop in 

RuBisCO activity leading to decreased levels of primary metabolites, thus hampering the content 

of secondary metabolites. Lloyd and Zakhleniuk [181] have shown the role of primary 

metabolites in regulating secondary metabolism by studying the transcript levels of genes 

encoding enzymes and regulatory proteins involved in primary carbon assimilation in mature 

rosette leaves of wild-type and mutant Arabidopsis plants. Henkes et al. [182] have also showed 

that reduction in the oxidative pentose phosphate pathway enzymes affected metabolic flux 

involved in shikimate and phenylpropanoid pathways. 
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Fig. 4.3 Expression pattern of primary metabolism genes in different morphogenetic stages of P. kurroa and P. scrophulariiflora 

obtained from leaf explants at 15 ± 2 °C. These include: Explant (EX), callus initiation (CI), callus mass formation (CM), shoot 

primordia formation (SP), multiple shoot formation (MS) and fully developed plant (FD) stages. Fold expression of genes was 

calculated by comparing the transcript abundance of genes in different developmental stages with CM stage. Error bars represent 

mean±SD for data recorded in triplicates (repeated thrice) 
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4.3 Expression analysis of secondary metabolic pathway genes vis-à-vis P-I biosynthesis in 

different morphogenetic stages 

 

P-I production was found to be developmentally regulated during different morphogenetic stages 

in P. kurroa and P. scrophulariiflora. It reduced from 2.51 µg/mg FW and 2.12 µg/mg FW to 

non-detectable level during de-differentiation in CI and CM stages at 15 ± 2 °C obtained from 

leaf explants of P. kurroa and P. scrophulariiflora, respectively (Fig. 4.4). With the progress of 

re-differentiation, levels of P-I increased consistently during SP, MS and FD stages of P. kurroa 

and P. scrophulariiflora (Fig. 4.4). Therefore, various genes viz. HMGR, PMK, DXPS, ISPD, 

ISPE, GS, G10H, 10-HGO, IS, DAHPS and PAL of MVA, MEP, iridoid and 

shikimate/phenylpropanoid pathways were selected and analyzed for modulation of their 

expression vis-à-vis P-I content at different morphogenetic stages of P. kurroa and P. 

scrophulariiflora. Results revealed that genes encoding enzymes HMGR, PMK, DXPS, ISPE, 

GS, G10H, DAHPS and PAL showed significant modulation of expression in agreement with P-I 

content at different morphogenetic stages in comparison to CM stage. At day 0, these genes 

showed 16-47 and 11-32 folds transcript abundance in EX stage, which declined to 0-3 and 1-2 

folds by the end of day 50, corresponding to CI and CM stages of P. kurroa and P. 

scrophulariiflora, respectively (Fig. 4.5).  This might be due to the de-differentiation of leaf 

explants into callus mass or loss of organogenesis which decreased the expression of genes 

involved in secondary metabolism leading to non-detectable amount of P-I in CI and CM stages. 

Conner [183] have also reported low level of alkaloid in Solanum laciniatum due to alteration in 

gene expression level in undifferentiated cells which was attributed to its heterotrophic mode of 

nutrition. Further, as re-differentiation progressed, HMGR, DXPS, ISPE, G10H and DAHPS 

showed 2-28 and 2-20 folds high expression during SP stage of P. kurroa and P. 

scrophulariiflora, respectively. Formation of shoot primordia might lead to the activation of 

important regulatory enzymes of all four biosynthetic pathways involved in P-I production. 

HMGR and DXPS are the rate limiting enzymes of MVA and MEP pathways, which along with 

ISPE, have been reported to be involved in P-I biosynthesis [22, 25, 115]. G10H and DAHPS 

have also been reported as key regulatory enzymes for secondary metabolism in Arabidopsis and 

Catharanthus roseus [169-170]. Further, 15-52 and 11-35 folds high expression was observed in 

HMGR, DXPS, ISPE, G10H and DAHPS during MS stage between days 51-65 compared to CM 
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stage of P. kurroa and P. scrophulariiflora, respectively. Up-regulation of HMGR, DXPS and 

ISPE might be associated with the supply of GPP, which acts as precursor for iridoid 

biosynthesis [184]. Pandit et al. [22] have also reported the positive correlation of HMGR, DXPS 

and ISPE enzymes of MVA and MEP pathways with P-I biosynthesis in P. kurroa. Higher 

expression of G10H and DAHPS demonstrated their possible roles in activating iridoid and 

shikimate/phenylpropanoid pathways [27]. Finally, a drastic increase in expression of genes 

encoding HMGR, PMK, DXPS, ISPE, GS, G10H, DAHPS and PAL from 27-68 and 13-47 folds 

vis-à-vis P-I production was observed in FD stage between days 66-80 of P. kurroa and P. 

scrophulariiflora, respectively (Fig. 4.5). In addition to genes elevated in MS stage, genes such 

as PMK, GS and PAL showed high expression in FD stage as compared to CM stage. GS has 

been reported to initiate monoterpenoid branch of monoterpene indole alkaloid (MIA) pathway 

in Catharanthus roseus [185], while PAL is an important regulatory enzyme of 

shikimate/phenylpropanoid pathway [186-188]. High expression of these genes in FD stage 

suggested their possible role in the accumulation of P-I in P. kurroa and P. scrophulariiflora. 

Therefore, genes encoding HMGR, PMK, DXPS, ISPE, GS, G10H, DAHPS and PAL of all four 

pathways were found to be associated with P-I biosynthesis in P. kurroa and P. 

scrophulariiflora.  
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Fig. 4.4 P-I content (µg/mg FW) in different morphogenetic stages of P. kurroa and P. scrophulariiflora at 15 ± 2 °C and 25 ± 2 °C, 

where L and R represented leaf and root explants. Data was represented by mean±SD for P-I content estimated in triplicates (repeated 

thrice) 

 

 

Explant (leaf/root) (EX)

Initiation of callus formation (CI)

Callus mass formation (CM)

Shoot primordia formation (SP)

Multiple shoot formation (MS)

Full development (FD)

Duration

(Days)

0

1-15

16-30

31-50

51-65

66-80

P. kurroa

15 C 25 C

L R L R

2.51 0.11 0.00 0.00 0.34 0.05 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.42 0.09 0.31 0.04 0.00 0.00 0.00 0.00

1.55 0.11 1.21 0.07 0.30 0.04 0.22 0.01

3.65 0.13 2.87 0.09 0.44 0.05 0.31 0.03

TDZ=0.5 mg/L

TDZ=0.5 mg/L

KN=0.5 mg/L

KN=0.5 mg/L

IBA=3 mg/L 

KN=1 mg/L

P. scrophulariiflora

15 C 25 C

L L

2.12 0.09 0.23 0.06

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.21 0.04 0.00 0.00

0.63 0.08 0.13 0.02

2.35 0.09 0.39 0.02

P. kurroa / P. scrophulariiflora



 

55 
 

 

 

 

Fig. 4.5 Expression pattern of secondary metabolic pathways genes in different morphogenetic stages of P. kurroa and P. 

scrophulariiflora obtained from leaf explants at 15 ± 2 °C. These include: Explant (EX), callus initiation (CI), callus mass formation 

(CM), shoot primordia formation (SP), multiple shoot formation (MS) and fully developed plant (FD) stages. Fold expression of genes 

was calculated by comparing the transcript abundance of genes in different developmental stages with CM stage. Error bars represent 

mean±SD for data recorded in triplicates (repeated thrice) 
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Overall, multiple genes of secondary metabolic pathways showed higher expression in different 

developmental stages of P. kurroa and P. scrophulariiflora compared to those from primary 

metabolic pathways showing slightly higher expression for P-I biosynthesis. The representative 

heat maps were generated which highlighted the involvement of secondary metabolic pathways 

genes such as HMGR, PMK, DXPS, ISPE, GS, G10H, DAHPS and PAL for P-I biosynthesis in 

FD stages of P. kurroa and P. scrophulariiflora obtained from leaf explants at 15 ± 2 °C (Fig. 

4.6). 
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Fig. 4.6 Heat maps demonstrating the differential expression pattern of genes involved in 

primary and secondary metabolic pathways at different developmental stages of P. kurroa (a) 

and P. scrophulariiflora (b) obtained from leaf explants at 15 ± 2 °C. These included: Explant 

(EX), callus initiation (CI), callus mass formation (CM), shoot primordia formation (SP), 

multiple shoot formation (MS) and fully developed plant (FD) stages 
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4.4 Effect of temperature, explant and species on P-I biosynthesis 

 

Secondary metabolism in plants is influenced by various factors such as temperature, explants, 

species etc [189-191]. Previous studies on P. kurroa showed higher P-I content in in vitro grown 

shoots at 15°C than 25°C while shoots regenerated from leaf explants accumulated higher P-I 

content compared to stem and root explants [11, 25]. These reports suggested optimal growth 

conditions for enhanced P-I biosynthesis but mechanism underlying their effects is not clear. 

Therefore, transcript abundance of P-I pathway genes vis-à-vis temperature, explant and species 

was studied in different morphogenetic stages of P. kurroa and P. scrophulariiflora. 

 

Higher P-I contents viz. 3.65 µg/mg FW and 2.35 µg/mg FW were observed in P. kurroa and P. 

scrophulariiflora shoots, respectively developed from leaf explants at 15 ± 2 °C compared to 25 

± 2 °C (negligible amount) (Fig. 4.4). Seven out of 11 genes viz. HMGR, PMK, DXPS, GS, 

G10H, DAHPS and PAL showed 47-87 and 38-73 folds high expression in fully developed 

shoots of P. kurroa and P. scrophulariiflora, respectively originated from leaf explants at 15 ± 2 

°C compared to 25 ± 2 °C (Fig. 4.7). These results revealed that development of shoots at low 

temperature up-regulated the expression of genes involved in secondary metabolism leading to 

enhanced P-I accumulation in fully developed shoots of both plant species. Hannah et al. [192] 

also showed that low temperature increased the secondary metabolite production in Arabidopsis 

by transcriptional up-regulation of genes involved in secondary metabolism.  
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Fig. 4.7 Effect of temperature on transcript levels of selected genes of MVA, MEP, iridoid and 

shikimate/phenylpropanoid pathways at different developmental stages of P. kurroa (a) and P. 

scrophulariiflora (b) derived from leaf explants at 15 ± 2 °C and 25 ± 2 °C. These included: 

Explant (EX), callus initiation (CI), callus mass formation (CM), shoot primordia formation 

(SP), multiple shoot formation (MS) and fully developed plant (FD) stages. Fold expression of 

genes was calculated by comparing the transcript abundance of genes in different developmental 

stages at 15 ± 2 °C with 25 ± 2 °C. Error bars represent mean±SD for data recorded in triplicates 

(repeated thrice) 
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Plant tissues respond variably from each other for organogenesis on similar combinations of 

growth regulators [193-195], thereby influencing the metabolite production during shoot 

regeneration. Our results showed marginal variation in P-I content between shoots derived from 

different explants viz. 3.65 µg/mg FW and 2.87 µg/mg FW P-I content in shoots developed from 

leaf and root explants, respectively at 15 ± 2 °C (Fig. 4.4). So, to study the effect of explants on 

P-I production at molecular level, expression analysis was carried out in different morphogenetic 

stages derived from leaf and root explants at 15 ± 2 °C. Out of 11 genes, 7 genes encoding 

HMGR, PMK, DXPS, GS, G10H, DAHPS and PAL showed 4-9 and 2-8 folds elevated 

expression in leaf explants derived CI and CM stages, respectively compared to root explant 

derived stages which could be correlated to biosynthesis of P-I in leaf tissue (Fig. 4.8). 

Expression levels remained unaltered in SP, MS and FD stages as same machinery was activated 

for P-I biosynthesis in the shoots developed from leaf and root explants. Kurz and Constable 

[196] also suggested that origin of tissue become irrelevant after de-differentiation, and 

subsequent regenerated plants inherit physiological capability of the source plant to express all 

the biosynthetic pathways under permissive conditions. 
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Fig. 4.8 Effect of different explants on transcript levels of selected genes of MVA, MEP, iridoid, 

and shikimate/phenylpropanoid pathways at different developmental stages of P. kurroa at 15 ± 

2 °C. These included: Explant (EX), callus initiation (CI), callus mass formation (CM), shoot 

primordia formation (SP), multiple shoot formation (MS) and fully developed plant (FD) stages. 

Relative expression of genes was calculated by comparing the transcript abundance of genes 

from leaf explant derived stages with root explant derived stages. Error bars represent mean±SD 

for data recorded in triplicates (repeated thrice) 

 

Previous reports on metabolic profiling of important phytochemicals such as podophyllotoxin in 

Podophyllum hexandrum and P. peltatum, rutin in Fagopyrum tataricum and F. esculentum, 

aconitine in Aconitum species have shown variation in their biosynthesis from one species to 

another [191, 197-198]. Therefore, P-I biosynthesis was also studied between P. kurroa and P. 

scrophulariiflora. These two species are rich source of P-I but higher P-I content has been 

observed in P. scrophulariiflora than P. kurroa under field conditions [8]. However, our results 

showed slightly higher P-I content in P. kurroa shoots compared to P. scrophulariiflora in 

different developmental stages under in vitro conditions (Fig. 4.4). So, in order to understand the 

molecular basis of P-I biosynthesis in both species, expression analysis of selected genes 

involved in secondary metabolism was carried out in different developmental stages obtained 

from leaf segments of P. kurroa and P. scrophulariiflora at 15 ± 2 °C. Seven genes viz. HMGR, 

PMK, DXPS, GS, G10H, DAHPS and PAL showed 6-19 folds high expression in FD stage of P. 
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kurroa compared to P. scrophulariiflora which was in corroboration with P-I content (Fig. 4.9). 

Al-Ghazi et al. [199] have also observed stage specific and species specific expression of genes 

involved in phenylpropanoid and flavonoid pathways for the production of flavonoids, 

phenylpropanoids, terpenes and waxes in Gossypium hirsutum L. and G. barbadense L.  

 

 

 

Fig. 4.9 Expression pattern of selected genes of MVA, MEP, iridoid and 

shikimate/phenylpropanoid pathways for P-I biosynthesis at different developmental stages of P. 

kurroa and P. scrophulariiflora derived from leaf explants at 15 ± 2 °C. These included: Explant 

(EX), callus initiation (CI), callus mass formation (CM), shoot primordia formation (SP), 

multiple shoot formation (MS) and fully developed plant (FD) stages. Relative expression of 

genes was calculated by comparing the transcript abundance of genes in different developmental 

stages derived from leaf explants of P. kurroa with P. scrophulariiflora. Error bars represent 

mean±SD for data recorded in triplicates (repeated thrice) 

 

Overall, effect of temperature and species influenced P-I production by regulating the expression 

of HMGR, PMK, DXPS, GS, G10H, DAHPS and PAL genes of MVA, MEP, iridoid and 

shikimate/phenylpropanoid pathways under in vitro conditions. Therefore, this study has 

suggested potential gene targets at FD stage for their utilization in genetic improvement of P. 

kurroa and P. scrophulariiflora. 
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4.5 SWE as a biostimulant with MS medium (MSS) for biomass enhancement in P. kurroa 

and P. scrophulariiflora 

 

Previous reports have shown the importance of seaweed extracts in improving plant growth and 

development in different plant species by improving N and S uptake along with their 

assimilation, basal metabolism and transportation of various nutrients [139]. Our results showed 

high transcript abundance of genes corresponding to primary and secondary metabolism in fully 

developed shoots vis-à-vis different morphogenetic stages in P. kurroa and P. scrophulariiflora 

under in vitro conditions. Therefore, effect of SWE as a biostimulant was studied for 

enhancement of shoot biomass in these plant species. MSS media having different concentrations 

of SWE alone (MSS1-MSS4; Table 3.1) and in combination with growth hormones (MSS5-

MSS8; Table 3.2) were tested to evaluate the potential of SWE. MSS3 having SWE (2.0 g/L) 

showed enhancement of 1.40, 1.55, 1.56 fold in total plant length; 1.28, 2.41, 2.79 fold in shoot 

biomass; and 1.69, 1.41, 2.67 fold in number of shoots in P. kurroa on 10
th

, 20
th

 and 30
th

 day, 

respectively while 1.77 and 2.41 fold increment in number of roots was observed on 20
th

 and 30
th

 

day, respectively compared to C1 at 15 ± 2 °C (Figs. 4.10 and 4.11). Similarly, MSS3 showed 

enhancement of 1.36, 1.52, 1.54 fold in total plant length; 1.18, 2.21, 2.61 fold in shoot biomass; 

and 1.71, 1.86, 2.61 fold in number of shoots in P. scrophulariiflora on 10
th

, 20
th

 and 30
th

 day, 

respectively while 1.57 and 2.22 fold increment in number of roots was observed on 20
th

 and 30
th

 

day compared to C1 at 15 ± 2 °C (Figs. 4.10 and 4.11). Moreover, MSS7 having growth 

hormones and SWE (2.0 g/L) also improved the plant growth with enhancement of 1.39, 1.50, 

1.14 fold in total plant length; 1.40, 1.41, 2.67 fold in shoot biomass; and 1.81, 1.36, 1.47 fold in 

number of shoots in P. kurroa, while an increase of 1.33, 1.47, 1.14 fold in total plant length; 

1.31, 1.32, 2.65 fold in shoot biomass; and 1.76, 1.29, 1.37 fold in number of shoots was 

observed in P. scrophulariiflora on 10
th

, 20
th

 and 30
th

 day, respectively as compared to SM at 15 

± 2 °C (Figs. 4.10 and 4.11). An increment in number of roots by 2.91 and 3.53 fold in P. 

kurroa; 2.73 and 3.36 fold in P. scrophulariiflora was observed on 20
th

 and 30
th

 day, 

respectively compared to SM at 15 ± 2 °C (Fig. 4.10). Hence, MSS having SWE with and 

without growth hormones enhanced shoot biomass and shoot number in both plant species. This 

might be due to the presence of various bioactive substances like amino acids, vitamins, 

cytokinins, gibberellins and betains in seaweed extracts which regulate plant growth and 
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development [32, 141]. Vinoth et al. [30] have also showed enhanced shoot elongation in 

Lycopersicon esculentum upon seaweed extract treatment under in vitro conditions.   
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Fig. 4.10  Growth parameters corresponding to total plant length (a), shoot biomass (b), number of shoots (c) and number of roots (d) 

for P. kurroa and P. scrophulariiflora plants grown on MSS3 (MS + SWE + sucrose + agar), C1 (MS + sucrose + agar), MSS7 (MS + 

SWE + sucrose + growth hormones + agar) and SM (MS + sucrose + growth hormones + agar) at 15 ± 2 ºC. Error bars represent 

mean±SD for data recorded in triplicates (repeated thrice) 
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Fig. 4.11 P. kurroa and P. scrophulariiflora plants grown on MSS3 (MS + SWE + sucrose + agar), C1 (MS + sucrose + agar), MSS7 

(MS + SWE + sucrose + growth hormones + agar) and SM (MS + sucrose + growth hormones + agar) at 15 ± 2 ºC (Scale bar = 1 cm)

Without growth hormones With growth hormones

MSS3 C1 MSS7 SM

P. kurroa

P. scrophulariiflora



 

67 
 

 

Further, on comparison of SWE with Biovita, MSS7 containing SWE showed increment in shoot 

biomass with 1.23, 1.28, 1.37 fold in P. kurroa and 1.06, 1.07, 1.10 fold in P. scrophulariiflora 

on 10
th

, 20
th

 and 30
th

 day, respectively at 15 ± 2 °C as compared to MSB1 (Fig. 4.12). Extracts 

obtained from Kappaphycus alvarezii have been reported to improve plant growth by regulating 

phytohormone signalling and defence responsive genes in Lycopersicon esculentum [200]. 

 

 

 

Fig. 4.12 Shoot biomass of P. kurroa and P. scrophulariiflora plants grown on MSS7 and MSB1 

at 15 ± 2 °C. Error bars represent mean±SD for data recorded in triplicates (repeated thrice) 

 

All media combinations from MSS1 to MSS8 were tested on two incubation temperatures for 

enhancement of shoot biomass in P. kurroa and P. scrophulariiflora. Higher shoot biomass was 

observed in P. kurroa (1.25 fold) and P. scrophulariiflora (1.23 fold) plants grown at 15 ± 2 °C 

as compared to 25 ± 2 °C after 30 days, which was attributed to increased leaf size at 15 ± 2 °C 

(Figs. 4.13 and 4.14). However, number of shoots and roots remained same in both species at 15 

± 2 °C and 25 ± 2 °C (Fig. 4.10; Tables A2 and A3), which was in accordance with the findings 

of Sood and Chauhan [9]. 
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Fig. 4.13 P. kurroa shoots grown on MSS7 at 25 ± 2 ºC (a) and 15 ± 2 ºC (b) (Scale bar = 1 cm) 

 

 

 

Fig. 4.14 P. scrophulariiflora shoots grown on MSS7 at 25 ± 2 ºC (a) and 15 ± 2 ºC (b) (Scale 

bar = 1 cm) 

  

a b

a b
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4.6 SWE as a medium (SWM) alternative to MS medium for micropropagation of P. kurroa 

and P. scrophulariiflora 

 

Seaweed extracts contain various macronutrients, micronutrients, vitamins and growth hormones 

which can maintain and support the plant growth under in vitro conditions; therefore, potential of 

SWE as a medium alternative to nutrient medium was estimated. Out of 6 different tested 

concentrations of SWE (0.01, 0.1, 1.0, 2.0, 3.0, 5.0 g/L), 2 g/L showed highest shoot biomass in 

P. kurroa and P. scrophulariiflora at 15 ± 2 °C and 25 ± 2 °C. Thus, a comparative study was 

carried out by replacing MS medium with optimized concentration of SWE (2 g/L) in different 

media combinations to study the potential of SWM as an alternative to MS medium for the 

micropropagation of P. kurroa and P. scrophulariiflora. Various growth parameters such as total 

plant length, shoot biomass, number of shoots and roots were analyzed in both solid (with agar) 

and liquid (without agar) media. Plants grown on liquid SWM could not survive after 20 days 

due to stressful conditions caused by water logging of the apoplast causing hypoxia, thereby 

leading to death of tissues [201]. However, better growth was observed on solid SWM. SWM4 

(SWE + sucrose + agar) was found to be best among different media combinations for growth of 

P. kurroa and P. scrophulariiflora plants. It showed comparable shoot number with MSM8 (MS 

+ sucrose + growth hormones + agar) till 20
th

 day; thereafter, shoot multiplication showed better 

results in MSM8, which was due to faster nutrient depletion in SWM4 as compared to MSM8. 

Subculturing same plants on SWM4 after 20 days exhibited similar growth as obtained with 

MSM8 at 15 ± 2 °C (Fig. 4.15). Plants grown on SWM4 showed enhancement of 2.08, 1.82, 2.25 

fold in total plant length; 1.21, 1.65, 2.00 fold in shoot biomass; and 1.14, 1.42, 2.12 fold in 

number of shoots in P. kurroa, while an increase of 2.08, 1.85, 2.13 fold in total plant length; 

1.09, 1.69, 1.84 fold in shoot biomass; and 1.09, 1.60, 2.23 fold in number of shoots in P. 

scrophulariiflora was observed on 10
th

, 20
th

 and 30
th

 day, respectively as compared to control 

MSM4 at 15 ± 2 °C (Fig. 4.15). Early rooting (10
th

 day) in SWM4 with enhancement of 2.15, 

3.35 fold in P. kurroa and 2.28, 3.24 fold in P. scrophulariiflora in number of roots was 

observed on 20
th

 and 30
th

 day, respectively at 15 ± 2 ºC compared to control MSM4 (Fig. 4.15). 

These results suggested that MS medium requires additional supply of growth hormones as 

compared to SWM since optimal growth was observed in SWM4 in both species than MSM4. 

Similar findings have been observed in P. kurroa and P. scrophulariiflora plants grown at 25 ± 2 

°C (Tables A4 and A5). Findings of Hurtado et al. [202] have shown the use of commercially 
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available seaweed extract based medium with and without growth hormones for regeneration of 

Kappaphycus varieties using tissue culture techniques, which was analogous to current study in 

P. kurroa and P. scrophulariiflora. Seaweed extract has also been found to promote growth of 

shoots and roots in A. thaliana using DR5: GUS assay, which implied that commercially 

available seaweed extracts modulate the concentration and localization of auxins for enhanced 

plant growth [29]. 
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Fig. 4.15 Growth parameters corresponding to total plant length (a), shoot biomass (b), number of shoots (c) and number of roots (d) 

for P. kurroa and P. scrophulariiflora plants grown on SWM4 (SWE + sucrose + agar), MSM4 (MS + sucrose + agar) and MSM8 

(MS + sucrose + growth hormones + agar) at 15 ± 2 ºC. Error bars represent mean±SD for data recorded in triplicates (repeated thrice) 
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4.7 Hardening 

 

Well rooted in vitro grown plantlets of P. kurroa and P. scrophulariiflora were transferred to 

pots containing mixture of sand:soil:vermiculite (1:1:1) in the greenhouse for hardening 

maintained at 25 ± 2 ºC, 80–90 % of relative humidity with light irradiance of 100–120 µmol m
-2

 

s
-1

 under natural light conditions (Fig. 4.16). P. kurroa plants showed 80% survival rate while P. 

scrophulariiflora showed 75% survival rate in green house conditions. 

 

 

Fig. 4.16 Hardening of P. kurroa (a) and P. scrophulariiflora (b) plantlets in greenhouse (scale 

bar = 8 cm) 

 

4.8 Effect of SWE on P-I production in P. kurroa and P. scrophulariiflora  

 

HPLC analysis of one month old P. kurroa and P. scrophulariiflora shoots grown on MSS (MS 

+ sucrose + 2 g/L SWE + growth hormones + agar), SWM (SWE + sucrose + agar) and SM (MS 

+ sucrose + growth hormones + agar) media at 25 ± 2 °C and 15 ± 2 °C was done to study the 

effect of SWE as a biostimulant and as a medium on P-I production in both plant species. Our 

results showed enhanced P-I content in both incubation temperatures. P. kurroa plants grown on 

MSS showed highest P-I accumulation with increase of 3.84 and 2.62 fold followed by SWM 

with 3.02 and 2.48 fold as compared to plants grown on SM at 25 ± 2 °C and 15 ± 2 °C, 

respectively (Figs. 4.17 and 4.18). Similarly, P. scrophulariiflora plants showed increment of 

3.26 and 2.12 fold on MSS followed by 2.50 and 2.01 fold on SWM as compared to control at 25 

± 2 °C and 15 ± 2 °C, respectively (Figs. 4.17 and 4.18). These results were found to be in 

conjunction with the previous reports where seaweed extract treatment increased the total 
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phenolic and flavonoid contents in Brassica oleraceae and Kappaphycus Doty [31, 165]. Thus, 

SWE can be utilized for enhancing P-I production in P. kurroa and P. scrophulariiflora plants 

for development of economically viable strategies to meet increasing industrial demands. 

 

 

 

Fig. 4.17 P-I content in P. kurroa and P. scrophulariiflora plants grown on MSS (MS + sucrose 

+ SWE + growth hormones + agar), SWM (SWE + sucrose + agar) and SM (MS + sucrose + 

growth hormones + agar) media at 25 ± 2 °C and 15 ± 2 °C. Error bars represent mean±SD for 

data recorded in triplicates (repeated thrice) 

  

0

1

2

3

4

5

6

25°C 15°C 25°C 15°C

P. kurroa P. scrophulariiflora 

P
ic

ro
si

d
e 

I 
(µ

g
/m

g
 F

W
 )

Different temperature

SM SWM MSS



 

74 
 

 

 

Fig. 4.18 HPLC chromatograms for P-I standards (a, e), P. kurroa shoots (b, c, d) and P. 

scrophulariiflora shoots (f, g, h) grown on MSS (MS + sucrose + SWE + growth hormones + 

agar), SWM (SWE + sucrose + agar) and SM (MS + sucrose + growth hormones + agar) media 

at 15 ± 2 °C 

 

4.9 Cost estimation  

 

The cost estimation was done by taking single shoot apex in each jar (50 ml media). The cost of 

MSS, SWM and SM media was estimated to be Rs. 12.72, 7.66 and 12.21 per jar, respectively. 
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Their components included- MS medium (HiMedia) Rs. 100/L, sucrose (HiMedia) Rs. 80.7/L, 

agar (HiMedia) Rs. 62.64/L, growth hormones (HiMedia) Rs. 1.05/L and SWE (Sea6 Energy) 

Rs. 10/L. Number of P. kurroa shoots formed in 50 ml of MSS, SWM and SM media were found 

to be 34.60, 22.10 and 23.51, respectively. Therefore, cost of growing one shoot was found to be 

Rs. 0.37, 0.34 and 0.52 in MSS, SWM and SM media, respectively. Similarly, cost of growing 

one shoot of P. scrophulariiflora was found to be Rs. 0.44, 0.37, 0.57 on MSS, SWM and SM 

media, respectively. Our results revealed that media cost per P. kurroa shoot was 1.40 and 1.53 

fold lower in MSS and SWM, respectively as compared to SM (Table 4.1). Similarly, media cost 

per P. scrophulariiflora shoot was 1.29 and 1.54 fold lower in MSS and SWM, respectively as 

compared to SM (Table 4.1). Hence, media cost per P. kurroa shoot was found to be 1.18 and 

1.08 fold lower in MSS and SWM, respectively as compared to P. scrophulariiflora shoot grown 

on same media combinations. These statistics demonstrated that SWE as a biostimulant and as an 

alternative medium offered low cost multiplication of P. kurroa and P. scrophulariiflora plants 

for P-I production. Also, micropropagation of P. kurroa on these media combinations was found 

to be economical as compared to P. scrophulariiflora. 
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Table 4.1 Cost estimation of in vitro micropropagation of P. kurroa and P. scrophulariiflora 

plants grown on MSS, SWM and SM media  

 

 MSS SWM SM 

Media composition MS + sucrose + 

SWE + growth 

hormones + agar  

SWE + sucrose + 

agar  

 

MS + sucrose + 

growth hormones 

+ agar 

Media cost per liter (Rs.)  254.39  153.34  244.39  

Media cost per jar (50 ml) 

(Rs.)  

12.72  7.66  12.21 

Number of P. kurroa shoots 

per jar (50 ml)  

34.6  

 

22.10  

 

23.51  

 

Media cost/P. kurroa shoot 

(Rs.)  

0.37  0.34  0.52  

Number of P. 

scrophulariiflora shoots per 

jar (50 ml)  

29.18  

 

20.54  

 

21.30  

 

Media cost/P. 

scrophulariiflora shoot (Rs.) 

0.44  

 

0.37  

 

0.57  

 

 

4.10 Effect of different elicitors on shoot biomass and P-I content 

 

Various elicitors such as ABA, salicylic acid, MeJa, SNP, hydrogen peroxide, yeast extract, 

chitin, chitosan, etc. have been investigated for plant based secondary metabolite production in 

different plant species. Hence, for the present study, various concentrations (50, 100 and 200 

μM) of different elicitors viz. SNP, ABA and MeJa were screened for studying their effect on 

shoot biomass and P-I content in P. kurroa and P. scrophulariiflora plants grown under in vitro 

conditions. Out of tested different concentrations of SNP, highest enhancement with 1.30, 1.21 

fold in shoot biomass and 1.35, 1.28 fold in P-I content was observed in P. kurroa and P. 

scrophulariiflora, respectively at 100 µM concentration as compared to untreated control (Figs. 

4.19a and 4.19b). Filippou et al. [203] have also showed increase in proline and polyamine 



 

77 
 

accumulation upon administration of SNP in Medicago trunculata plants. Further, ABA showed 

highest enhancement in P-I content with 2.01 fold in P. kurroa and 1.92 fold in P. 

scrophulariiflora at 50 µM concentration (Fig. 4.19b), while no increase was observed in shoot 

biomass of both species at all tested concentrations as compared to untreated control (Fig. 4.19a). 

This could be correlated to enhanced production of reserpine by ABA treatment in whole plant 

culture of Rauwolfia serpentina L. [204]. On the contrary, MeJa showed highest enhancement 

with 1.56, 1.47 fold in shoot biomass, while 0.51, 0.45 fold decrease was observed in P-I content 

of P. kurroa and P. scrophulariiflora, respectively at 100 µM concentration as compared to 

untreated control (Figs. 4.19a and 4.19b). Singh and others [36] have also showed decreased P-I 

content after MeJa treatment in field grown leaves of P. kurroa plants. Thus, it was evident from 

the results that SNP and ABA significantly increased the P-I content while significant decrease 

was observed with MeJa treatment.   
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Fig. 4.19 Screening for optimum concentrations of different elicitors. The optimum 

concentrations of SNP, ABA and MeJa were selected by observing their effect in fold change of 

shoot biomass (a), and P-I content (b) in P. kurroa and P. scrophulariiflora plants as compared 

to their untreated controls. The error bars represent mean±SD of data recorded in triplicates 
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Further, the effect of SWE was compared with SNP, ABA and MeJa under in vitro conditions. 

Total shoot biomass and P-I content were analyzed in one month old shoot samples of P. kurroa 

and P. scrophulariiflora. Treatment with SWE (2 g/L) showed highest shoot biomass and P-I 

content in P. kurroa and P. scrophulariiflora plants as compared to SNP, ABA and MeJa (Fig. 

4.20). SWE showed highest enhancement in shoot biomass with 2.66 fold and P-I content with 

2.62 fold, while an increase in shoot biomass with 1.30, 0.72, 1.56 fold and P-I content with 

1.35, 2.01, 0.51 fold was observed in P. kurroa upon treatment with SNP, ABA and MeJa, 

respectively as compared to untreated control. Similarly, SWE showed increase in shoot biomass 

with 2.64 fold and P-I with 2.12 fold, while an increase in shoot biomass with 1.21, 0.71, 1.48 

fold and P-I content with 1.28, 1.92, 0.45 fold was observed in P. scrophulariiflora upon 

application of SNP, ABA and MeJa, respectively as compared to untreated control. This might 

be due to the presence of several components in seaweed extracts besides macro- and micro- 

nutrients viz. phytohormones, amino acids, vitamins, sterols, betaines, oligosaccharides and trace 

minerals [32, 141]. The biostimulation activity of seaweed extracts is mainly associated with 

bioactive compounds present in it which modulate the expression of different genes coding for 

proteins involved in plant phytohormone biosynthesis needed for plant growth and development 

[139]. Wally et al. [205] have also showed that seaweed extract modulated endogenous 

phytohormones by regulating the hormone biosynthetic genes, thereby leading to growth 

enhancement in Arabidopsis. Similarly, Fan et al. [153] have reported enhanced total soluble 

protein content, antioxidant capacity, phenolic and flavonoid contents in spinach attributed to 

increased transcript abundance of key enzymes involved in nitrogen metabolism, betaine 

synthesis and endogenous plant hormone activities by seaweed extract treatment. Improved 

levels of phenolics and flavonoids in Brassica oleraceae and Kappaphycus Doty upon seaweed 

extract treatment have also been observed [31, 165]. 
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Fig. 4.20 Comparative analysis of SWE with optimum concentrations of SNP, ABA and MeJa 

by studying their effect in fold change of shoot biomass (a) and P-I content (b) in P. kurroa and 

P. scrophulariiflora plants as compared to their untreated controls. The error bars represent 

mean±SD of data recorded in triplicates 
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4.11 Gene expression analysis vis-à-vis different elicitors  

 

Elicitor treatment stimulates the production of secondary metabolites in plants. Hence, to observe 

the molecular basis of modulations in P-I production, various genes viz. HMGS, HMGR, PMK, 

DXPS, DXPR, ISPD, ISPE, MECPS, G10H and PAL of MVA, MEP, iridoid and 

shikimate/phenylpropanoid pathways were analyzed for their expression vis-à-vis P-I content in 

P. kurroa and P. scrophulariiflora shoots treated with optimum concentrations of different 

elicitors. The expression of genes encoding HMGS, HMGR and PMK enzymes of MVA 

pathway showed increase with 2-5 and 2-4 folds upon SWE treatment in P. kurroa and P. 

scrophulariiflora, respectively as compared to untreated controls (Figs. 4.21 and 4.22). On the 

other hand, 2 genes of MEP pathway viz. DXPS and ISPD showed 3-5 and 2-4 folds high 

expression in P. kurroa and P. scrophulariiflora, respectively (Figs. 4.21 and 4.22). Fan et al. 

[153] have also showed seaweed extract induced systemic physiological responses including 

elicitation of genes corresponding to phenylpropanoid and flavanoid biosynthetic pathways. 

 

SNP treatment showed 2-3 fold high expression in HMGR, PMK, DXPS, ISPD, ISPE and 

MECPS genes in P. kurroa and P. scrophulariiflora as compared to untreated controls (Figs. 

4.21 and 4.22). The treatment with MeJa enhanced the expression of PMK, ISPD and ISPE 

genes with 2-3 folds in both species, while slight modulation was observed in other studied genes 

of MVA/MEP pathways as compared to untreated controls. Surprisingly, administration of ABA 

did not increase the expression of all selected genes of MVA and MEP pathways in P. kurroa 

and P. scrophulariiflora (Figs. 4.21 and 4.22). This indicated that ABA does not modulated 

MVA/MEP pathways for enhanced production of P-I in both plant species which was in 

agreement with the findings of Singh et al. [36]. It was evident from the results that SWE and 

SNP modulated MVA/MEP pathways as compared to other elicitors which suggested their 

involvement in enhanced production of P-I. Previous reports have also shown that SNP is a 

potential NO donor which regulates the plant metabolic pathways [203, 206]. 

  

Further, the expression of gene encoding G10H enzyme of iridoid pathway showed increase with 

2-3 folds upon administration of SWE, SNP and MeJa, respectively as compared to untreated 

control in both plant species (Figs. 4.21 and 4.22). Thus, results indicated that enhanced 
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availability of iridoid precursor upon application of SWE and SNP increase the expression of 

G10H gene, thereby resulting in P-I elicitation. It has been reported that G10H gene is a potential 

candidate for regulation of seco-iridoids in C. roseus [207-208]. Our results also suggested that 

SWE and SNP treatments increased P-I content and G10H gene expression in P. kurroa and P. 

scrophulariiflora shoots, thereby demonstrating the plausible role of G10H gene in regulation of 

iridoids production in both plant species. On the other hand, MeJa treatment might benefit seco-

iridoid biosynthesis than iridoid biosynthesis as indicated by P-I content and G10H expression in 

P. kurroa plants [208]. An increase in expression of gene encoding PAL enzyme of 

shikimate/phenylpropanoid pathway was observed with 5.27, 4.87 fold in SWE and 2.73, 2.61 

fold in ABA treated plants of P. kurroa and P. scrophulariiflora, respectively as compared to 

untreated controls (Figs. 4.21 and 4.22). This suggested that ABA stimulated 

shikimate/phenylpropanoid pathway while SWE modulated all the integrating pathways for 

enhancing P-I content. Jiang and Joyce [209] have also demonstrated that exogenous application 

of ABA up-regulated the PAL activity, thereby increasing the phenolic content in strawberry 

fruit.   

 

Overall, SWE showed maximum increase in P-I content as compared to other studied elicitors by 

modulating all the integrating pathways of P-I biosynthesis in P. kurroa and P. scrophulariiflora. 

While ABA modulated only shikimate/phenylpropanoid pathway for increased P-I content, SNP 

targeted MVA/MEP pathways in conjunction with iridoid pathway to increase the P-I content. 

Lastly, MeJa treatment decreased P-I content which might be due to the redirection of flux 

towards seco-iridoids as compared to iridoids in P. kurroa and P. scrophulariiflora. 
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Fig. 4.21 Expression analysis of selected genes of MVA, MEP, iridoid and 

shikimate/phenylpropanoid pathways in P. kurroa plants treated with different elicitors as 

compared to untreated control. The error bars represent mean±SD of data recorded in triplicates 

 

 

 

Fig. 4.22 Expression analysis of selected genes of MVA, MEP, iridoid and 

shikimate/phenylpropanoid pathways in P. scrophulariiflora plants treated with different 

elicitors as compared to untreated control. The error bars represent mean±SD of data recorded in 

triplicates 
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SUMMARY 

 

Understanding the role of different morphogenetic stages and potential of seaweed extract along 

with molecular basis of P-I biosynthesis under in vitro conditions can aid in improving shoot 

biomass and P-I production in P. kurroa and P. scrophulariiflora. The current study has 

therefore, suggested that P-I biosynthesis was developmentally regulated during different stages 

of differentiation in P. kurroa and P. scrophulariiflora. Expression analysis of multiple genes of 

primary and secondary metabolic pathways at different morphogenetic stages of P. kurroa and P. 

scrophulariiflora confirmed their involvement in P-I biosynthesis vis-à-vis shoot development. 

Temperature influenced P-I production by regulating all integrating pathways of secondary 

metabolism in these plant species. Genes such as HMGR, PMK, DXPS, GS, G10H, DAHPS and 

PAL showed 47-87 and 38-73 folds high expression in shoots of FD stage of P. kurroa and P. 

scrophulariiflora, respectively originated from leaf explants at 15 ± 2 °C compared to 25 ± 2 °C. 

These genes also showed 6-19 folds high expression in shoots of FD stage of P. kurroa 

compared to P. scrophulariiflora which was in positive correlation with P-I content, thus 

confirming their role in P-I biosynthesis. Further validation of these genes by gene function 

approaches will fully ascertain their role in P-I biosynthesis. These findings would be helpful in 

planning genetic intervention strategies for metabolic engineering of P. kurroa and P. 

scrophulariiflora for enhancing P-I production.  

 

Further, for cost effective micropropagation and P-I biosynthesis, effect of SWE as a 

biostimulant and as a medium alternative to nutrient medium was studied in P. kurroa and P. 

scrophulariiflora. SWE as a biostimulant with MS medium enhanced the total plant length, shoot 

biomass, number of shoots and roots in P. kurroa and P. scrophulariiflora plants. SWM showed 

comparable results with SM; therefore, it can be used as an alternative to MS medium for large 

scale micropropagation of these plant species. MSS and SWM increased the P-I production by 2-

4 folds at 15 ± 2 ºC and 25 ± 2 ºC thereby, suggesting that SWE can be used as a novel elicitor 

for enhanced P-I production under in vitro conditions for P. kurroa and P. scrophulariiflora. 

SWE as a biostimulant and as an alternative medium offered cost effective micropropagation of 

P. kurroa and P. scrophulariiflora plants for P-I production.  
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A comparative analysis of SWE with other elicitors viz. MeJa, SNP and ABA was carried out to 

identify an efficient elicitor for enhanced plant growth and P-I content in P. kurroa and P. 

scrophulariiflora. SWE showed highest enhancement in shoot biomass with 2.66, 2.64 fold and 

P-I content 2.62, 2.12 fold in P. kurroa and P. scrophulariiflora, respectively, while increase in 

shoot biomass with 0.71–1.56 fold and P-I content with 0.45-2.01 fold was observed in these 

plant species on treatment with SNP, ABA and MeJa as compared to untreated control. The 

molecular dissection of SWE induced P-I biosynthesis demonstrated the up-regulation of HMGS, 

HMGR, PMK, DXPS, ISPD, G10H and PAL genes vis-à-vis P-I content in in vitro grown P. 

kurroa and P. scrophulariiflora shoots, suggesting modulation of all four integrating pathways of 

P-I biosynthesis. These findings would benefit the selection of genes for genetic intervention 

strategies, which can provide the platform for micropropagation of these species with increased 

P-I content in order to meet the increasing industrial demands. 

 

Overall, the outcome of this study would be helpful in understanding molecular basis of P-I 

biosynthesis, enhancement of shoot biomass and P-I content in P. kurroa and P. 

scrophulariiflora using tissue culture techniques. 
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APPENDIX 

 

Table A1 Complete biochemical profile of seaweed extract powder (data provided by Sea6 

Energy Pvt Ltd) 

 

A. Macro/Micro-nutrients 

 Element Concentration (mg/L) 

 Potassium (K) 89,117 ± 4693 

 Sodium (Na) 15512 ± 556.10 

 Sulfur (s) 1601 ± 100.85 

 Calcium (Ca) 920 ± 282.84 

 Magnesium (Mg) 815.43 ± 84.96 

 Nitrogen (N) 443.05 

 Phosphorus (P) 220.58 ± 59.01 

 Iron (Fe) 68.75 ± 26.52 

 Manganese (Mn) 19.25 ± 2.47 

 Boron (B) 14.50 ± 2.12 

 Copper (Cu) 2 ± 0.71 

 Zinc (Zn) 1.30 ± 0.14 

 Aresenic (As) BDL 

 Selenium (Se) BDL 

   

B. Amino Acids  

 Aspartate BDL 

 Glutamate 1103.85 ± 22.47 

 Asparagine BDL 

 Serine 28.64 ± 0.98 

 Glutamine 363.35 ± 2.82 

 Histidine & Glycine 49.70 ± 3.38 
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 Threonine 36.98 ± 6.73 

 Arginine 1474.76 ± 1.76 

 Alanine 50.44 ± 3.32 

 Tyrosine 53.8 ± 0.90 

 Valine 101.68 ± 2.56 

 Methionine 64.02 ± 7.21 

 Tryptophan 116.22 ± 8.57 

 Phenylalanine 249.97 ± 1.18 

 Isoleucine 113.32 ± 5.20 

 Leucine 111.67 ± 4.14 

 Lysine 43.72 ± 1.33 

   

C. Plant Growth Regulators (PGR)  

 Total Auxins 216.58 ± 20 

 Total Cytokinins 19.53 ± 3.90 

   

D.  Physical Properties  

 Solubility in water Completely soluble 

 pH 5.64 

 Viscosity  1.8 

 Specific gravity 1.16 

*BDL-Below Detectable limit 
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Table A2 Growth parameters corresponding to total plant length, shoot biomass, number of shoots and roots for P. kurroa plants 

grown on MS media supplemented with SWE, sucrose, growth hormones and agar at 25 ± 2 ºC. ANOVA test shows high significance 

with Duncan multiple-range test at 5% (p=0.05). Data was recorded in triplicates and repeated thrice on 10
th

, 20
th

 and 30
th

 day and 

represented by mean±SD 
 

 Total plant length (cm) Shoot biomass (g) Number of shoots per explant No. of roots per explant 

 10 D 20 D 30 D 10 D 20 D 30 D 10 D 20 D 30 D 10 D 20 D 30 D 

MS

S 1 
3.03±0.0

1
a
 

3.53±0.0

3
a
 

4.36±0.0

6
a
 

0.14±0.0

0
a
 

0.17±0.0

0
a
 

0.23±0.00

a
 

8.40±0.24
a
 10.60±0.2

4
b
 

11.20±0.37

a
 

0.00±0.0

0
a
 

2.40±0.2

4
a
 

3.40±0.24
a
 

MS

S 2 
3.27±0.0

2
b
 

3.87±0.0

4
b
 

4.55±0.0

2
b
 

0.15±0.0

0
c
 

0.18±0.0

0
b
 

0.25±0.00

b
 

8.60±0.24
a

b
 

10.60±0.2

4
b
 

11.60±0.24

a
 

1.20±0.3

7
b
 

2.60±0.2

4
a
 

3.60±0.24
a
 

MS

S 3 
4.26±0.0

2
c
 

5.56±0.0

2
f
 

6.86±0.0

2
e
 

0.18±0.0

0
e
 

0.41±0.0

0
g
 

0.67±0.00

e
 

14.20±0.2

0
d
 

19.60±0.2

4
e
 

25.20±0.24

d
 

2.80±0.2

0
d
 

4.60±0.2

4
b
 

8.20±0.20
c
 

MS

S 4 
3.28±0.0

4
b
 

3.96±0.0

2
b
 

4.70±0.0

1
c
 

0.15±0.0

0
d
 

0.20±0.0

0
c
 

0.25±0.00

a
 

8.60±0.24
a

b
 

11.80±0.3

7
c
 

13.60±0.40

b
 

1.40±0.2

4
b
 

2.60±0.2

4
a
 

3.80±0.37
a
 

C1 3.04±0.0

1
a
 

3.59±0.0

2
a
 

4.40±0.0

4
a
 

0.14±0.0

0
a
 

0.17±0.0

0
a
 

0.24±0.00

a
 

8.40±0.24
a
 9.60±0.24

a
 10.40±0.24

a
 

0.00±0.0

0
a
 

2.60±0.2

4
a
 

3.40±0.24
a
 

MS

S 5 
3.09±0.0

0
a
 

4.83±0.0

6
d
 

6.85±0.0

6
e
 

0.16±0.0

0
c
 

0.29±0.0

0
d
 

0.61±0.00

d
 

9.40±0.24
b
 15.40±0.5

0
d
 

23.20±0.37

c
 

0.00±0.0

0
a
 

2.60±0.2

4
a
 

4.60±0.24
b
 

MS

S 6 
3.30±0.0

7
b
 

4.96±0.0

3
e
 

7.00±0.0

3
e
 

0.17±0.0

0
d
 

0.29±0.0

0
e
 

0.68±0.00

d
 

10.40±0.2

4
c
 

15.20±0.3

7
d
 

24.20±0.37

cd
 

2.00±0.3

1
c
 

3.00±0.3

1
a
 

4.60±0.24
b
 

MS

S 7 
4.28±0.1

2
c
 

6.79±0.0

7
g
 

7.68±0.0

7
f
 

0.21±0.0

0
f
 

0.41±0.0

0
h
 

1.15±0.00

f
 

15.60±0.5

0
e
 

21.00±0.3

1
f
 

34.60±0.81

e
 

5.60±0.2

4
e
 

7.00±0.3

1
c
 

12.00±0.3

1
d
 

MS

S 8 
3.31±0.0

2
b
 

4.61±0.0

2
c
 

6.86±0.0

6
e
 

0.17±0.0

0
d
 

0.31±0.0

0
f
 

0.58±0.00

c
 

11.00±0.3

1
c
 

15.80±0.3

7
d
 

25.40±0.68

d
 

0.00±0.0

0
a
 

2.40±0.2

4
a
 

3.60±0.24
a
 

SM 3.06±0.0

0
a
 

4.54±0.0

6
c
 

6.71±0.0

1
d
 

0.15±0.0

0
b
 

0.29±0.0

0
d
 

0.43±0.00

cd
 

8.60±0.24
a

b
 

15.40±0.2

4
d
 

23.51±0.24

c
 

0.00±0.0

0
a
 

2.40±0.2

4
a
 

3.40±0.24
a
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Table A3 Growth parameters corresponding to total plant length, shoot biomass, number of shoots and roots for P. scrophulariiflora 

plants grown on MS media supplemented with SWE, sucrose, growth hormones and agar at 25 ± 2 ºC. ANOVA test shows high 

significance with Duncan multiple-range test at 5% (p=0.05). Data was recorded in triplicates and repeated thrice on 10
th

, 20
th

 and 30
th

 

day and represented by mean±SD 
 

 Total plant length (cm) Shoot biomass (g) Number of shoots per explant No. of roots per explant 

 10 D 20 D 30 D 10 D 20 D 30 D 10 D 20 D 30 D 10 D 20 D 30 D 

MS

S 1 
3.02±0.0

6
a
 

3.45±0.0

4
a
 

4.16±0.07

a
 

0.12±0.0

1
a
 

0.15±0.0

0
a
 

0.21±0.00

a
 

8.32±0.21
a
 9.86±0.45

b
 10.12±0.45

a
 

0.00±0.0

0
a
 

2.10±0.3

4
a
 

3.20±0.42
a
 

MS

S 2 
3.11±0.0

6
b
 

3.67±0.0

5
b
 

4.35±0.06

b
 

0.12±0.0

3
c
 

0.17±0.0

0
b
 

0.23±0.00

b
 

8.56±0.22
a

b
 

10.46±0.5

6
b
 

11.34±0.64

a
 

1.11±0.3

3
b
 

2.30±0.5

3
a
 

3.40±0.32
a
 

MS

S 3 
4.11±0.0

7
d
 

5.21±0.0

5
f
 

6.18±0.06

e
 

0.13±0.0

3
e
 

0.28±0.0

3
g
 

0.49±0.20

e
 

13.37±0.2

1
d
 

15.08±0.7

4
e
 

24.04±0.45

d
 

2.50±0.3

4
d
 

3.30±0.2

2
b
 

7.34±0.42
c
 

MS

S 4 
3.18±0.0

5
b
 

3.79±0.0

5
b
 

4.56±0.07

c
 

0.13±0.0

0
d
 

0.19±0.0

0
c
 

0.24±0.00

a
 

8.59±0.21
a

b
 

10.38±0.5

4
c
 

12.86±0.45

b
 

1.30±0.4

4
b
 

2.40±0.3

4
a
 

3.45±0.23
a
 

C1 3.01±0.2

3
b
 

3.42±0.0

5
b
 

4.01±0.07

a
 

0.13±0.1

0
a
 

0.13±0.0

3
a
 

0.19±0.20

a
 

7.82±0.45
a
 8.11±0.45

a
 9.21±0.54

a
 0.00±0.0

0
a
 

2.10±0.5

6
a
 

3.30±0.23
a
 

MS

S 5 
3.05±0.0

3
a
 

4.53±0.0

8
d
 

6.72±0.08

e
 

0.13±0.0

0
c
 

0.25±0.0

0
d
 

0.56±0.00

d
 

9.14±0.56
b
 14.40±0.4

5
d
 

22.80±0.35

c
 

0.00±0.0

0
a
 

2.50±0.6

5
a
 

4.21±0.45
b
 

MS

S 6 
3.21±0.0

4
b
 

4.79±0.0

8
e
 

6.91±0.08

e
 

0.14±0.0

0
d
 

0.27±0.0

0
e
 

0.61±0.00

d
 

10.24±0.6

7
c
 

15.02±0.6

4
d
 

23.72±0.55

cd
 

1.70±0.1

1
c
 

2.90±0.5

6
a
 

4.30±0.56
b
 

MS

S 7 
4.02±0.3

4
d
 

6.54±0.2

1
f
 

7.51±0.19

f
 

0.15±0.0

2
f
 

0.30±0.0

4
h
 

0.91±0.05

f
 

14.09±0.7

6
f
 

17.12±0.5

4
f
 

29.18±0.45

e
 

5.30±0.3

4
e
 

6.10±0.4

5
c
 

11.10±0.3

4
d
 

MS

S 8 
3.26±0.2

3
c
 

4.87±0.2

3
c
 

6.98±0.02

e
 

0.14±0.0

0
d
 

0.29±0.0

0
f
 

0.66±0.00

c
 

10.23±0.4

5
c
 

15.70±0.6

4
d
 

24.84±0.38

d
 

0.00±0.0

0
a
 

2.30±0.3

4
a
 

3.54±0.56
a
 

SM 3.03±0.2

1
a
 

4.45±0.2

3
c
 

6.61±0.03

cd
 

0.12±0.0

2
b
 

0.23±0.0

5
d
 

0.34±0.08

cd
 

8.01±0.67
b
 13.31±0.7

4
d
 

21.30±0.46

c
 

0.00±0.0

0
a
 

2.23±0.2

3
a
 

3.30±0.56
a
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Table A4 Growth parameters corresponding to total plant length, shoot biomass, number of shoots and roots for P. kurroa plants 

grown on novel SWM and MS media at 25 ± 2 ºC. ANOVA test shows high significance with Duncan multiple-range test at 5% 

(p=0.05). Data was recorded in triplicates and repeated thrice on 10
th

, 20
th

 and 30
th

 day and represented by mean±SD 

 
 
 Total plant length (cm) Shoot biomass (g) 

 

No. of shoots per explant No. of roots per explant 

 10 D 20 D 30 D 10 D 20 D 30 D 10 D 20 D 30 D 10 D 20 D 30 D 

SW

M 1 
3.13±0.03

d
 

0.00±0.00

a
 

0.00±0.0

0
a
 

0.14±0.02
b
 0.00±0.0

0
a
 

0.00±0.0

0
a
 

8.60±0.24

ab
 

0.00±0.00
a
 0.00±0.00

a
 

0.00±0.0

0
a
 

0.00±0.00

a
 

0.00±0.00

a
 

SW

M 2 
4.64±0.01

h
 

5.85±0.02

h
 

8.62±0.1

0
g
 

0.14±0.00
bc

def
 

0.26±0.0

0
d
 

0.41±0.0

0
d
 

9.40±0.24

bc
 

13.80±0.3

7
gh

 

20.16±0.5

1
f
 

3.60±0.2

4
d
 

5.40±0.24

e
 

9.60±0.51

d
 

SW

M 3 
3.55±0.01

g
 

4.15±0.03

f
 

0.00±0.0

0
a
 

0.22±0.00
i
 0.44±0.0

0
g
 

0.00±0.0

0
g
 

9.20±0.37

abc
 

10.00±0.3

2
de

 

0.00±0.00

a
 

2.60±0.2

0
b
 

3.00±0.32

bd
 

0.00±0.00

a
 

SW

M 4 
6.35±0.01

j
 

6.55±0.02

j
 

9.92±0.1

3
h
 

0.17±0.00
h
 0.28±0.0

0
e
 

0.48±0.0

0
e
 

9.60±0.24

c
 

14.80±0.3

7
ij
 

22.1±0.58

f
 

3.80±0.2

0
d
 

5.60±0.24

e
 

11.40±0.5

1
e
 

SW

M 5 
3.20±0.03

e
 

0.00±0.00

a
 

0.00±0.0

0
a
 

0.16±0.00
cd

efg
 

0.00±0.0

0
a
 

0.00±0.0

0
a
 

8.60±0.24

ab
 

0.00±0.00
a
 0.00±0.00

a
 

0.00±0.0

0
a
 

0.00±0.00

a
 

0.00±0.00

a
 

SW

M 6 
3.19±0.01

e
 

3.29±0.03

b
 

3.51±0.1

3
b
 

0.17±0.00
ef

g
 

0.19±0.0

0
c
 

0.21±0.0

0
b
 

9.20±0.20

abc
 

11.20±0.3

7
f
 

15.10±0.3

7
c
 

0.00±0.0

0
a
 

0.00±0.00

a
 

0.00±0.00

a
 

SW

M 7 
3.29±0.01

f
 

3.88±0.01

e
 

0.00±0.0

0
a
 

0.17±0.00
g
 0.29±0.0

0
e
 

0.00±0.0

0
a
 

8.60±0.24

ab
 

9.60±0.24
c

d
 

0.00±0.00

a
 

0.00±0.0

0
a
 

2.40±0.24

cd
 

0.00±0.00

a
 

SW

M 8 
4.96±0.02

i
 

6.11±0.02

i
 

7.31±0.0

2
f
 

0.16±0.00
fg

 0.28±0.0

0
d
 

0.43±0.0

0
d
 

8.60±0.24

ab
 

14.40±0.2

4
hi

 

20.45±0.2

4
e
 

3.20±0.2

0
c
 

5.40±0.24

e
 

9.40±0.24

d
 

MS

M 1 
2.89±0.02

a
 

0.00±0.00

a
 

0.00±0.0

0
a
 

0.13±0.00
a
 0.00±0.0

0
a
 

0.00±0.0

0
a
 

8.40±0.24

a
 

0.00±0.00
a
 0.00±0.00

a
 

0.00±0.0

0
a
 

0.00±0.00

a
 

0.00±0.00

a
 

MS

M 2 
2.99±0.02

b
 

3.23±0.09

b
 

0.00±0.0

0
a
 

0.13±0.00
a
 0.15±0.0

0
b
 

0.00±0.0

0
a
 

8.40±0.24

a
 

8.80±0.20
b
 0.00±0.00

a
 

0.00±0.0

0
a
 

0.60±0.24

a
 

0.00±0.00

a
 

MS

M 3 
3.04±0.02

bc
 

3.20±0.03

b
 

3.98±0.0

2
c
 

0.19±0.00
h
 0.28±0.0

0
d
 

0.61±0.0

0
f
 

8.40±0.24

a
 

9.20±0.20
b

c
 

15.60±0.2

4
d
 

0.00±0.0

0
a
 

1.40±0.24

b
 

2.40±0.24

b
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MS

M 4 
3.01±0.01

bc
 

3.68±0.01

d
 

4.38±0.0

8
d
 

0.14±0.00
bc

 0.17±0.0

0
c
 

0.24±0.0

0
c
 

8.40±0.24

a
 

10.40±0.2

4
e
 

10.40±0.2

4
b
 

0.00±0.0

0
a
 

2.20±0.20

c
 

2.80±0.20

bc
 

MS

M 5 
3.02±0.02

bc
 

0.00±0.00

a
 

0.00±0.0

0
a
 

0.15±0.00
bc

d
 

0.00±0.0

0
a
 

0.00±0.0

0
a
 

8.60±0.24

ab
 

0.00±0.00
a
 0.00±0.00

a
 

0.00±0.0

0
a
 

0.00±0.00

a
 

0.00±0.00

a
 

MS

M 6 
3.07±0.01

c
 

3.55±0.02

c
 

0.00±0.0

0
a
 

0.16±0.00
de

fg
 

0.17±0.0

0
c
 

0.00±0.0

0
a
 

8.60±0.24

ab
 

10.60±0.2

4
ef

 

0.00±0.00

a
 

0.00±0.0

0
a
 

1.20±0.20

b
 

0.00±0.00

a
 

MS

M 7 
3.19±0.01

e
 

3.80±0.01

de
 

4.08±0.0

4
c
 

0.27±0.00
j
 0.61±0.0

0
h
 

1.19±0.0

2
h
 

10.40±0.2

4
d
 

13.60±0.5

1
g
 

24.40±0.5

1
h
 

0.00±0.0

0
a
 

1.40±0.24

b
 

2.20±0.20

b
 

MS

M 8 
3.06±0.01

c
 

4.36±0.05

g
 

6.51±0.1

1
e
 

0.15±0.00
bc

de
 

0.29±0.0

0
f
 

0.43±0.0

0
g
 

10.60±0.2

4
d
 

15.20±0.2

0
f
 

23.40±0.5

1
g
 

0.00±0.0

0
a
 

2.40±0.24

cd
 

3.40±0.24

c
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Table A5 Growth parameters corresponding to total plant length, shoot biomass, number of shoots and roots for P. scrophulariiflora 

plants grown on novel SWM and MS media at 25 ± 2 ºC. ANOVA test shows high significance with Duncan multiple-range test at 5% 

(p=0.05). Data was recorded in triplicates and repeated thrice on 10
th

, 20
th

 and 30
th

 day and represented by mean±SD 

 
 
 Total plant length (cm) Shoot biomass (g) 

 

No. of shoots per explant No. of roots per explant 

 10 D 20 D 30 D 10 D 20 D 30 D 10 D 20 D 30 D 10 D 20 D 30 D 

SW

M 1 
3.11±0.13

c
 

0.00±0.00

a
 

0.00±0.0

0
a
 

0.11±0.02
b
 0.00±0.0

0
a
 

0.00±0.0

0
a
 

8.46±0.28
b
 0.00±0.00

a
 0.00±0.00

a
 

0.00±0.0

0
a
 

0.00±0.00

a
 

0.00±0.00

a
 

SW

M 2 
4.54±0.04

h
 

5.71±0.05

h
 

8.56±0.1

0
g
 

0.12±0.00
b
 0.19±0.0

0
d
 

0.32±0.0

0
d
 

9.22±0.25
b
 11.89±0.3

7
gh

 

20.16±0.5

1
f
 

3.10±0.2

4
d
 

5.14±0.24

e
 

9.26±0.51

d
 

SW

M 3 
3.43±0.03

g
 

4.08±0.04

f
 

0.00±0.0

0
a
 

0.18±0.00
i
 0.32±0.0

0
g
 

0.00±0.0

0
g
 

9.19±0.37
b
 9.82±0.37

d

e
 

0.00±0.00

a
 

2.16±0.2

0
b
 

2.98±0.32

bd
 

0.00±0.00

a
 

SW

M 4 
6.31±0.04

j
 

6.49±0.05

j
 

9.87±0.2

1
h
 

0.12±0.00
h
 0.22±0.0

0
e
 

0.35±0.0

0
e
 

8.52±0.28
d
 12.98±0.4

1
j
 

20.54±0.6

1
f
 

3.12±0.2

6
d
 

4.78±0.27

e
 

10.71±0.5

2
e
 

SW

M 5 
3.11±0.04

e
 

0.00±0.00

a
 

0.00±0.0

0
a
 

0.11±0.00
cd

efg
 

0.00±0.0

0
a
 

0.00±0.0

0
a
 

8.41±0.24
a

b
 

0.00±0.00
a
 0.00±0.00

a
 

0.00±0.0

0
a
 

0.00±0.00

a
 

0.00±0.00

a
 

SW

M 6 
3.12±0.01

e
 

3.21±0.03

b
 

3.43±0.1

5
b
 

0.13±0.00
ef

g
 

0.15±0.0

0
c
 

0.19±0.0

0
b
 

9.18±0.22
a
 10.26±0.3

4
f
 

14.11±0.3

4
c
 

0.00±0.0

0
a
 

0.00±0.00

a
 

0.00±0.00

a
 

SW

M 7 
3.21±0.01

f
 

3.76±0.04

e
 

0.00±0.0

0
a
 

0.15±0.00
g
 0.21±0.0

0
e
 

0.00±0.0

0
a
 

8.26±0.25
a
 9.51±0.24

c

d
 

0.00±0.00

a
 

0.00±0.0

0
a
 

2.04±0.24

cd
 

0.00±0.00

a
 

SW

M 8 
4.87±0.02

i
 

6.03±0.01

i
 

7.12±0.0

2
f
 

0.12±0.00
fg

 0.21±0.0

0
d
 

0.31±0.0

0
d
 

8.56±0.25
a
 13.01±0.2

4
hi

 

19.65±0.2

3
e
 

3.02±0.2

0
c
 

5.14±0.24

e
 

9.14±0.24

d
 

MS

M 1 
2.76±0.03

a
 

0.00±0.00

a
 

0.00±0.0

0
a
 

0.10±0.00
a
 0.00±0.0

0
a
 

0.00±0.0

0
a
 

8.11±0.25
a
 0.00±0.00

a
 0.00±0.00

a
 

0.00±0.0

0
a
 

0.00±0.00

a
 

0.00±0.00

a
 

MS

M 2 
2.87±0.02

b
 

3.13±0.09

b
 

0.00±0.0

0
a
 

0.11±0.00
a
 0.12±0.0

0
b
 

0.00±0.0

0
a
 

8.32±0.24
a
 8.41±0.20

b
 0.00±0.00

a
 

0.00±0.0

0
a
 

0.40±0.24

a
 

0.00±0.00

a
 

MS

M 3 
3.01±0.01

bc
 

3.12±0.02

b
 

3.91±0.0

2
c
 

0.15±0.00
h
 0.21±0.0

0
d
 

035±0.00

f
 

8.12±0.24
a
 9.01±0.23

b

c
 

14.20±0.2

5
d
 

0.00±0.0

0
a
 

1.10±0.24

b
 

2.10±0.24

b
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MS

M 4 
2.97±0.04

bc
 

3.57±0.02

d
 

4.21±0.0

1
c
 

0.11±0.00
bc

 0.13±0.0

0
c
 

0.19±0.0

0
c
 

7.82±0.28
a
 8.11±0.27

e
 9.21±0.21

b
 

0.00±0.0

0
a
 

2.10±0.22

c
 

3.30±0.22

bc
 

MS

M 5 
2.95±0.05

bc
 

0.00±0.00

a
 

0.00±0.0

0
a
 

0.13±0.00
bc

d
 

0.00±0.0

0
a
 

0.00±0.0

0
a
 

8.440±0.2

4
ab

 

0.00±0.00
a
 0.00±0.00

a
 

0.00±0.0

0
a
 

0.00±0.00

a
 

0.00±0.00

a
 

MS

M 6 
2.97±0.01

c
 

3.45±0.02

c
 

0.00±0.0

0
a
 

0.11±0.00
de

fg
 

0.12±0.0

0
c
 

0.00±0.0

0
a
 

8.21±0.24
a

b
 

10.26±0.2

4
ef

 

0.00±0.00

a
 

0.00±0.0

0
a
 

1.10±0.20

b
 

0.00±0.00

a
 

MS

M 7 
3.04±0.02

e
 

3.72±0.01

de
 

4.01±0.0

3
c
 

0.22±0.00
j
 0.41±0.0

0
h
 

1.02±0.0

2
h
 

9.14±0.24
d
 12.16±0.5

1
g
 

21.14±0.5

1
h
 

0.00±0.0

0
a
 

1.10±0.24

b
 

2.12±0.20

b
 

MS

M 8 
3.01±0.01

c
 

4.12±0.05

g
 

6.42±0.2

3
e
 

0.12±0.00
bc

de
 

0.23±0.0

0
f
 

0.34±0.0

0
g
 

8.01±0.24
d
 13.31±0.2

0
f
 

21.30±0.5

1
g
 

0.00±0.0

0
a
 

2.23±0.21

cd
 

3.30±0.21

c
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