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1 Introduction

1.1 Introduction

A medium is required for the transmission of energy or power from one place
to another place. Depending on the nature of energy or power, such as me-
chanical or electrical or optical or electromagnetic energy, different types of
media are required. Such commonly used media in communication systems
are co-axial cable, parallel wire transmission lines, optical fiber cable and
wave guides etc [1]. A transmission medium is selected such that the en-
ergy or power of the signal/wave can be transmitted from one point to another
point very efficiently with loss as minimal as possible. Hence it is important
to study and analyze the properties of the medium for different types of waves.

When a signal/wave is traveling through the medium, it can go through
some changes in amplitude or phase or frequency. If the transmitted signal is
only varied in the amplitude, it can be equalized with the help of an ampli-
fier. If there are any changes in phases or frequencies, then equalizers [2] are
required to cancel the unwanted distortions during the transmission.

For a distortion-less transmission, the transmitted signal can be attenuated
in amplitude and can also be delayed but it cannot go through any modifica-
tions in phase or frequency. For a distortion-less medium, the input and output
relationship [3] can be expressed as:

y(t) =Cx(t−T ) (1.1.1)

where y(t) represents the output and x(t) represents the input of the medium.
Usually, x(t) contains multiple frequencies. Here C represents the amplifi-
cation or attenuation of the channel. It represents attenuation if C < 1 and
amplification if C > 1. If C < 1, then the signal power or energy will be dis-
sipated in the medium. Here T represents the delay of the signal. This delay

1



1 Introduction

can be defined as the time taken by the signal to travel from input to output
side. If the physical length of the medium is L units and v is the velocity of the
signal (expressed in the same units as that of length), then T can be equated
to L/v.

The above Eqn.1.1.1 represents the channel or medium characteristics in
time domain. This can be converted into frequency domain to get the transfer
function H( jω) of the medium [4] as:

H( jω) =
Y ( jω)

X( jω)
=Ce− jωT (1.1.2)

where X( jω) is the Fourier transform of the input signal and Y ( jω) is the
Fourier transform [5] of the output signal.

From this equation it is observed that for distortion-less transmission, the
amplitude variation C, which is also called magnitude response [6] is same
for all frequencies of the input signal while the phase variation also called as
phase response is a linear function(− jωT ) of frequency.

If the phase response of the medium is a linear function of frequency, every
frequency component in the original input signal will be delayed by the same
amount of time and the original transmitted signal through the medium can
be reconstructed at the output as the superposition of all equally delayed fre-
quency components. In the phase response, if there are any deviations from
this linear relationship then it results in distortion.

This distortion happens due to the fact that different frequencies will be
delayed by different amounts of time and sum of these signals at the output
deviates from the original signal there by producing the distortion in the signal
transmission. Hence for a distortion-less transmission, the phase response
must be linear which is an important requirement. If the phase response is a
non-linear function of frequency, then the signal gets distorted which is called
as dispersion [7].

In a non-dispersive medium, waves can propagate without any distortion.
Electromagnetic waves [8] in vacuum are non-dispersive as well as non-dissipative.
Due to this reason they travel long distances in vacuum without any distortion.
Ideally, all practical media exhibit dispersion for signal transmission. For the
wave propagation in a medium rather than using the magnitude and phase
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1.2 Literature review

responses to characterize the signal transmission, the complex propagation
constant is used in the similar manner as that of the frequency response of the
medium [9].

1.2 Literature review

Even though dispersion is a negative factor of the medium with respect to sig-
nal transmission, there are some useful applications of dispersion as well. In
optics [10], the separation of white light into color spectrum by prism is one
of the main applications of dispersion. The dispersion of light by glass prisms
is used to construct spectrometer and spectro radiometers [11]. In electromag-
netics, dispersion is used in pulse shaping circuits [12], high power microwave
sources (HPM) [13] and in antenna arrays for beam-forming applications.

Linear transmission line theory [14] is extensively used in microwave en-
gineering in designing matching circuits, filter, phase shifters etc. In all these
applications, the elements are assumed as linear and less importance is given
for dispersion characteristics. Even though the linear transmission lines ex-
hibit dispersion, non-linear transmission lines are widely used to have the
dispersion. Non-linear transmission line theory [15] has been reported in lit-
erature for many years.

A nonlinear transmission line (NLTL) comprises of a transmission line pe-
riodically loaded with varactors, where the capacitance non-linearity arises
from the variable depletion layer width, which depends both on the direct
current (DC) bias voltage and on the alternating current (AC) voltage of the
propagating wave [16]. They are mainly used to produce high power mi-
crowave oscillators [17]. Initially, nonlinear capacitors were used followed
by nonlinear inductors. The first generation NLTL used low voltage varactor
diodes as nonlinear capacitors and operated at low-to moderate RF frequen-
cies. Later on nonlinear ceramics [18] were used in NLTL and the frequency
of operation increased up to approximately 100 MHz [19]. This was possible
because nonlinear dielectrics, chiefly ceramic barium titanate, had been used
in commercial ceramic capacitors for many years.

The radio frequency generation using the non-linear transmission lines is
presented in [20]. In this work, they obtained the non-linear transmission line

3



1 Introduction

using the varactor diodes. In [21], GaAs planar Schottky varactor diodes are
successfully developed to design and fabricate a monolithic phase shifter at
30GHz. There are so many applications of non-linear transmission lines and
in all these applications, main emphasis is on only the non-linear capacitor.

In recent years, composite right hand left hand meta-material (CRLH-MTM)
[22] attained lot of attention and used very extensively in microwave engineer-
ing. The main reason for their popularity is showing negative permeability
and permittivity. At the microwave frequencies, a number of transmission line
with CRLH MTM characteristics have been proposed so far [23, 24, 25, 26].
Recently LH-NL transmission line has been proposed by [27]. In their work,
they proposed a LH-NL transmission line periodically loaded with series non-
linear capacitance and linear shunt inductance. In this LH-NLTL, the pulse
propagates through negative group velocity while phase velocity is positive.

The use of non-linear inductors in power systems is well established [28,
29, 30, 31]. The use of linear inductors on microstrip version also reported
in the literature [32]. Due to the availability of different materials that can be
modeled as non-linear medium such as ferromegnetic material, the use of in-
ductors has been increased in the electronic chip fabrication as well. Recently
analysis on active inductors are presented in [33].

The use of limited dispersion in optical phased array beam steering is pro-
posed in [34]. Moving from optical waves to electromagnetic waves, photonic
crystals fiber array operating in X-band has been proposed in [35]. The ap-
plication of dispersion in antenna beam steering is presented in the recent
literature [36, 37, 38, 39]. In the applications reported in [40, 41, 42], disper-
sion plays an important role and this dispersion occurs due to the non-linear
effects in the medium.

The above mentioned NLTL are analyzed by considering the shunt branch
capacitor as non-linear. But due to the availability of non-linear inductors,
the NLTL can be more generalized with respect to series branch element as
well. Now with both the series element and shunt element as non-linear, it is
required to analyze the propagation of electromagnetic waves through gener-
alized NLTL. Propagation characteristics can be obtained fro the dispersion
and hence this thesis is aimed at the dispersion characteristics of transmission
line models with non-linear elements.
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Figure 1.3.1: Typical variations in phase constants (β ) for dispersive and non-
dispersive media

1.3 Problem formulation

The propagation of electromagnetic waves in a medium is characterized by
its complex propagation constant γ . This γ is a complex number whose real
part α represents the attenuation constant while imaginary part β represents
the phase constant. For an ideal lossless transmission line α is zero while β
is a linear function of frequency. This means that on an ideal transmission
line, signals with different frequencies travel with the same velocity. But in
a real (practical) transmission line, the velocity of propagation varies with
frequency which leads to dispersion. A typical dispersion characteristic for
dispersive medium is as shown in Fig.1.3.1.

The dispersion can be expressed in terms of phase velocity(vp) and group
velocity(vg).
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1 Introduction

vp =
ω
β

(1.3.1)

vg =
dω
dβ

(1.3.2)

The phase velocity represents the velocity at which the constant phase
wave-front moves in the medium while group velocity represents the veloc-
ity at which the entire the envelope of the wave-front moves in the medium.
Due to dispersion, different frequency components travel with different ve-
locities and if a pulse is traveling in that medium it gets distorted. If the dis-
persion is more, then the pulse will be distorted completely and it cannot be
distinguished clearly. This is a disadvantage in data transmission [43]. Even
though the dispersion is a negative factor in data transmission, dispersion is
used pulse shaping circuits and in beam steering of the antenna arrays.

In antenna arrays [44], progressive phase shift is used to steer the antenna
pattern in different directions. If the frequency is changed, the progressive
phase shift [45, 46] changes and the direction of main beam changes from the
desired direction. In such applications it is required to have the same phase
constant at different frequencies. This means that the dispersion character-
istic is non-monotonic to have same β at different frequencies. To have the
same phase constant at two different frequencies, it is required to have non-
monotonic variation in the phase constant as a function of frequency. This
leads to dispersion with opposite phase and group velocities. This is the ad-
vantage of dispersive medium.

Linear circuit elements also exhibit the dispersion. But the dispersion com-
ing from the linear circuit elements is mostly monotonic variation and can-
not produce opposite phase and group velocities. Hence this thesis analyses
the dispersion characteristics of transmission line models (which supports the
electromagnets wave propagation through it) with non-linear element such as
non-linear inductor and non-linear capacitor. To observe this, the following
objectives have been formulated and analysis is carried out to present the gen-
eral conclusions.

• Objective:1 Modeling of the non-linear flux dependent inductor as cur-
rent dependent inductor to obtain its frequency response. Similarly,

6



1.4 Thesis organization

modeling of non-linear charge dependent capacitor as voltage depen-
dent capacitor and obtaining its frequency response.

• Objective:2 To analyze the unit cell of the conventional transmission
line models with non-linear elements to get the opposite phase velocity
and group velocity.

• Objective:3 To present a simple circuit model which produces opposite
phase and group velocities with minimum number of elements.

1.4 Thesis organization

All these objectives are organized in the following chapters as follows. Chap-
ter 2 gives the basic revision of the transmission line theory. Chapter 3
presents the detailed analysis of the non-linear inductor and capacitor. Chap-
ter 4 gives the analysis on conventional transmission line models. Chapter
5 presents the analysis of conventional transmission line models with Miller
loading while Chapter 6 presents the conclusions, future scope and limitation
of the present work.
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2 Transmission lines

2.1 Introduction

A transmission line is a combination of conductors or arrangement of con-
ductors to carry the signal from one point to another point. Some of the com-
monly used transmission lines are co-axial cable, microstrip line, twisted pair
etc [47]. In microwave engineering [9], transmission lines are used to carry
the power from one point to another point in a circuit or to connect the trans-
mitter or receiver with an antenna.

At higher frequencies, the time periods of the currents and voltages become
comparable to the time taken by the signal to propagate from one point to
another point. In such cases, the length of the line becomes important because
the changes in voltage or current at the source are not reflected instantaneously
at all points on the line. There will be phase changes from point to point on
the line. Due to these differential phase changes, both voltage and current are
functions of distance and time on the line. Hence the two-wire transmission
line at higher frequencies is treated as a distributed-parameter [1] network
where voltages and currents vary in magnitude and phase over its length.

Transmission line theory [14] is extensively used in microwave engineer-
ing. The main difference between the transmission line theory and circuit
theory is electrical size. Circuit analysis assumes that the physical dimen-
sions of the device are much smaller than the electrical wavelength, while
transmission lines may be a considerable fraction of wavelength, or many
wave lengths, in size. A common thumb rule is that if the length of the ca-
ble is more than λ/10, where λ is wavelength, then the circuit is treated as
distributed.

In many ways the transmission line theory bridges the gap between the
field analysis and basic circuit theory. With the help of transmission line the-

9



2 Transmission lines

Figure 2.1.1: Two wire transmission line as two port network

Figure 2.1.2: Equivalent circuit model of transmission line of differential
length dz

ory, it is easy to analyze the wave propagation through the medium without
exactly solving the Maxwell’s [48] equations. Wave phenomenon such as re-
flection and transmission can be analyzed in circuit quantities (namely voltage
and current) rather than in filed quantities (namely electric field intensity and
magnetic field intensities).

A transmission line can be analyzed using the Kirchhoff’s current law
(KCL) and Kirchhoff’s voltage law (KVL) [49] in the equivalent distributed
circuit model. For the purpose of analysis, the transmission line can be mod-
eled as a two-port network as shown in Fig.2.1.1. This figure represents the
uniform distributed transmission line.

The above differential length (dz) transmission line can be represented with
the equivalent lumped element circuit model as shown in Fig.2.1.2. Here R ,
L , G and C represents the distributed resistance, inductance, conductance and
capacitance of the transmission line model. These are distributed along the
line and hence all these are expressed per unit distance. This circuit model is
treated as the unit cell for the conventional transmission line model.

The governing equations for the transmission line model are obtained by
writing the KCL and KVL equation for the circuit. Applying KVL the fol-
lowing equation is obtained.

10



2.1 Introduction

v(z, t) = i(z, t)R4 z+
∂ i(z, t)

∂ t
L4 z+ v(z+4z, t) (2.1.1)

Based on the mathematical definition of derivative, the following equation
is obtained.

v(z+4z, t) = v(z, t)+
∂v(z, t)

∂ t
4 z (2.1.2)

Substituting the Eqn.2.1.2 into Eqn.2.1.1 the following equations are ob-
tained.

v(z, t) = i(z, t)R4 z+
∂ i(z, t)

∂ t
L4 z+ v(z, t)+

∂v(z, t)
∂ t

4 z (2.1.3)

−∂v(z, t)
∂ z

4 z = Ri(z, t)4 z+L4 z
∂ i(z, t)

∂ t
(2.1.4)

−∂v(z, t)
∂ z

= Ri(z, t)+L
∂ i(z, t)

∂ t
(2.1.5)

Following the same procedure and writing the KCL equations at the inter-
section point of series elements and shunt elements the following equation is
obtained.

−∂ i(z, t)
∂ z

= Gv(z, t)+C
∂v(z, t)

∂ t
(2.1.6)

Eqn.2.1.5 and Eqn.2.1.6 are coupled equations and they can be separated
using algebraic manipulations and the final equation can be obtained as fol-
lows

∂ 2v(z, t)
∂ z2 = RGv(z, t)+(RC+LG)

∂v(z, t)
∂ t

+LC
∂ 2v(z, t)

∂ t2 (2.1.7)

∂ 2i(z, t)
∂ z2 = RGi(z, t)+(RC+LG)

∂ i(z, t)
∂ t

+LC
∂ 2i(z, t)

∂ t2 (2.1.8)

Now these are uncoupled equations and also called as Telegrapher’s equa-
tions. These equation can be converted into phasors by replacing the time
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derivative with multiplication of jω and the following equations will be ob-
tained.

dV (z)
dz

=−ZI(z) (2.1.9)

dI(z)
dz

=−YV (z) (2.1.10)

d2V (z)
dz2 =−Z{−YV (z)}= ZYV (z) = γ2V (z) (2.1.11)

where

Z = R+ jωL (2.1.12)

and

Y = G+ jωC (2.1.13)

From the above two equations the parameter γ is obtained as:

γ = α + jβ = (ZY )
1
2 = ((R+ jωL)(G+ jωC))

1
2 (2.1.14)

Here γ is complex propagation constant of the circuit. This represents
whether the medium actually supports the wave propagation through it or
not. The real part α is called as attenuation constant and imaginary part β is
called as phase constant. For a loss-less transmission line, R = 0 and G = 0
thus making α = 0 and β = ω

√
LC as a linear function of frequency.

The solution of Eqn.2.1.11 can be obtained by solving this equation as a
second order differential equation as:

V (z) =V+e−γz +V−e+γz =V+e−αze− jβ z +V−eαze jβ z (2.1.15)

Substituting Eqn.2.1.15 in Eqn.2.1.9 the following equation is obtained.

I(z) = γ(V+e−γz−V−e+γz)/Z (2.1.16)

Substituting γ =
√

ZY in the above equation it is possible to express the
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2.1 Introduction

given equation as

I(z) = Y0(V+e−γz−V−e+γz) (2.1.17)

where Y0 represents the characteristic admittance of the Transmission line.
Reciprocal of characteristic admittance is defined as characteristic impedance.
This is defined as the ratio of complex voltage and the complex current of the
same line at any point on the line. If the characteristic impedance is a com-
plex number, then it indicates that the phase of current and voltage are not
the same. Two most important parameters of the transmission line models are
the complex propagation constant and the characteristic impedance. Depend-
ing on the medium, the complex propagation constant can be independent of
frequency or can be dependent on frequency.

2.1.1 Di�erent types of transmission lines

There are different types of transmission lines. If the distributed elements
are independent of both space and time, that transmission line is considered
as linear and uniform transmission line. If these values are changing only
with space then, they are called as non-uniform transmission line. If they are
changing with only time, then they are non-linear transmission lines. If these
values changes with both space and time, they are non-linear non-uniform
transmission lines.

• Ideal transmission lines: For an ideal transmission line, the losses are
zero. This is obtained when R = 0 and G = 0. If the line parameters
are independent of length, then it is called uniform transmission line.
For a uniform transmission line the size of the conductors and spacing
between then remains the same there by having constant impedance and
admittance. If the elements are assumed as linear then this is called as
linear. For this line the attenuation constant α is zero and phase constant
is linear function of frequency as β = ω

√
LC

• Non-ideal transmission lines: For non-ideal transmission lines, the prop-
agation constant and is generally complex number and there will be
losses Phase constant is no longer a linear function of frequency but a

13



2 Transmission lines

L L L L L 

D D D D 

Figure 2.2.1: Non-linear transmission line representation with varactor diodes

L L L L L 

C C C C 

Figure 2.2.2: Equivalent circuit model with variable capacitor

non-linear function of frequency. These non-linear transmission lines
distort the signal when they propagate through the medium.

Depending on the nature of elements in the circuit model, the transmission
lines can also be considered as linear transmission lines and non-linear trans-
mission lines. If the elements like resistance, capacitance, inductance and
conductance are considered to be non-linear then it is treated as a non-linear
transmission line. This thesis presents the analysis of the non-linear transmis-
sion line models.

2.2 Non-linear transmission lines

Non-linear transmission line theory [16] is an extension of the linear transmis-
sion line theory. In practical non-linear transmission lines, the shunt branch
element is replaced with a non-linear element such as varactor diode [50] as
shown in Fig.2.2.1. These non-linear transmission lines are used in different
application in microwave engineering.

14



2.2 Non-linear transmission lines

C C C C 

L L L L L 

Figure 2.2.3: Considered non-linear transmission line in this thesis

To analyses the non-linear transmission line model, the varactor diode is
replaced with the equivalent voltage dependent capacitor [51] as shown in
Fig.2.2.2. The analysis of non-linear transmission lines is specific to the non-
linearity assumed. There is continuous research is going on these non-linear
transmission lines. But all the literature available is only with the capacitor as
non-linear but this thesis has addressed the non-linear transmission line with
non-linear inductor as well. The general model for the non-linear transmission
line with both the elements as non-linear is shown in Fig.2.2.3.

To study the behavior of non-linear transmission lines, it is required to an-
alyze the single non-linear device and the next chapter provides the analysis
on the non-linear inductor and capacitor.
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3 The non-linear elements

3.1 Introduction

The inductor and the capacitor are the two important passive circuit elements
which have the ability to store and deliver finite amount of energy [49]. In an
inductor, the energy is stored in the form of magnetic flux and in a capacitor
the energy stored in the form of electric charge present on the electrodes [52].
The current-voltage relationships for these elements are time dependent. They
are treated as linear elements in many applications. But all real inductors and
capacitors exhibit some sort of non-linearity [53].

For an ideal linear inductor, the constitutive relationship between current
and magnetic flux is linear. This results in a linear relationship between cur-
rent and voltage. These relations are converted into frequency domain and
parameter impedance is defined as the ratio of complex voltage to complex
current through the device. Due to this, there are two types of non-linear in-
ductors such as current dependent inductor and flux dependent inductor. But
for a non-linear inductor, the constitutive relationship between current and
magnetic flux is non-linear.

For an ideal linear capacitor, the constitutive relationship between voltage
and charge is linear. For a non-linear capacitor, the relationship between volt-
age and current is given by non-linear differential equation. This chapter per-
forms the analysis of non-linear elements namely non-linear capacitor and
non-linear inductor. These devices are considered as time independent. The
frequency response [4] of the non-linear inductor and capacitor are obtained
and compared with the linear inductor and the linear capacitor.

For a linear circuit, the impulse response [6] can be used to find the fre-
quency response. But this is not possible to get the impulse response of the
non-linear device. The analysis of non-linear circuit is very specific depend-
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3 The non-linear elements

ing on the type of non linearity. For the non-linear elements, the higher order
differential equations are obtained and solved using numerical methods [54]
in order to get the exact results.

Another way to analyze the non-linear circuits is by approximating the non-
linear relationship with a linear equation using of Taylor’s series expansion
[55], about an operating point. This linearization [56] is most suitable for
small signal. This analysis is not valid if the signals are large, in the sense that
they change the operating point [57] of the device from its quiescent value.

This chapter does the analysis without any linearization. This chapter
presents the theoretical study and simulations for a non-linear inductor and
non-linear capacitor in time domain and frequency domain. The non-linear
inductor is assumed to be flux dependent and non-linear capacitor is assumed
to be charge dependent.

3.2 The inductor

3.2.1 Linear inductor

A current carrying conductor produces a magnetic field and this magnetic field
is linearly related to the current that produces it. Michael Faraday discovered
that a changing magnetic field can induce a voltage in a neighboring circuit
[58]. He proposed that the induced voltage is proportional to the time rate of
change of current producing the magnetic field. The constant of proportional-
ity is defined as inductance and symbolized with L expressed in Henries. The
current-voltage relationship for an ideal linear inductor is given in Eqn.3.2.1

v(t) = L
di(t)

dt
(3.2.1)

The mathematical model of an ideal linear inductor is given in Eqn.3.2.1.
In an ideal inductor the impedance is purely reactive and proportional to the
inductance. In an ideal linear inductor the phase of the current lags the phase
of voltage by 900. The impedance of the ideal linear inductor is given by
ZL = jωL. Practically, inductors are constructed using a coil of wire winded
on a core made of ferromagnetic material, such as ferrite. Due to this, for a
real inductor, it will have small resistance in series. This resistance represents
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3.2 The inductor

the dissipation of energy or power. An ideal inductor acts as a short circuit to
the direct currents.

3.2.2 Non-linear inductor

While inductors are modeled as linear components for the analysis purposes,
all real inductors exhibit non-linear behavior [59]. Practical inductors are con-
structed with the ferromagnetic materials [60]. Ferromagnetic material has a
non-linear relationship between the magnetic field intensity and magnetic flux
density. The magnetic flux density saturates after applying large magnitudes
of the magnetic field intensity. In other words, the magnetic field is not in-
creasing proportionally with respect to current applied which is represented as
a non-linear relationship between magnetic flux density and current passing
through it.

For an inductor on iron core [61], the relationship between magnetic flux
ϕ(t) and current i(t) passing through the loop are related as:

i(t) =
N
L

φ(t)+Aφ 3(t) (3.2.2)

where N is the number of turns of the coil, A is the cross sectional area of the
core and L is the self inductance. Using the Faraday’s law of induction [62]
along with Lenz’s law [63], the induced voltage can be obtained as:

v(t) =−N
dφ(t)

dt
(3.2.3)

The minus sign represents that the induced voltage opposes the inducing
current. This equation is more accurate at low frequencies and large currents.
For an ideal linear inductor the coefficient A = 0.

φ(t) =
L
N

i(t) (3.2.4)

Hence equation (3.2.1)is derived from the above equation.

v(t) = L
di(t)

dt
(3.2.5)

which is a linear relationship between current passing through the inductor
and induced voltage across the linear inductor.
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3 The non-linear elements

For a non-linear inductor, it is little difficult to come up with a simple equa-
tion of φ(t) in terms of i(t) not involving the radical sign. If the values of A,N
and L are known, then with the help of curve fitting [64]it is easy to invert
the same function and express φ(t) as some function of i(t). If the modeling
of the iron core inductor is more accurate, then it is possible to come up with
the relationship between flux and current in the higher order terms (not only
degree three polynomial but higher degrees) as well. But in practice, first few
order terms are sufficient to represent the non-linear behavior of the device
and hence non-linear devices are approximated with lower order polynomi-
als.

The two main non-ideal characteristics of the inductor are resonance of the
inductor and magnetic saturation [65]. At higher frequencies, the inductor
goes through a resonance peak and the impedance then falls and a voltage
phase shift of −900 is observed indicating the change in reactance from in-
ductive to capacitive. This resonance happens in the practical device due to
the parasitic capacitance that comes from the leads. The frequency at which
the reactance changes from inductive to capacitive is called as self resonat-
ing frequency of the device. Some of the properties of the self resonating
frequencies are listed below.

• The input impedance is at its peak value.

• The phase angle of the input impedance is zero.

• The effective inductance is zero.

For a non-linear inductor, the frequency is obtained in the following section
and a similarity is established between non-ideal inductor characteristic and
non-linear inductor.

3.2.3 Frequency responses of linear and non-linear

inductors

For analyzing the frequency response of the non-linear inductor (which is flux
dependent), a general expression of the following form has been considered.

i(t) = a0 +a1φ(t)+a2φ 2(t)+a3φ 3(t)+ · · · (3.2.6)
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3.2 The inductor

For a linear inductor all ai s are zero except a1. The significance of the even
ordered terms and odd ordered terms in this non-linear relationship can be
compared with physical nature of the device. If the hysteresis is neglected, the
current has to reverse the direction if the magnetic flux direction is reversed.
If only even ordered terms are considered in the relationship, by reversing
the flux direction the current direction is not reversed. In reality, the current
direction reverses, if the flux direction is reversed [62]. If this has to happen,
then the coefficients of even terms must be of smaller in comparison with
the odd ordered terms. Due to this reason, even though the above equation
represents the more general case of a non-linear inductor, it is reasonably a
good approximation to consider only odd terms in the non-linear relationship.
Then the simplified formula for the non-linear inductor can be expressed as:

i(t) = a1φ(t)+a3φ 3(t)+a5φ 5(t)+ · · · (3.2.7)

Usually, the practical devices are operated in the linear region and driven
in to non-linear region within the device’s overall operating regions. It is
again possible to express the original non-linear relation accurately with fifth
order polynomials. This chapter considered the analysis with this approxima-
tion. Again using the Faraday’s law of magnetic induction, the relationship
between voltage and current can be obtained by using the above equation.

To get the frequency response of the non-linear inductor, the constitutive
relation considered is:

i(t) = 10φ(t)+1φ 3(t)+0.02φ 5(t) (3.2.8)

Here these values are chosen to see the effect of relatively small non-linearity
on its impedance. These values can be scaled down in order to see the actual
effects of the non-linearity in the devices at high frequencies. Because of this,
the conclusions do not change even if the simulations are carried out at higher
frequencies. This equation is represented as a flux dependent inductor. But
to use the Faraday’s law of induction, it is required to have flux as a func-
tion of current. Using the mathematical procedure of curve fitting, the flux
dependent inductor can be converted into current dependent inductor with an
approximate relationship as given below. This is the modeling of the induc-

21



3 The non-linear elements

tor as current dependent device. This is being done to get the relationship
between current and voltage in differential equation.

φ(t) = −9.133×10−16 +0.08105i(t)+5.273×10−18i2(t)

−1.574×10−5i3(t)−9.401×10−22i4(t)+1.456×10−9i5(t)
(3.2.9)

From this the relationship between voltage and current is obtained as

v(t) = L(i)
di(t)

dt
(3.2.10)

From this equation, it is observed that the non-linear inductor is acting
like a variable inductance whose inductance depends on the current passing
through the inductor.

The relationship between the original equation and inverted equation for
the non-linear device and for the linear device are shown in Fig.3.2.1.
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Figure 3.2.1: Relationship between current and magnetic flux for linear and
non-linear inductors.

22



3.2 The inductor

The frequency response for this non linear inductor is obtained by applying
a Gaussian current pulse [66] as:

i(t) =
1

σ
√

2π
e−(t−µ)2/2σ2

(3.2.11)

with σ = 0.04 and µ = 2.
Then the voltage across the inductor is obtained by solving the differential

equation. The variations of currents and voltages for a non-linear and lin-
ear inductor are shown in Fig.3.2.2. From the graph, it is observed that the
variations on time domain are very small. The variation of the inductance as a
function of current is shown in Fig.3.2.3. To see the effect of this in frequency
domain, its impedance has been obtained using the Fourier transform theory.
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Figure 3.2.2: Time domain signals applied for linear and non-linear inductor.

The impedance of the non-linear inductor has been obtained using Fast
Fourier Transform (FFT) [67] and shown in Fig.3.2.4. From the graph, it is
observed that the non-linear inductor is changing its nature from inductive
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Figure 3.2.3: Variation of inductance with applied current.

to capacitive at 12 Hz for this non-linearity. This is the self resonating fre-
quency of the non-linear inductor. The self-resonant frequency of an inductor
is defined as the frequency at which the inductors reactance becomes nega-
tive, meaning it starts to behave like a capacitor. Therefore, the self-resonant
frequency of an inductor establishes the absolute upper frequency limit [33]
on its useful operating frequency range. From this figure, it is also observed
that the reactance is decreasing and then increasing suddenly after the self
resonating frequency.

3.3 Capacitor

3.3.1 Linear capacitor

In a linear capacitor, charge on electrodes and potential difference between
them is related with a linear equation as:

v(t) =
q(t)
C

(3.3.1)

with the proportional constant C being defined as the capacitance expressed
in Farads.

24



3.3 Capacitor

0 5 10 15 20
0

10

20

30

Frequency(Hz)

M
ag

ni
tu

de

Impedance of inductors

 

 

0 5 10 15 20
0

100

200

300

Frequency(Hz)

P
ha

se
(θ° )

 

 

Non−linear

Linear

Figure 3.2.4: Impedance of non-linear and linear inductors.

Using the relationship between charge and current, the relationship be-
tween voltage and current can be obtained as:

i(t) =
dq(t)

dt
=C

dv(t)
dt

(3.3.2)

Similar to the inductor, the impedance of the capacitor is obtained as the
ratio of complex voltage to complex current which is equal to ZC = 1/ jωC.
For a non-linear capacitor, this is not valid and impedance has to be obtained
by solving the non-linear differential equation.

3.3.2 Non-linear capacitor

Using the same arguments made in the previous sections, the capacitors are
assumed to be charge dependent as shown in Eqn.3.3.3 for different values of
b1,b2and b3.

v(t) = b1q(t)+b3q3(t)+b5q5(t) (3.3.3)

These equation are inverted using MATLAB [68]with the help of curve
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3 The non-linear elements

fitting tool and obtained the general equation as shown in Table.3.1.This curve
fitting is done with fifth order polynomial. Here three different non-linearity
are considered to compare their frequency responses.

q(t) = c0 + c1v(t)+ c2v2(t)+ c3v3(t)+ c4v4(t)+ c5v5(t) (3.3.4)

S.No b1 b3 b5 c0(10−16) c1 c2(10−17) c3 c4(10−19) c5(10−6)

1 1 0.01 0.0001 -9.981 0.8624 -1.059 -0.002317 1.382 3.209
2 1 0.05 0.0005 -4.634 0.6758 -2.533 -0.002237 1.064 3.329
3 1 0.1 0.001 17.54 0.5889 -0.7998 -0.002074 -0.3165 3.164

Table 3.1: Invertion of constitutive relationships of non-linear capacitors.

The non-linear relationships for these three cases are represented in Fig.3.3.1
while the variations of the capacitance with respect to voltage are as shown
in Fig.3.3.2. The time domain voltage and current for this non-linear inductor
are represented in Fig.3.3.3. From this figure, if the non-linearity is more,
then the pulse has been distorted more. To see the effect of non-linearity in
frequency domain its frequency response is obtained and compared with the
linear inductor as well.

3.3.3 Frequency response of linear and non-linear

capacitors

In the same manner as followed in the previous section, the frequency re-
pose of the capacitor is obtained by exciting the non-linear capacitor with a
Gaussian voltage pulse and then obtaining the current passing through the ca-
pacitor. The values taken for the input voltage are σ = 0.03 and µ = 2.0.
Then these time domain signals are converted in to frequency domain to ob-
tain the impedance. This is performed on three different non-linear capacitors
with the same applied voltage to analyses the effect of linearity on the na-
ture of impedance. The impedance variations of the non-linear capacitors are
represented in Fig.3.3.4.

A close observation on the self resonating frequency of the capacitor has
been analyzed and Fig.3.3.5 represents the variations in self resonant frequen-
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Figure 3.3.1: Non-linear capacitor constitutive relationships

cies of the non-linear capacitor. From this figure, it is observed that the self
resonant frequency is occurring at lower frequencies if the non-linearity in the
device is more. Hence, it can be concluded that the higher non-linear circuit
can be used if the resonance has to happen at low frequencies depending on
application.

3.4 Conclusions

From this analysis, it is observed that the non-linear inductor can be used as
a capacitor beyond its self resonating frequency and vice-versa for the non-
linear capacitor.. A non-linear inductor can be modeled as a variable inductor
and non-linear capacitor as a variable capacitor. It is also observed that the
considered non-linearity for the inductor is producing a resonance frequency
and at this resonant frequency, it is acting like a short circuit, which means
that the non-linear inductor can be modeled as a series resonating circuit.

Similarly, the non-linear capacitor is acting like a variable capacitor and
exhibiting the resonant frequency. At this resonant frequency, this non-linear
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Figure 3.3.2: Variation in capacitance for different non-linearities

capacitor is showing high impedance. Hence this can be modeled as a paral-
lel resonant circuit. It is also observed that, the magnitude of the resonating
frequency is decreasing when the non-linearity in the device is increasing.
Since a single element is able to produce resonance based on the applied sig-
nal, these non-linear elements can be used in filter designs if these devices are
practically available with the assumed non-linearity.

28



3.4 Conclusions

0 0.5 1 1.5 2 2.5 3
0

5

10

15

Time(s)

A
m

pl
itu

de
(V

)

Applied voltage across the capacitor

1.3 1.4 1.5 1.6 1.7
−400

−200

0

200

400
Current through the non−linear capacitor

Time(s)

A
m

pl
itu

de
(A

)

 

 
Linear
NL−1
NL−2
NL−3

Figure 3.3.3: Time domain variations of voltage and current

0 5 10 15 20 25
−4

−2

0

2

Frequency(Hz)

M
ag

ni
tu

id
e(

dB
)

Impedance of non−linear capacitors

 

 

0 5 10 15 20 25
0

100

200

300

Frequency(Hz)

P
ha

se
(θ° )

 

 

Linear

NL−1

NL−2

NL−3

Linear

NL−1

NL−2

NL−3

Figure 3.3.4: Impedance variations of non-linear capacitor

29



3 The non-linear elements

10 10.5 11 11.5 12
−4

−2

0

2

Frequency(Hz)

M
ag

ni
tu

id
e(

dB
)

Impedance of non−linear capacitors

 

 

10 10.5 11 11.5 12
0

100

200

300

Frequency(Hz)

P
ha

se
(θ° )

 

 
Linear

NL−1

NL−2

NL−3

Figure 3.3.5: Changes in self resonating frequency with non -linearity

30



4 Analysis of conventional

transmission line model

with non-linear elements

4.1 Introduction

After the detailed analysis of non-linear inductor and non-linear capacitor is
carried out, these elements are used in the transmission line equivalent circuit
models to observe the effect of non-linearity on complex propagation con-
stant. This analysis considers both the elements ( inductor and capacitor) as
non-linear. This chapter presents the analysis on low pass equivalent model
with non-linear inductors and capacitors.

4.2 Methodology

The complex propagation constant and dispersion characteristics are obtained
from the unit cell of the transmission line model [69, 70, 71]. To get the com-
plex propagation constant, the scattering matrices [72] are obtained by excit-
ing this unit with a voltage Gaussian pulse. Then the time domain voltages
and currents are obtained by solving coupled ordinary differential equation
[73]. These coupled differential equations are converted into state-space rep-
resentation [74]. These equations are solved using the Runge-Kutta method
[75]. All state-variables [76] such as voltage across the capacitor and currents
through the inductors are obtained and then converted into frequency domain
with the help of Fourier transform theory [5].

The scattering matrices are obtained from the impedance parameters. MAT-
LAB is used in implementing the equations. These scattering parameters [77]
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4 Analysis of conventional transmission line model with non-linear elements

are used to get the propagation constant using by first determining the effec-
tive dielectric constant and effective permeability as suggested in [78] . The
same procedure is used for all models of transmission lines.

4.3 Di�erent models considered in the

analysis

In the analysis part, four different circuit models have been considered as
listed below.

• Lowpass equivalent circuit model: In this, three different cases have
been considered depending on which element is non-linear.

– Shunt capacitor is non-linear.

– Series inductors are non-linear.

– Both series inductor and shunt inductors are non-linear.

• Highpass equivalent circuit model with shunt branch inductor as non-
linear.

• Lowpass equivalent model with Miller loading.

• Highpass equivalent model with Miller loading.

In Miller loading two types of loads are considered. Firstly with the induc-
tive loading and secondly with the capacitive loading.The analysis of Miller
loading has been presented in next chapter.

4.4 Lowpass equivalent circuit model

The unit cell of the lowpass equivalent circuit model is as shown in Fig.4.4.1.
This is also called as forward wave supporting structure. This circuit model is
analyzed in three different cases. Initially with shunt capacitor as non-linear
alone, secondly with the series inductors as non-linear and thirdly with both
the series and shunt elements as non-linear.
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L L 

C 

Figure 4.4.1: Unit cell of low-pass transmission line model

C 

L L 

Figure 4.4.2: Unit cell of low-pass transmission line with non-linear capacitor

4.4.1 Non linear shunt capacitor in lowpass

equivalent circuit model

The inductance value taken as L = 0.01H and capacitor is a non-linear device
whose relationship is given as:

q(t) = −9.133×10−16 +0.08105v(t)+5.273×10−18v2(t)

−1.574×10−5v3(t)−9.401×10−22v4(t)+1.456×10−9v5(t)
(4.4.1)

The variation of the capacitance as a function of applied voltages is repre-
sented in Fig.4.4.4.

Derivation of state-space equations for the lowpass equivalent circuit model
with non-linear capacitor is obtained by simply using the KCL and KVL.
In the state-space representation, current passing through the inductor and
voltage drop across the capacitor are considered as state-variable. As shown
in Fig.4.4.3, x1, x2 and x3 are the state variables and after applying KCL and
KVL, the following equations have been obtained.

Applying KVL at the input loop gives:

va = L1ẋ1 + x2 (4.4.2)
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4 Analysis of conventional transmission line model with non-linear elements

Figure 4.4.3: Lowpass equivalent circuit with state variables

Rearranging this, the following equation is obtained.

ẋ1 =
1
L1
{va− x2} (4.4.3)

Similarly, applying the KVL at the output loop gives:

x2 = L2ẋ3 + vb (4.4.4)

Rearranging this, the following equation is obtained.

ẋ3 =
1
L2
{x2− vb} (4.4.5)

Finally, applying KCL at the capacitor junction, the following equation is
obtained.

ẋ2 =
1

C1(x2)
{x1− x3} (4.4.6)

Here capacitor has been considered as non-linear.
In the same manner, the general equations for all the elements as non-linear

elements can be obtained as follows.

ẋ1 =
1

L1(x1)
{va− x2} (4.4.7)

ẋ3 =
1

L2(x3)
{x2− vb} (4.4.8)
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Figure 4.4.4: Variation of capacitance with applied voltage

ẋ2 =
1

C1(x2)
{x1− x3} (4.4.9)

These equations are solved using the Runge-Kutta fourth order method.
This unit cell is excited with a Gaussian form voltage pulse of σ = 0.05 and

µ = 0.25. The time domain signals are converted into the frequency domain
to observe the voltage gain of the unit cell in frequency domain. The input and
output signals in time domain are represented in Fig.4.4.5. From this figure,
it is observed that the gain of the unit cell is more than unity which indicates
the amplification [79]. This is one of the important applications of non-linear
circuit elements.

It is also observed that the phase variation is not monotonic which indicates
that this phase response produces dispersion. Even though the distortion in
the output pulse is not obvious from the Fig.4.4.5 in time domain, the varia-
tions are evident in the frequency domain with respect to gain and the phase
variations.

The scattering matrices for the unit cell are obtained and shown in Fig.4.4.6.
From this figure, it is obvious that around the frequency 20 Hz, both S11 and
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4 Analysis of conventional transmission line model with non-linear elements
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Figure 4.4.5: Gain of unit cell of lowpass transmission line model

S12 are beyond unity which is results in amplification of the signal due to the
non-linearity. From the symmetry S12 is same as S21. Usually, the phase of
the scattering parameters is more important for the pulse propagation which
gives the dispersion properties of the model. These Scattering parameters are
used to obtain the complex propagation constant and a comparison is made
between the non-linear and linear model unit cell.

The complex propagation constant for this model is obtained from the scat-
tering matrices as shown in Fig.4.4.7. The main important observation made
from this figure is that there is no difference in the pass band (up to 8 Hz
approximately) of the linear and non-linear model. But there is a possibility
for variation in phase constant from 10 Hz to 28 Hz approximately which in-
dicates the propagation of the electromagnetic wave. The algorithm used is
converging to constant values if there is no propagation of the wave through
the model. From this figure it is observed that the non-linearity in the device
can be used in generating the dual-band operating devices [80]. The origi-
nal passband nature has no variations but there is another band of frequencies
suitable for the wave propagation. In this case, the second pass band is around
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4.4 Lowpass equivalent circuit model
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Figure 4.4.6: Scattering matrices of unit cell

20 Hz which has less attenuation and non-monotonic variation in the phase
response which gives the opposite phase velocity and group velocity.

The reason for the variations in the phase constant has been observe by
getting the equivalent shunt impedance of the non-linear capacitor. The neg-
ative resistance is not a new phenomenon in electronics but its presence in
this model is an advantage as this can be used in controlling the gain of the
unit cell. The shunt branch impedance is represented in Fig.4.4.8 . From this
figure, it is observed that the negative resistance [81] is being produced which
is oscillating over the band of frequencies.

4.4.2 Non-linear series inductors in lowpass

equivalent circuit model

To see the effect of non-linearity in the series branches, the inductors are
assumed to be non-linear as shown Fig.4.4.9. The values of the capaci-
tor and inductirs are interchanged to compare this case with the previous
case. The same approach is used to obtain the scattering parameters as shown
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4 Analysis of conventional transmission line model with non-linear elements
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Figure 4.4.7: Complex propagation constant with non-linear capacitor
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4.4 Lowpass equivalent circuit model
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Figure 4.4.9: Unit cell of low-pass transmission line with non-linear inductors
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Figure 4.4.10: Scattering matrices of the unit cell with inductor as non-linear

in Fig.4.4.10 and there after the complex propagation constant as shown in
Fig.4.4.11.

From Fig.4.4.10, it is again observed that there is no variation in the pass-
band nature again but it is still affecting it in the stopband. Again there is a
non-monotonic phase variation in the response of S21 which is same as the
conclusion made in the previous section.

From the complex propagation constant for this model, it is observed that
there is slightly smooth variation the propagation constant compared with the
single non-linear capacitor. From this, it can be observed that more the non-
linearity in the model, it can produce smooth variations in the complex prop-
agation constant.
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4 Analysis of conventional transmission line model with non-linear elements
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Figure 4.4.11: Complex propagation constant with series inductors as non-
linear

4.4.3 Both non-linear elements in lowpass equivalent

circuit model

Finally, the conventional transmission line model is analyzed by consider-
ing both the series element and the shunt element as non-linear as shown in
Fig.4.4.12.The values of the capacitor and inductor are same. The complex
propagation constant for this circuit model is represented in Fig.4.4.13. The
same constitutive non-linear relationship is considered for both the cases as
given as:

q(t) = −9.133×10−16 +0.08105v(t)+5.273×10−18v2(t)

−1.574×10−5v3(t)−9.401×10−22v4(t)+1.456×10−9v5(t)
(4.4.10)

for the capacitor and
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4.4 Lowpass equivalent circuit model
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Figure 4.4.12: Unit cell of low-pass transmission line with non-linear ele-
ments

φ(t) = −9.133×10−16 +0.08105i(t)+5.273×10−18i2(t)

−1.574×10−5i3(t)−9.401×10−22i4(t)+1.456×10−9i5(t)
(4.4.11)

for the inductor.
From the result it is observed that the propagation constant varies smoothly

and it is in non-monotonic variation. And comparing these results with the
previous case, this circuit model is producing variation in dispersion char-
acteristic smoothly. Hence, these circuit models can be used for getting the
opposite phase and group velocities.
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4 Analysis of conventional transmission line model with non-linear elements
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5 Analysis of highpass

equivalent circuit model

and Miller loading of

transmission line models

5.1 Introduction

This chapter presents the analysis of highpass equivalent circuit model with
non-linear inductor. This analysis is the dual of the previous models. In the
highpass equivalent circuit model, only the shunt inductor has been taken as
a non-linear element. From the circuit theory, using the principle of dual-
ity other models behavior can be obtained. Hence only one model has been
analyzed and the results are presented for the single case.

Along with this, loading of conventional lowpass equivalent circuit model
(which supports the forward waves) and high pass equivalent circuit model
(which supports the backward waves) in Miller form [82] has been consid-
ered. These models are considered in order to come up with an equivalent cir-
cuit that produces opposite phase and group velocities with minimum number
of components.

After the analysis, it is observed that the forward wave supporting struc-
ture with capacitive loading is producing the opposite phase and group ve-
locities in a similar manner as composite right hand left hand metamate-
rial (CRLH-MTM). Likewise, the backward wave supporting structure with
inductive Miller loading is producing opposite phase and group velocities.
Hence these circuits can be used in place of CRLH-MTM by selecting proper
values of inductor and capacitors.
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5 Analysis of highpass equivalent circuit model and Miller loading of transmission line models

C C 
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Figure 5.2.1: Unit cell of highpass transmission line model with non-linear
inductor

5.2 Highpass equivalent circuit model with

non-linear inductor

The dual of the previous model as shown in Fig.5.2.1 has been analyzed with
the inductor as a non-linear element. The element values considered for this
circuit are C = 0.01F and the non-linear constitutive relationship for the in-
ductor is given below:

i(t) = −9.133×10−16 + .08105φ(t)+5.273×10−18φ 2(t)

−1.574×10−5φ 3(t)−9.401×10−22φ 4(t)+1.456×10−9φ 5(t)
(5.2.1)

The scattering parameters of this unit cell model with inductor as linear
and non-linear element are represented in Fig.5.2.2. S21 is the gain of the unit
cell and hence it is possible to use the phase response of S21 to get relative
signs(positive or negative) of the phase velocity and group velocity. From
this figure, it is observed that the phase of S21 is monotonic for the linear
circuit where as the phase of S21is non-monotonic due to the non-linearity.
This results in non-monotonic variation in the dispersion relation for the unit
cell.

From this figure, it is also observed that the gain of the unit cell is more than
unity at which the phase changes its direction from decreasing to increasing.
The other differentiating factor for this circuit models that, its gain has been
changed in the original passband unlike the lowpass equivalent model.
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5.3 Loading of lowpass and highpass transmission line models in Miller form

0 20 40

−40

−20

0

20

Frequency(Hz)

M
ag

ni
tu

de
(d

B
)

S
11

0 20 40
−200

0

200

Frequency(Hz)

P
ha

se
(°)

S
11

0 20 40

−40

−20

0

20

Frequency(Hz)

M
ag

ni
tu

de
(d

B
)

S
21

 

 

0 20 40
−200

0

200

Frequency(Hz)

P
ha

se
(°)

S
21

Non−linear

Linear

Figure 5.2.2: Scattering parameters for the unit cell of highpass equivalent
circuit model with non-linear inductor

5.3 Loading of lowpass and highpass

transmission line models in Miller form

As discussed in Chapter 2, the CRLH-MTM is used to get the opposite phase
and group velocities which supports both forward waves and backward waves.
To have the two modes of transmission (forward wave supporting structure
and backward wave supporting structure) the transmission line model requires
six components in total. But with the help of Miller loading, it is possible to
get the same functionality as CRLH-MTM with respect to phase and group
velocities with minimum number of components. This is the main advantage
of the Miller loading with inductor and capacitor for the lowpass equivalent
circuit model and highpass equivalent circuit model.
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5 Analysis of highpass equivalent circuit model and Miller loading of transmission line models
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Figure 5.3.1: Unit cell of lowpass transmission line with Miller non-linearity
inductor

5.3.1 Loading of lowpass equivalent circuit model

with an inductor in Miller form

The conventional forward wave supporting structure has been loaded with an
inductor as shown in Fig.5.3.1. A parametric study has been performed on this
model for different values of Miller inductor. The gain of unit cell gain has
been obtained and represented in Fig.5.3.2. The values taken for this circuit
are L = 1H and C = 1F . From this figure, it is observed that by increasing the
values of the inductance, the gain is approaching towards the forward wave
supporting structure without loading. But if an inductor has been connected,
it is producing a resonant frequency at which the gain of the unit cell is zero.

At that resonant frequency the entire circuit model is acting like a short
circuit [83] . This resonant frequency is small if the Miller inductor is small
and tends to infinity if the value inductance is infinity. From the same figure,
it is also observed that the variation in the phase is still monotonic no matter
what may be the value of inductance. Hence this circuit model cannot produce
opposite phase and group velocities.

To see actually whether this structure is supporting the wave propagation
or not, its Bloch impedance [84, 85, 23] has been obtained and shown in
Fig.5.3.3. The Bloch impedance for the T-network can be obtained by using
the formula

ZBloch =

√
(ZY )2 +2ZY

Y
(5.3.1)
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5.3 Loading of lowpass and highpass transmission line models in Miller form
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Figure 5.3.2: Voltage gain of unit cell with inductive loading

where Z is the series impedance of the T-network while Y is the shunt admit-
tance of the symmetric T-network.

To get the Bloch impedance for the Miller circuit, it has been converted in
to T-network using the impedance transformations [86]. The magnitudes of
the Bloch impedance have been shown in Fig.5.3.3. If the Bloch impedance
is real, it supports the wave propagation, if the Bloch impedance is imagi-
nary, then it cannot support the wave propagation [87]. From this figure it is
observed that by increasing the value of inductance, the Bloch impedance is
approaching the characteristic impedance.

For this model, the complex propagation constant has been obtained and
shown in Fig.5.3.4. This complex propagation constant is obtained by assum-
ing that this medium is of infinite line length. For this γ =

√
ZY has been

used. From this figure, it is observed that this model is having a cutoff fre-
quency above which it is not allowing the propagation of waves. The cutoff
frequency of the model is increasing with increasing the values of inductance.
Since the variations of β are monotonic for the entire band of frequencies,
it is not possible to get the opposite phase and group velocities. Hence the
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5 Analysis of highpass equivalent circuit model and Miller loading of transmission line models
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Figure 5.3.3: Bloch impedance of the lowpass equivalent circuit with Miller
inductive loading

loading has been changed from inductor to capacitor.

5.3.2 Loading of lowpass equivalent circuit model

with a capacitor in Miller form

The lowpass structure has been loaded with capacitive loading as shown in
Fig.5.3.5. The voltage gain of the unit cell with different values of capacitance
is represented in Fig.5.3.6. From this it is observed that there is a transition
happening in the nature of the circuit from lowpass to bandstop for different
values of capacitance. The effect of this variation has been analyzed further
on its complex propagation constant. The Bloch impedance is obtained for
this circuit model and shown in Fig.5.3.7. From this figure, it is observed that
this model is supporting both the forward wave supporting structure and the
backward supporting structure. The main advantage with this circuit is the
minimum number of elements in it for the realization in microstrip version.

The complex propagation constant for different values of Miller capaci-
tance as a linear element is shown in Fig.5.3.8.The values of the series branch
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5.3 Loading of lowpass and highpass transmission line models in Miller form
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Figure 5.3.5: Unit cell of lowpass transmission line with Miller capacitive
loading
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Figure 5.3.6: Voltage gain of unit cell with Miller capacitive loading

inductor has been taken as 1H and shunt capacitance has been taken as 1F.
Different values of capacitance has been used to observe the complex propa-
gation constant and the Bloch impedance variations. Bloch impedance varia-
tions are represented in Fig.5.3.7

The same circuit model is analyses with the non-linear capacitor to see the
effect of non-linearity on the scattering matrices. The values considered for
this circuit are L = 0.01H, C = 0.01F with the non-linear capacitor constitu-
tions relationship as

q = −1.996×10−19 +1.724×10−4v−2.118×10−21v2

−4.637×10−7v3 +2.764×10−23v4 +6.418×10−10v5 (5.3.2)

From Fig.5.3.9 it is observed that there is a phase change in non-monotonic
variation which represents the opposite phase and group velocities.
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5.3 Loading of lowpass and highpass transmission line models in Miller form
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Figure 5.3.7: Bloch impedance of unit cell of Miller capacitive loading

0 0.5 1 1.5 2 2.5 3

0

1

2

3
Complex propagation constant(γ)

α 
(N

p/
m

)

Frequency (rad/s)

 

 

0 0.5 1 1.5 2 2.5 3

0

2

4

6

β(
ra

d/
m

)

Frequency (rad/s)

 

 

C
1
=1010

C
1
=0.5

C
1
=1.0

C
1
=4.0

Figure 5.3.8: Complex propagation constant for lowpass Miller capacitive
loading

51



5 Analysis of highpass equivalent circuit model and Miller loading of transmission line models

20 40 60
−10

0

10

20

M
ag

ni
tu

de
(d

B
)

S
11

Frequency(Hz)
20 40 60

−200

0

200

P
ha

se
(°)

S
11

Frequency(Hz)

20 40 60
−60

−40

−20

0

20

Frequency(Hz)

M
ag

ni
tu

de
(d

B
)

S
21

 

 

20 40 60
−200

0

200

Frequency(Hz)

P
ha

se
(°)

S
21

Non−linear

Linear

Figure 5.3.9: Scattering matrices for the lowpass Miller non-linear capacitive
loading

5.3.3 Loading of highpass equivalent circuit model

with an inductor in Miller form

This section presents the analysis of the highpass equivalent circuit model
with the inductive Miller loading. This is the dual of the above case and hence
only S-parameters are presented. The highpass equivalent circuit model with
inductive loading as shown in Fig.5.3.10 is considered. The values taken for
this circuit are L = 0.01H, C = 0.01F and the non-linear relationship for the
inductor has been taken as

i = −1.996×10−19 +1.724×10−4φ −2.118×10−21φ 2

−4.637×10−7φ 3 +2.764×10−23φ 4 +6.418×10−10φ 5 (5.3.3)

.
The scattering matrices of this model are as shown in Fig.5.3.11. From

this it is observed again that the phase of S11 and S21is varying smoothly
in non-monotonic manner while the magnitude of S21above-20dB.For this
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5.3 Loading of lowpass and highpass transmission line models in Miller form
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Figure 5.3.10: Highpass equivalent circuit with non-linear inductor Miller
loading

circuit model with the selected values of inductance and capacitance, even
though gain is less but the change in the gain is smooth which can be com-
pensated by an amplifier. Hence this model is better choice compared with
the lowpass and high pass circuit models with non-linear elements.From the
above discussion, it is possible to say that the highpass circuit with inductive
Miller loading is producing opposite phase and group velocities

53
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Figure 5.3.11: Scattering matrices for highpass equivalent circuit with non-
linear inductor Miller loading
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6 Conclusions, future scope

and limitations

6.1 Conclusions

In this thesis, a detailed analysis of the non-linear inductor and capacitor has
been performed and their frequency response is compared with the linear in-
ductor and the linear capacitor. From this analysis, it is observed that the
non-linearity in the device’s constitutive relationship is producing the self res-
onance (changing the initial reactance nature from capacitive to inductive and
vice-versa) which is characterized by its self resonating frequency. Variations
in the self resonating frequency are observed separately for the non-linear
inductor and capacitor.

Three different non-linear capacitors are analyzed with the same excitation
and compared their self resonating frequencies with each other. From this it is
observed that the self resonating frequency is occurring at lower frequencies
if there is more non-linearity in the device.

After the analysis of individual non-linear element is performed, the effect
of these non-linear elements on the complex propagation constant of the con-
ventional transmission line models is observed. For all the models that have
been analyzed with the non-linearity in the capacitor or inductor, it is observed
that the considered non-linearity is not changing the frequency response of the
unit cell in the original passband but it is effecting in the stopband.

The non-linearity results in allowing the signal propagation in the origi-
nal stopband. The main conclusion from this analysis is that, with the small
non-linearity, it is possible to have the transmission line models with dual
bands. Along with this, the non-linearity is producing opposite phase and
group velocities in the new passband. Hence the transmission line models
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6 Conclusions, future scope and limitations

with non-linear elements find applications where dual-bands are required.
This thesis also proposes a simpler circuit to produce opposite phase and

group velocities by loading the conventional forward wave supporting struc-
ture (lowpass equivalent circuit model) and backward wave supporting struc-
ture (highpass equivalent circuit model) with suitable linear and non-linear
elements. From the analysis, it is observed that Miller loading of backward
wave supporting structure with inductor and Miller loading of forward wave
supporting structure with capacitor are potential transmission line models to
get the opposite phase and group velocities.

6.2 Future scope

In this analysis, the non-linear constitutive relationships considered for the
inductor and the capacitor are of odd order polynomials. And only first three
odd order terms (first, third and fifth degree) are considered in the constitutive
relationships. Even though it is a reasonably good choice to approximate the
practical non-linearity with first few odd order terms in the polynomial, it is
also possible to have the devices with even ordered non-linearity as well.

In the future this analysis will be extended to even order non-linearity along
with the combinations of even and odd non-linearity. In this thesis, hysteresis
of the inductor is neglected, but in future this will also be incorporated.

6.3 Limitations

Even though all practical devices exhibit some sort of non-linearity, it is dif-
ficult to design the practical device with the desired non-linear constitutive
relationship. The other main limitation of non-linear elements is about the
stability. Most of the time the non-linear devices produce saturated outputs
due to the supply conditions.

The other limitation of this work is that, even though non-linear capaci-
tors and inductors are available as of now, these non-linear devices models
are more accurate at low frequencies with high magnitudes of currents and
voltages but not at high frequencies. But this work presents the general con-
clusions with non-linear elements in the transmission line models.

56



List of Publications

1. Salman Raju Talluri, Sunil Vidya Bhooshan, “Effect of a relatively
small non-linear capacitor in the unit cell of transmission line model
on scattering parameters and propagation constant”, International Jour-
nal of Applied Engineering Research ,Vol.11, no.16, pp. 3795-3798 ,
March , 2016. [Scopus]

2. Salman Raju Talluri, “Delay properties of a transmission line model
with non linear Miller loading”, International Journal of Applied Engi-
neering Research ,Vol.10, no.14, pp. 34985-34988, July 2015. [Scopus]

3. Salman Raju Talluri, “Analysis on phase properties of a transmission
line model with non-linear elements”, Ain Shams Engineering Journal
,Vol.7 ,no.1, pp. 185-189,March 2016. doi:10.1016/j.asej.2015.11.007
[Scopus]

4. Salman Raju Talluri, Sunil Vidhya Bhooshan, “Fundamental study of a
non-linear capacitor to use it in non-linear transmission line models”,
International Journal of Advanced Research in Computer and Commu-
nication Engineering, Vol.3,no.7, pp.7594-7497, July 2014.

5. Salman Raju Talluri, Sunil Vidhya Bhooshan,“Analysis on some other
models of transmission lines for CRLH meta-materials” International
Journal of Advanced Research in Computer and Communication Engi-
neering, Vol.3,no.7,pp.7395-7398, July 2014.

6. Salman Raju Talluri, Sunil Vidhya Bhooshan, “Effect of non-linearity
on delays and velocities in a CRLH-MTM transmission line model”
International Journal of Advanced Research in Computer and Com-
munication Engineering, Vol.3,no.10,pp.8155-8159,October 2014.doi:
10.17148/IJARCCE.2014.31017

67


