
ON INFORMATION THEORETIC ENTROPY

OF REAL TIME DISTRIBUTED SYSTEMS

BY

RASHMI SHARMA

Department of Computer Science & Engineering and Information

Technology, Jaypee University of Information Technology, Waknaghat,

Solan–173234, Himachal Pradesh, INDIA

DECEMBER 2014

I

ON INFORMATION THEORETIC ENTROPY OF

REAL TIME DISTRIBUTED SYSTEMS

Thesis submitted in fulfillment for the requirement of the degree of

DOCTOR OF PHILOSOPHY

by

Rashmi Sharma

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING AND INFORMATION

TECHNOLOGY,

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT, SOLAN–

173234, HIMACHAL PRADESH, INDIA

DECEMBER 2014

II

@ Copyright JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

DECEMBER 2014

ALL RIGHTS RESERVED

Special Thanks To

Jaypee University Of Information Technology

IV

ABSTRACT:

__

Utilization factor is the most significant feature of Real Time (RTS) and Distributed System

(DS). In a DS if any task requires migration or duplication, first scheduler checks the processor

utilization and then relocate/duplicate it towards the destination processor. Likewise, in RTS the

acceptance test of every scheduling algorithm is determined by using utilization factor

(𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 ≤1). Earliest Deadline First (EDF), Rate Monotonic Scheduling (RMS),

Least slack time first, Pfair are some renowned scheduling algorithms of RTS. They usually

schedule real time tasks on the basis of utilization imposed by task upon respective processor.

However, the unexpected arrival (migrated & duplicate tasks) and execution of tasks create

bafflement in the system. This bafflement generates overloading which causes tasks to start

missing the deadline. This bafflement is nothing but uncertainty present in the system; if we

quantify the amount of uncertainty, then this uncertain task overload can be regulated precisely

and efficiently. This amount of uncertainty can be quantified by using the proposed information

theoretic concept of entropy in RTDS. Hence, the primary focus of this thesis is arrival of

entropy in RTDS as a new guidance parameter. Along with the introduction of this novel

parameter, we also analyze new task duplication and migration based scheduling algorithms for

DS (tasks having no deadline) and RTDS.

Let us track the path of this thesis briefly, how utilization based dynamics governing algorithm

has been simulated and ultimately ended in to entropy-based methodology. Thesis in the

beginning proposes duplication based scheduling algorithm (TDASLM) then to remove its

drawback of overloading, a new migration based scheduling algorithm for DS has been

projected. Afterwards, author move towards RTDS where maintenance of task in a global queue

follows the Rate Monotonic strategy. Tasks are assigned to randomly selected processors and

threshold based EDF algorithm is used for the execution of tasks. Hence, joint EDF-RM

scheduling algorithm is henceforth proposed. From the simulation results, it is observed that the

success ratio, maximum tardiness and average CPU utilization give encouraging results as

compared to some existing algorithms (EDF, RMS and D_R_EDF).

V

In above two proposed scheduling algorithms overloading is common. We have designed

algorithms to overcome the trouble of overloading in distributed system or missing a deadline in

RTDS. Therefore, we have to think about the core of this problem, the main cause here is

allocation of tasks and then incapable execution of the same. This powerless behavior of system

is because of the uncertainty of processor in tasks admission. Mathematically, this amount of

uncertainty can be calculated in terms of entropy. Hence, we have calculated entropy

(uncertainty) values of the processor in per-unit time parallel to utilization factor. With our

simulations for comparing utilization and information theoretic entropy, the resultant graph of

these values with respect to time surprisingly ends up showing one to one mapping between

them. Consequently, the focal point has been shifted from utilization factor to the entropy

component. From these encouraging results, we thought of replacing utilization factor with

entropy. Maximum entropy model (MEM) is applied to determine the upper boundary limit of

processor entropy. We also justify the modeled simulation with a mathematical explanation of

MEM in RTDS. With the help of interdisciplinary approach, we theoretically describe a new

dynamics-governing stricture with some critical advantages for task scheduling of RTDS.

Conclusively, the thesis emphasizes on how and why to use entropy to safeguard RTDS from an

overloading problem. This method is unique in two senses, firstly it claims state of art

application of information theoretic entropy to RTDS, secondly propounds novel dynamics

governing parameter entropy in the same.

VI

ACKNOWLEDGEMENTS

Writing acknowledgement for the people who were engaged in any kind of support in my

research work is a very emotional issue for me. Past three and a half years these faces daily came

into my sights, partially or fully but their constant encouragement was really substantive. It is

impossible to put down all the names here. However, I shall try to put forward those who cannot

be forgotten at the time of completion of my research work leading to my Doctorate degree in

Computer Science.

I would like to go with my heart-felt gratitude to my supervisor, Associate Prof. (Dr.) Nitin,

Department of Computer Science and Engineering, for his valuable guidance, support and

encouragement throughout my research work. I am indebted to him for his valuable advice,

constructive criticism and never-ending patience at each footstep of my research work.

I owe my thanks to Prof. (Dr.) Satya Prakash Ghrera, Head, Department of CSE and ICT,

Prof. (Dr.) Harinder Singh, Head, Department of Mathematics, Prof. (Dr.) Deepak Dahiya,

Dr. Nitin Rakesh and other DPMC (Doctoral Program Monitoring Committee) members for

providing me assistance, moral support, valuable suggestions and necessary facilities during the

course of my research work. Prof. (Dr.) P. B. Barman, Head, Department of Physics was the

person who had a faith in my idea of using entropy for the first time in RTDS. I cannot drop his

name in thanksgiving list, I am grateful to your encouragement sir. I too would wish to thank Mr.

Amit Kumar Shrivastava and Mrs. Anshul Sood for providing me all software and research work

related facilities.

I also wish my appreciation to Ex-Chief Operating Officer - Jaypee Education System Dr. Y.

Medury, Vice Chancellor Prof. Shiban Kishen Kak, Director Brig. (Retd.) Balbir Singh and

Dean (Academic and Research) Prof. Dr. T. S. Lamba for their interest, encouragement and

help during the course of my research tenure at JUIT. I would wish to thank the authorities of

JUIT, for furnishing the financial support during my research study. I also like to thank Dr. Shri

Ram, Dy. Learning Resource Manager JUIT, for their help and cooperation.

VII

I would wish to thank my friends Atul Saurabh and Shivi Gandhi who helped me technically

during my research work. Thanks are due to my dear friends Abhilasha Chauhan, Manoj Gaur,

Piyush Chauhan, Priyam Dhani, Sakshi Khanna and Ved Prakash Bhardwaj for their moral

support and encouragement during these years of research work.

Finally yet importantly a special thank to my beloved husband Tapan Pancholi without whom I

cannot yet think about the starting of PhD. His sacrifice, never ending motivational support,

unconditional and constant backing always encouraging me for this life changing experience.

This was his aspiration that is coming to reality.

I am forever thankful to my respected Mother, Father, Mother-in-law, Father-in-law, valued

elder Brother and loving younger Sister beyond words without their sustained moral support, it

would have been impossible to succeed in writing this wonderful thesis.

I shall thank the almighty lord Shiva for blessing me with this insight and inspiration in the

subject, when I was low he gave me the courage and patience to surmount the hurdles of physical

and emotional in nature. I shall hand out this thesis to lord Shiva first.

(Rashmi Sharma)

VIII

 Date: 20, December 2014

DECLARATION

I hereby declare that the work reported in the Ph.D. thesis entitled “On Information

Theoretic Entropy of Real Time Distributed Systems” submitted at Jaypee

University of Information Technology, Waknaghat, India, is an authentic record of

my work carried out under the supervision of Associate Professor Dr. Nitin. I have not submitted

this work elsewhere for any other degree or diploma.

(Signature of the Scholar)

Rashmi Sharma

Department Of Computer Science & Engineering and Information Technology

Jaypee University of Information Technology, Waknaghat, India

Date (20, December 2014)

 JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY
 (Established by H.P. State Legislative vide Act No. 14 of 2002)

 Waknaghat, P.O. DumeharBani, Kandaghat, Distt. Solan – 173234 (H.P.) INDIA
 Website: www.juit.ac.in

 Phone No. (91) 07192-257999 (30 Lines)
 Fax: (91) 01792 245362

http://www.juit.ac.in/

IX

em

CERTIFICATE

This is to certify that the work reported in the Ph.D. thesis entitled “On Information

Theoretic Entropy Of Real Time Distributed Systems”, submitted by Rashmi

Sharma at Jaypee University of Information Technology, Waknaghat,

India, is a bonafide record of her original work carried out under my supervision. This work

has not been submitted elsewhere for any other degree or diploma.

(Signature of Supervisor)

Dr. Nitin

Associate Professor

Department Of Computer Science & Engineering and Information Technology

Date (20, December 2014)

Date: 20, December 2014

 JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY
 (Established by H.P. State Legislative vide Act No. 14 of 2002)

 Waknaghat, P.O. Dumehar Bani, Kandaghat, Distt. Solan – 173234 (H.P.) INDIA
 Website : www.juit.ac.in

 Phone No. (91) 07192-257999 (30 Lines)
 Fax: (91) 01792 245362

http://www.juit.ac.in/

X

LIST OF ABBREVIATIONS

Symbol Definition

 Communication cost b/w and

 Worst Case Execution Time

 Data transfer rate from processor to

 Start-up cost on given processor

 Task

 Arrival Time

 Available entropy of given processor/system

 Average number of tasks meet the deadline

 Average number of tasks miss the deadline

 Boundary limit of global task queue

 Current entropy of given processor/system

 Task Deadline

 Entropy of given processor

 Efficient processor utilization

 Inter-arrival Period

 Set of independent real time tasks

 Tardiness of given task

 Deadline meeting information of task

 Deadline missing information of task

 Per task utilization

 () Task utilization of Processor

 Processor Upper Bound

 Processor

 Task

 Per processor utilization

 Task arrival time

 Task deadline

 Task of processor

 Inter-arrival period of task

 Task priority

XI

 Per task utilization

 Average computation cost of given task

 () Computation cost of task on processor

DAG Directed Acyclic Graph

 Destination Processor
 Edges of DAG

 Execution Time

 DAG

 Total number of processors

 Predecessor of task

RTDS Real Time Distributed System

 RTS Real Time System

 Set of tasks
TFT Total Finish Time

TST Total time of Scheduling

 Vertices of DAG

 () Data sent from task to .

 Average number of preemptions

 [][] 2D Array or Matrix containing Computation

Cost of every task on each processor Distributed System

 Entropy of task

 Entropy of a given system

 Entropy of meeting deadline.

 Entropy of missing deadline.

 Failure Ratio

 Information of event
 Migration Ratio

 [] Array of Processors of System

 Success Ratio

 Task-set

 Processor Utilization

 Maximum entropy of given processor

 Maximum entropy of given task

 Probability of task
 Probability of each event

 Deadline meeting probability of given task

 Deadline missing probability of given task

XII

 [] Array of tasks of System

 Tardiness of task

 [] Array of utilization of processors

XIII

LIST OF FIGURES

Figure Number Caption Page Number

Figure 2.1 General Structure of Distributed System 10

Figure 2.2 Distributed System Topologies 12

Figure 2.3 Distributed System Schedulers 13

Figure 2.4 EDF Scheduling On Single Processor 17

Figure 2.5 EDF scheduling in distributed system 18

Figure 2.6 RMS Scheduling On Single Processor 21

Figure 3.1 Arbitrary DAG with Communication Cost 28

Figure 3.2 Arbitrary allocation of tasks on processors

of distributed system

29

Figure 3.3 DAG Execution using CAWF heuristics 30

Figure 3.4 Proposed Task Duplication methodology 31

Figure 3.5 Clustering of Processors 33

Figure 3.6 Communication costs between nodes 33

Figure 3.7 Task Generation on any node of system 34

Figure 3.8 DAG representation in terms of matrix 35

Figure 3.9 Dispatcher Queue (FIFO) 38

Figure 3.10 (a) Arbitrary DAG (b) Distributed System

of 5 (c) 10 processors

41

XIV

Figure 3.11 Schedule length vs. DAG execution with or
without duplication

42

Figure 3.12 Experimental Set-up of Proposed Work 43

Figure 3.13 Comparison of proposed algorithm with
existing assignment algorithms

45

Figure 4.1 Allocation and utilization percentage of

Processors

49

Figure 4.2 Migration of from P1 to P2 51

Figure 4.3 (a) Directed Acyclic Graph (DAG) (b) Task

Duplication on the basis of Communication

Cost

52

Figure 4.4 Load on processors after removal of 55

Figure 5.1 Real time tasks frame format according to

D_O_EDF scheduling algorithm

60

Figure 5.2 D_R_EDF scheduling algorithm Flowchart 61

Figure 5.3 Architecture of proposed algorithm 62

Figure 5.4 Migration Scenario in proposed algorithm 63

Figure 5.5 Average CPU Utilization vs. Number of

transactions on 8 and 10 processors

67-68

Figure 5.6 Number of transactions Vs. Success Ratio

on 3,5,8 and 10 Processors

69-70

Figure 5.7 Number of transactions Vs. Failure Ratio on

3,5,8 and 10 Processors

71-72

Figure 5.8 Number of Transactions vs. Maximum

Tardiness on 8 and 10 processors

72-73

 Figure 6.1 Existing Attributes of Real Time Tasks 77

Figure 6.2 Systematic explanation of MEM 80

Figure 6.3 Maximum Entropy Model Based Proposed

model

86

XV

Figure 6.4 (Up and Down)Graph shows visible

mapping between Entropy and Utilization

values

88

Figure 6.5 (Up and Down) Graph clearly shows one to

one mapping between Normalized Entropy

and Utilization values

89

Figure 6.6 (left) Scaling with Utilization (right)

Scaling with Entropy Value.

93

Figure 7.1 Earliest Deadline First Scheduling

Algorithm

97

Figure 7.2 Processors scenario after and before Task

Migration

103

Figure 7.3 Probability of continuous variable 106

Figure 7.4 Real Time Task scenario 106

Figure 7.5 Existing scenario of RTDS

111

Figure 7.6 Architecture of Real Time task Execution

with task Migration (Based on Entropy

Parameter)

113

Figure 7.7 (a-d) Number of transactions Vs. Success

Ratio on 3,5,8 and 10 Processors

114-115

Figure 7.8 (a-d) Number of Transactions vs. Failure

Ratio on 3, 5, 8 and 10 processors

116-118

Figure 7.9 (a-d) Number of Transactions vs. Maximum

Tardiness on 3, 5, 8 and 10 processors

119-120

Figure 7.10 (a-d) Efficiency of the system based on

Entropy and Utilization

121-122

Figure 8.1
Performance of EDF, RM and Proposed

Algorithm on for (a) 5 and (b) 10

processors

 132

Figure 8.2
Performance of EDF, RM and Proposed

Algorithm on for (a) 5 and (b) 10

133

XVI

processors

Figure 8.3
Performance of EDF, RM and Proposed

Algorithm based on

134

Figure 8.4
Performance of EDF, RM and Proposed

Algorithm based on the Execution Ratio for

(a) 5 and (b) 10 Processors

134-135

XVII

LIST OF TABLES

Table

Number

Caption Page

Number

Table 2.1 Comparison Between Task Duplication and Migration 14

Table 2.2 EDF Algorithm in uniprocessor and distributed system as well 16

Table 2.3 Arrival Time, wcet, Period, Deadline of tasks 16

Table 2.4 Arrival Time, wcet, Period, Deadline and node for assignment

of tasks .

17

Table 2.5 RMS algorithm for uniprocessor and distributed system as well 19

Table 2.6 The following table shows some values of on different

number of tasks

20

Table 3.1 Execution costs of tasks to processors 29

Table 3.2 Algorithmic Complexity of Existing Duplication DBUS, HEFT-

TD and Proposed TDASLM Algorithm

44

Table 4.1 Matrix of computation costs 50

Table 6.1 Truth table for utilization based scheduling algorithms

(Uniprocessor)

79

Table 6.2 Truth table for utilization based scheduling algorithms (RTDS) 79

Table 8.1 Maximum Entropy Values and CPU Maximum Utilization

with respect to threshold limit

129

Table 8.2 Functions used in simulation and their responsibilities 130-131

XVIII

TABLE OF CONTENTS

 PAGE NO

INNER FIRST PAGE I

ABSTRACT IV-V

ACKNOWLEDGEMENT VI-VII

DECLARATION BY STUDENT VIII

SUPERVISOR’S CERTIFICATE IX

LIST OF ABBREVIATIONS

X-XII

LIST OF FIGURES XIII-XVI

LIST OF TABLES XVII

TABLE OF CONTENTS XVIII-XXII

CHAPTER 1

INTRODUCTION AND MOTIVATION 1-7

1.1 Problem Statement and Contributions 1-5

1.2 Thesis Outline 5-6

1.3 Publications 6-7

CHAPTER 2

BACKGROUND AND PRELIMINARIES 8-24

2.1 Distributed System 8-10

2.1.1 Topologies 10-12

2.1.2 Global Scheduling 12

2.1.3 Partitioning Based Scheduler 13

2.1.4 Task Migration and Duplication 13-14

2.2 Real Time Distributed System 14-15

2.2.1 Dynamic priority based scheduling algorithms 15-18

2.2.2 Static priority based scheduling algorithms 19-22

2.3 Information Theory 22

XIX

2.4 Information Theoretic Entropy 23

2.5 Principle of Maximum Entropy 23-24

2.6 Summary 24

CHAPTER 3

DUPLICATION WITH TASK ASSIGNMENT IN MESH TOPOLOGY 25-46

3.1 Background and Preliminaries 27-31

3.2 Task Duplication Assisted Schedule Length Minimization

(TDASLM) Algorithm

31-32

3.2.1 Clustering of Heterogeneous Processors with Mesh

Topology

32-33

3.2.2 Generation of Task on Nodes 34-35

3.2.3 DAG Matrix and its Tracing 35-38

3.2.4 Assignment without Duplication 38

3.2.5 Duplication Scheduling Explanation 38-42

3.3 Results and Comparisons 42

3.3.1 Experimental Set-up and Test Bed 42-44

3.3.2 Comparisons 45

3.3.2.1 Schedule Length 45

 3.3.2.2 Computation to communication Ratio (CCR) 45-46

3.4 Summary 46

CHAPTER 4

METHOD FOR MIGRATION OF TASKS WITH DUPLICATION 47-56

4.1 Task Migration and Processor overloading 48-52

4.2 Advantages of Migration with Duplication 52-55

4.3 Summary 56

CHAPTER 5

REAL TIME TASK MIGRATION AND SCHEDULING ALGORITHMS 57-73

5.1 An Overview of RTDS 57-59

5.2 Real Time Scheduling Algorithms 59

 5.2.1 D_O_EDF and D_R_EDF scheduling algorithms

59-60

XX

5.2.2 Explanation of Proposed Joint EDF-RM algorithm

Architecture

60-65

5.3 Explanation of Joint EDF-RM scheduling algorithm 65-66

5.4 Comparison of Joint EDF-RM with existing scheduling

algorithms

67

5.4.1 Average CPU Utilization 67-68

5.4.2 Success Ratio 68-70

5.4.3 Failure Ratio 70-72

5.4.4 Maximum Tardiness 72-73

5.5 Summary 73

CHAPTER 6

VISUALIZATION OF INFORMATION THEORETIC MAXIMUM

ENTROPY MODEL IN RTDS

74-94

6.1 Utilization Factor and Entropy 75

6.1.1 Utilization Factor 75

6.1.2 Information Theoretic Entropy 76

6.2 Utilization and RTDS 76-79

6.3 Maximum Entropy Model and RTDS 80

6.3.1 Information Theory 80-81

6.3.2 Entropy 81

6.3.3 Maximum Entropy Model 81-82

6.3.4 Relation between Maximum entropy model and RTDS 82-86

6.4 New Dynamics Governing Parameter 86

6.4.1 One to one Mapping between utilization and entropy 86-89

6.4.2 Utilization and Entropy based Algorithm with Complexity 90-93

6.5 Summary 93-94

CHAPTER 7

ENTROPY, A NEW DYNAMICS GOVERNING PARAMETER IN REAL

TIME DISTRIBUTED SYSTEM: A SIMULATION STUDY

95-124

7.1 Earliest Deadline First (EDF) with utilization 95-98

7.2 Background of Utilization based algorithms 98-100

7.3 Information Theoretic Entropy based Algorithm 100-101

XXI

7.4 Utilization Based Task Migration 101

7.4.1 Mathematical Explanation of EDF scheduling algorithm

in Distributed System scenario

101-103

7.4.2 Utilization based Task Migration Algorithm 103-104

7.5 Entropy Based Task Migration 104

7.5.1 Mathematical Explanation of Proposed task migration

algorithm

104-109

7.5.2 Entropy Based Algorithm 109

7.6 Simulation, Results and Discussion 110

7.6.1 Existing scenario of RTDS 110-111

7.6.2 Experimental Set-up and TestBed 111-113

7.6.3 Comparison of Dynamics governing parameters 113

7.6.3.1 Success Ratio 113-115

7.6.3.2 Failure Ratio 116-118

7.6.3.3 Maximum Tardiness 118-120

7.6.3.4 Efficiency 121-123

7.7 Summary 123-124

CHAPTER 8

EVALUATION AND COMPARISON OF LOAD BALANCING IN RTDS

USING INFORMATION THEORETIC ENTROPY

125-136

8.1 An Overview on CPU Utilization 125-126

8.1.1 Load Balancing 126

8.1.2 Load Balancing and Utilization 126

8.1.3 Load Balancing and Entropy 127

8.2 Proposed Entropy based load balancing scheduling algorithm 127

8.2.1 Entropy Computation 127-128

8.2.2 Maximum Entropy Computation 128-129

8.2.3 Available Entropy Computation 129-131

8.3 Results and Discussion 131

8.3.1 Performance Evaluation 131

8.3.1.1 Scheduling Latency 131-132

8.3.1.2 Deadline missing rate 132-133

8.3.1.3 Migration rate 133-134

8.3.1.4 Execution Ratio 134-135

 8.3.2 Discussion 135

8.4 Summary 135-136

XXII

CHAPTER 9

CONCLUSION AND FUTURE WORK 137-138

9.1 Summary 137

9.2 Future Work 138

REFERENCES 139-148

LIST OF PUBLICATIONS 149-150

1

CHAPTER 1

INTRODUCTION AND MOTIVATION
__

The focus of this thesis is a better load balancing among the processors of Real Time Distributed

System. There are three main approaches exist in distributed system, i.e. Task assignment, load

balancing and load sharing. This thesis deals with load-balancing approach of distributed system

from various phases. Task migration and duplication are two very famed methodologies that help

to balance the load in-between processors. Beginning portion deals and details some novel

methods in this domain. Unconvinced quest remains as what factor informs the scheduler to

judge upon task migration or duplication? The answer of this question is utilization factor. What

happen if we can replace the utilization by some other parameter for possible improvements? In

the later sections, this event has been claimed. Irrefutably this replacement becomes the primary

appeal of this thesis.

1.1 Problem Statement and Contributions

From the very beginning of the work, many research papers were found reporting task

duplication and migration algorithms that are working on tightly coupled distributed systems

(multiprocessors) [A. Burchard, 1995; J. Anderson, 2005; P. Chaudhuri, 2010 & N.W. Fisher,

2007]. In addition, very few of them worked out on loosely coupled systems. Thus, we have

reorganized these algorithms and proposed a new task duplication based algorithms, i.e. Task

Duplication Assisted Schedule Length Minimization (TDASLM) Algorithm. This algorithm is

simulated for a loosely coupled distributed system that follows fully connected (mesh) topology.

Moreover, bottom up tracing of directed acyclic graph (DAG) has been used. During the

simulation of task duplication algorithm we came to know about the problem of overloading that

occurred when the scheduler duplicate any task to destination processor. In order to resolve this

overloading problem task migration methodology has been implemented. In these proposed

algorithms (duplication and migration), utilization of processor is the only factor that decides the

destination processors for victim tasks.

Following these above two methodologies, the research work has been published:

2

Rashmi Sharma and Nitin, Duplication with Task Assignment in Mesh Distributed System

Scheduling, Proceedings of the IEEE World Congress on Information and Communication

Technologies, Mumbai, INDIA, December 11-14, 2011, pp. 672-676.

&

Rashmi Sharma and Nitin, Optimal Method for Migration of Tasks with Duplication,

Proceedings of the 14th IEEE International conference on Computer Modeling and Simulation

(IEEE UKSIM), Emmanuel College, Cambridge, UK, March 28-30, 2012, pp. 510-515.

&

Rashmi Sharma and Nitin, Duplication with task assignment in Mesh Distributed System, Journal

of Information Processing Systems (JIPS), Vol.10, No.2, pp.193-214, June 2014.

Further, this distributed system was extended to handle the real time tasks, thus real time

scheduling algorithms have been enacted with migration methodology. In Real Time System

(RTS) Earliest Deadline First (EDF), Rate Monotonic Scheduling (RMS), Static Cyclic

Scheduling (SCS), Deadline Monotonic Scheduling (DMS), Least Laxity First (LLF), Pfair

Scheduling Algorithm etc. are some frequent algorithms for scheduling real time tasks. Among

these algorithms, EDF and RMS are the root of all algorithms [J. Anderson, 2008; J. Anderson,

2005 & G. C. Buttazzo, 2003]. During a literature study of both algorithms, we came to know

about following bottlenecks:

1. In EDF algorithm, because of overloading problem (utilization >1) domino’s effect

occurs.

2. As we know that RMS works on the basis of utilization bound test)

))

where is a number of tasks.

 ⁄) is a worst case utilization bound which

decreases monotonically from 0.83 when to as . This

utilization based result shows that any periodic tasks set will be able to meet all the

deadlines when the total utilization is not greater than 0.693 (if RMS is used). Hence,

here schedulability of tasks is dependent on following three cases:

a)): set of Independent tasks is schedulable

b)) : Independent tasks may or may not be schedulable (no

conclusion).

3

c) : Occurrence of overloading

3. In RMS, requirement is that the deadline and inter-arrival period of tasks should be

equal.

4. RMS works with static priorities, whereas EDF does on dynamic priorities.

In decree to surmount all these above-mentioned problems, joint EDF-RM scheduling algorithm

is aimed in this dissertation. This proposed algorithm has following properties:

1. Functioning well in overloading condition (for overloading, utilization threshold is set).

2. Deadline of task can be less than or equal to its inter-arrival period.

3. This algorithm is dynamic priority based.

The contribution towards this research work is published as follows:

Rashmi Sharma and Nitin, Performance Evaluation of New Joint EDF-RM Scheduling Algorithm

for Real Time Distributed System, Journal of Engineering, Hindawi publication Corporation,

2014.

&

Rashmi Sharma and Nitin, Task Migration with EDF-RM Scheduling Algorithms in Distributed

System, Proceedings of the 2nd IEEE International Conference on Advances in Computing and

Communications, Kerala (IEEE ICACC), INDIA, August 9-11, 2012, pp. 182-185.

Till-now every real time scheduling algorithm has worked on the basis of tasks or processor

utilization factor [G. Umarani, 2012 & B.T. Akgün, 1996]. It is coarse in all printed papers that

utilization is one of the principal parameters that decide the overloading and underloading

condition. As we know that utilization refers to a computer's usage of processing resources, or

the amount of work handled by a processor to execute the particular task. Hence, we can say that

utilization is the percentage of time that the CPU is doing useful work. Moreover, in real time

system, the execution of tasks is very uncertain, i.e. dynamically arrival of high priority task can

preempt the runnable task due to which some of them miss their deadline. It is possible for the

scheduler to compute this amount of uncertainty of task attributes. Thus, based on this computed

4

uncertainty tasks execution rate can be appended. This dissertation suggests a novel component

that computes such uncertainty and works based on computed uncertainty values. According to

information theory, the amount of disorder present in given information is measured in terms of

entropy. We compute the entropy load of particular tasks and overall entropy load of the

processor. That intern decides the tasks schedulability parallel to utilization factor. Thus giving

us a comparable candidate parameter that competes utilization factor, governing the tasks

scheduling dynamics. During our literature survey, we have found some limitations with

utilization factor:

1. Utilization factor is unable to reveal the exact load level of the utilization.

2. It is destined to run out in large-scale distributed systems (grid, cloud computing) due to

scalability crisis*.

3. It has no capability to compute the uncertainty of task execution.

*Scalability crisis comes to play when the exact load information of available resources is replaced by

normalized information. For example, at the time of task migration or scheduling each processor should

communicate the exact amount of information about its resource availability, so that scheduler knows how

much load (in bits/bytes) can be allocated. However, it refers its utilization that is just a normalized number (0

to 1). For a large DS it is a crisis that slows down the entire system.

On the other side, when we use entropy in place of utilization factor. The probable advantages

are:

1. Entropy factor communicates exact load information of available resources, so that load

accommodation amount is easily quantified.

2. Entropy may evade the scalability crisis as it furnishes exact, but not average information

on available resources.

3. It can predict the amount of uncertainty in task execution as well as guide global task

dynamics in a better way.

The contribution towards this research study is published and is as follows:

5

Rashmi Sharma and Nitin, Entropy, a New Dynamics Governing Parameter in Real Time

Distributed System: A Simulation Study, International Journal of Parallel, Emergent and

Distributed Systems, Taylor and Francis, Vol. 29, No. 6, pp. 562-586,12 November 2013.

&

Rashmi Sharma and Nitin, Visualization of Information Theoretic Maximum Entropy Model in

Real Time Distributed System, In 3
rd

 IEEE International Conference on Advances in Computing

and Communications (IEEE ICACC), Kerala, INDIA, August 29-31, 2013.

&

Rashmi Sharma and Nitin, Evaluation and comparison of Load Balancing in RTDS using

Information theoretic entropy, In 4
th

 IEEE International Advance Computing Conference

(IACC), pp. 674-679, 2014.

In short, this thesis has worked on a load balancing approach of RTDS with certain aspects. Task

generation, execution and migration constitute so much of dynamic activities. In order to control

and govern such activities, the system needs a prompt fine-tuning parameter. In any distributed

system, this parameter is utilization that guides the dynamics of system. In real time systems,

task schedulability is decided by some acceptance test that also works on the basis of utilization.

For example, in EDF utilization should be less than or equal to 1 and RMS decides on the basis

of its bound test value ()). At present, this thesis use maximum entropy

model [Dong Yu, 2009; W. R. Derek, 2008 & D.Feldman, 2002] that decides the maximum limit

of processor’s entropy and it replaces the given condition of EDF with

 . To the best of our knowledge, this thesis first time

introduces an alternative dynamics governing parameter that deals with space as well as time.

This work is the major contribution in RTDS domain.

1.2 Thesis Outline

The thesis has been organized in nine chapters out of which CHAPTER 1 presents Introduction.

CHAPTER 2 presents groundwork of distributed systems, real time systems, and real time

distributed systems along with overview of respective scheduling algorithms. CHAPTER 3

explains the various task duplication terminologies along with proposed task duplication

6

algorithm. This chapter as well explains the mesh topology that is applied for making the

interconnection between processors/nodes. CHAPTER 4 explains the drawback and solution of

task duplication methodology in distributed systems. In CHAPTER 5, a new real time scheduling

algorithm has been discussed in which EDF and RM scheduling algorithms work in concert.

Further, CHAPTER 6 introduces the concept of information theoretic entropy in RTDS. Moreover

CHAPTER 7 and 8 simulates entropy parameter in real time scheduling algorithm and compares its

performance on the basis of various parameters with earliest deadline first and rate monotonic

scheduling algorithms. Finally, CHAPTER 9 presents the conclusion of the thesis supported by the

result of experiments and simulations followed by the future scope of the research work.

1.3 Publications

[1]. Rashmi Sharma and Nitin, Duplication with task assignment in Mesh Distributed System,

Journal of Information Processing Systems (JIPS), Vol.10, No.2, pp.193-214, June 2014..

[2]. Rashmi Sharma and Nitin, Performance Evaluation of New Joint EDF-RM Scheduling

Algorithm for Real Time Distributed System, Journal of Engineering, Hindawi

publication Corporation, Volume 2014 (2014), Article ID 485361, 13 pages, January

2014.

[3]. Rashmi Sharma and Nitin, Entropy, a New Dynamics Governing Parameter in Real Time

Distributed System: A Simulation Study, International Journal of Parallel, Emergent and

Distributed Systems, Taylor and Francis, Vol. 29, No. 6, pp. 562-586,12 November 2013.

[4]. Rashmi Sharma and Nitin, Evaluation and Comparison of Load Balancing in RTDS using

Information Theoretic Entropy, Proceedings of 4th IEEE International Advance

Computing Conference (IEEE IACC), ITM University, INDIA, pp. 674-679, February

21-22, 2014.

[5]. Rashmi Sharma and Nitin, Visualization of Information Theoretic Maximum Entropy

Model in Real Time Distributed System, Proceedings of the 3rd IEEE International

Conference on Advances in Computing and Communications (IEEE ICACC), Kerala,

INDIA, August 29-31, 2013, pp. 282-286.

[6]. Rashmi Sharma and Nitin, Task Migration with EDF-RM Scheduling Algorithms in

Distributed System, Proceedings of the 2nd IEEE International Conference on Advances

7

in Computing and Communications, Kerala (IEEE ICACC), INDIA, August 9-11, 2012,

pp. 182-185.

[7]. Rashmi Sharma and Nitin, Optimal Method for Migration of Tasks with Duplication,

Proceedings of the 14th IEEE International conference on Computer Modeling and

Simulation (IEEE UKSIM), Emmanuel College, Cambridge, UK, March 28-30, 2012, pp.

510-515.

[8]. Rashmi Sharma and Nitin, Duplication with Task Assignment in Mesh Distributed

System Scheduling, Proceedings of the IEEE World Congress on Information and

Communication Technologies, University of Mumbai, INDIA, December 11-14, 2011,

pp. 672-676.

8

CHAPTER 2

BACKGROUND AND PRELIMINARIES

Previous chapter has explained the overview of this thesis. Now we discuss the background of

RTDS in detail. RTDS is an incorporation of distributed and real time system or we can say that

properties of RTS are used in distributed scenario and vice versa. In a distributed system, CPU

utilization is the parameter that helps scheduler to check the load on given processors [S. Dhakal,

2007 & P. Emberson, 2007]. Correspondingly, in real time systems the schedulability test relies

upon current processor utilization values. Hence, utilization plays a pivotal role in both systems.

As we have mentioned previously that the author has conceptually replaced this utilization value

with entropy. The entropy concept comes from the backdrop of information theory propounded

by C. E. Shannon [C. E. Shannon, 1949]. Further sections shall explain the background of

distributed system, real time system, information theory and entropy.

2.1 Distributed System

Distributed System is a collection of autonomous computers/processors that appear to its users as

a single articulate system and coordinate with each other in terms of time and resources used.

Automated Banking System, Air Traffic Control, Global Positioning Systems, World Wide Web

(WWW) etc. are few examples of that. Three ingredients make distributed system: multiple

computers, interconnections and shared state between them. Following are some enumerated

properties [A. Tanenbaum, 2002]:

1. Resource Sharing: Distribution and utilization of resources like hardware, software or data

from wherever in the systems is resource sharing. Resource manager controls access and

concurrency of such resources.

2. Concurrency: The data are treated with the aid of parallel processing, component accessing

and updating in shared resources. If updates of concurrent data are not coordinated then it

may violate the integrity of the system.

9

3. Scalability: Accommodation of additional computational resources does the amendment in

distributed systems due to which processing of particular problem becomes faster. Scalability

of the system is achieved by addition of more and faster processors.

4. Fault Tolerance: The failure of hardware, software and networks comes under the fault of

distributed system. The system is somehow maintained in a state where small perturbations

may be tolerable to a certain extent.

5. Transparency: No above-mentioned properties of distributed systems are visible to the users.

It covers all distribution of the users as well as the application programs from each other. The

functioning of distributed systems is hidden to the clients.

The main characteristic of a distributed system is parallel execution of various independent tasks

of a complex problem. It either splits the information to various participant processors or utilizes

distributed records to determine the meticulous problem. Many distributed applications make

direct use of the programming interface provided by network operating systems. In addition,

applications often make use of interfaces to the local file structure. As we have explained, a

problem with this loom that allotment is scarcely transparent. A solution is to put an additional

layer of software between applications and network operating system, providing a higher degree

of generalization. Such a layer accordingly called as middleware. The term middleware suggests

that it is software positioned between the operating system and the application as indicated in

figure (2.1).

Middleware offers universal services that maintain distributed execution of applications. The

middleware conceals the heterogeneity that occurs in a distributed system. This heterogeneity

exists in different places:

Programming languages: Different applications can be developed by using different

programming languages.

Operating system: It has different individuality and potential.

Computer architectures: Computers have different technical details (e.g., data representations).

Networks: Different network technologies are used to link together Different computers.

10

Fig.2.1 General Structure of Distributed System

This is entirely around the architecture and operation of distributed system. As we have

mentioned about network heterogeneity, topology of a network also comes under this. Processors

of distributed system follow various architectures.

2.1.1 Topologies:

With above-mentioned characteristics of distributed system following basic topologies have been

evaluated [A.Tanenbaum, 2002 & G.Couloris, 2001]:

Centralized: Centralized systems are well-known form of topology. Client/Server pattern used

by databases, web servers are few examples of the centralized distributed system. All tasks and

information are centralized into one server through which many clients connecting directly to

send and receive the information (figure (2.2 (a))).

Ring: In centralized architecture, server cannot handle high client load. Hence, a common

solution is to use a cluster of machines arranged in a ring that act as a distributed server.

Communication between the nodes synchronizes state sharing, producing a collection of nodes

that offer alike functions, but have failover and load-balancing capabilities (figure (2.2 (b))).

COMPUTER 1 COMPUTER 2 COMPUTER 3 COMPUTER 5 COMPUTER 4

APPLICATION A APPLICATION B APPLICATION C APPLICATION D

DISTRIBUTED SYSTEM LAYER (MIDDLEWARE)

Local OS

Services

Local OS

Services

Local OS

Services

Local OS

Services

Local OS

Services

NETWORK

Network OS

Services

Network OS

Services

Network OS

Services

Network OS

Services

Network OS

Services

11

Hierarchical: Hierarchical systems have an entirely different set of advantages from that of

rings. Hierarchical organizations are somewhat convenient in that they have a clear chain of

activity. However, because these systems have such a broad scope, it can be hard to correct a

host with a problem. Hierarchical systems are extensible in a way that any host in the system can

add user data or resources, but the conventions of data management may determine how they can

be added. The main advantage of these systems is their incredible scalability, i.e. new nodes can

be added at any level to reduce too much load (figure (2.2 (c))).

Decentralized: Another topology we consider here is decentralized systems, where all peers

communicate symmetrically and have equal responsibilities. Gnutella, Freenet or OceanStore are

some decentralized systems. Additionally, the Internet routing architecture itself is largely

decentralized where border gateway protocol is used to synchronize the peering links between

various autonomous systems (figure (2.2 (d))).

Mesh: In mesh topology, every device is associated with other devices of the system. Such

topology has the advantage that if any device or transmission line fails then there are various

alternate ways for two nodes to communicate. Simplicity in troubleshooting and increase in

reliability are their additional advantages. Internet is the best example of mesh routing. Based on

their connectivity mesh topology is divided into following two types:

Full mesh topology occurs when every node/processor has a connection with every

node/processor of the system. It is costly to employ, but yields maximum amount of redundancy.

Such systems are generally reserved as a backbone network (figure (2.2 (e))).

In Partial mesh topology, some nodes are arranged in a full mesh system, but others are simply

connected with one or two nodes in the network. Its implementation is less expensive and yields

the minimum amount of redundancy as compared to full mesh topology. It is also known as a

decentralized system (figure (2.2 (d))).

12

Fig.2.2 Distributed System Topologies

In order to schedule tasks, distributed system schedulers classify into two major approaches:

global and partitioning based scheduling (figure (2.3)).

2.1.2 Global Scheduling:

In global scheduling, global task queue is maintained where all tasks arrive. The scheduler will

assign tasks to processors for execution. Scheduler selects processor dynamically for task

allocation and if the processor is not able to execute assigned tasks, then that task will migrate

towards another processor. Global scheduler is supported in those systems where average as well

as worst-case response time is essential. Thus, in RTDS global scheduler is valuable.

(a) Centralized (b) Ring (c) Hierarchical

(d) Decentralized or Partial Mesh Topology (e) Full Mesh Topology

13

2.1.3 Partitioning Based Scheduler:

In partitioned scheduler, tasks are deterministically assigned to processors for execution. If

processor is not able to execute the task, then the processor has no right for migration of task to

other processors. Migration is prohibited in partitioned scheduler.

Fig.2.3 Distributed System Schedulers

The main attractive quality of a distributed system is load balancing and parallel task execution.

Task migration and duplication are two methodologies that are used to balance the load among

processors.

2.1.4 Task Migration and Duplication

In order to balance the load of system task of heavily loaded processor migrate towards lightly

loaded processor. The task migration technique is used for dependent as well as independent

tasks. Here, only original task is executed on assigned processor [H. C. Wang, 2011 & P.

Emberson, 2007].

Other methodology used to balance the load is task duplication. In task duplication, the replica of

original task is executed on assigned processor. Parallel executions of the same task on various

processors take place on task duplication technique [D. Sekhar, 1997; R. Sharma, 2011 & S.

Ranaweera, 2000].

Node 1 Node 2 Node 3

(a) Partitioned Scheduler

Waiting task queue

New task

Node 1

Node 2

Node 3

(b) Global Scheduler

14

Hence, the basic difference between task duplication and migration is following:

Table2.1. Comparison Between Task Duplication and Migration

Task Duplication Task Migration

Duplicate tasks from one processor (Source) to

another processor (Destination).

Migrate tasks from one processor (Source) to

another processor (Destination).

Multiple copies of single task execute on multiple

processors.

Solo copy of task executes on single processor.

It can increase the problem of overloading on

processors.

Helps to reduce the overloading of processors.

Now, next section of this chapter will discuss about RTDS that follows the real time properties.

2.2 Real Time Distributed System

A distributed system is a collection of self-governing computers that connects through a network,

which facilitate processors to synchronize their actions and resources. The correctness of the

system depends not merely on the logical resolution of the computation, but also on the time at

which the results are produced [M. Joseph, 1996 & P. A. Laplante, 1993]. In this system, tasks

have a timing constraint that is known as deadline of the task.

Following are some temporal parameters of real time tasks:

1. Arrival Time: It is an instance when the task becomes available for execution.

2. Inter-arrival Period: Inter-arrival period of any task is the amount of time between the

arrival of one task and the arrival of next task.

3. Worst Case Execution Time (WCET): The worst-case execution time (WCET) of a

computational task is the maximum time the task could take to execute on a given hardware

platform.

4. Deadline: It is a strict instance, or assigned time by which task execution is delimited.

15

Established on such timing constraints RTS is divided into two types. This division of RTS is

based on the functional criticality of jobs, usefulness of late results and deterministic or

probabilistic nature of the constraints. If a particular task fails to meet its deadline and there is no

occurrence of any catastrophe; only the system’s overall performance becomes shorter when

growingly jobs with soft deadlines complete late, then it comes under a soft RTS. However, if

the failure of deadline creates any debacle like system failure or loss of life then it is a hard RTS.

This thesis deals with soft RTS.

In real time system, there are two categories of scheduling algorithms: first is static and second is

dynamic priority based scheduling algorithms [M. Joseph, 1996 & P. A. Laplante, 1993].

2.2.1 Dynamic priority based scheduling algorithms

In dynamic priority scheduling algorithm the priorities to the tasks are assigned during their

execution. The objective of dynamic priority scheduling is to acclimatize dynamically changing

progress and form an optimal configuration in a self-sustained manner. EDF, Pfair etc. are few

illustrations of dynamic priority based scheduling algorithms. As EDF is the basis of most

dynamic priority based scheduling algorithms. Thus, we have chosen EDF as the base scheduling

algorithm in this dissertation. Let us take an overview of EDF algorithm.

Earliest Deadline First Scheduling Algorithm

EDF is a dynamic priority based scheduling algorithm that works on the basis of: nearer the

deadline higher the priority of task [O. Zapata, 2005 & K. Ramamritham, 1990]. It dynamically

assigns priority to tasks.

 (2.1)

Before the assignment of priorities to the task, at the very beginning scheduler ensures the

schedulability test by examining the task as well as processor’s utilization value. Here task sets

is schedulable if

16

 (2.2)

In order to explain the behavior of EDF in overloading case let us discuss following examples in

single as well as multiple processors (Distributed System).

Table2.2. EDF Algorithm in uniprocessor and distributed system as well

EDF scheduling algorithm in uniprocessor EDF scheduling algorithm in distributed system

BEGIN

1. If

2. If

3. The task is schedulable and

 assign of task on given

processor

4. Else task is non-schedulable

END

BEGIN

1. If

2. If

3. then task is schedulable and assign

of task on given processor

4. Else migrate the task

5. Else task is non-schedulable

END

Example of EDF in uniprocessor:

Table2.3. Arrival Time, wcet, Period, Deadline of tasks

Figure (2.4) explains the behavior of EDF in uniprocessor case. Three tasks are

running on a single processor. Every time arrival of high priority task preempted already running

low priority jobs, due to which tasks miss the deadline. Arrival of task preempts task due to

which task has missed its deadline. This preemption occurs due to the higher priority of new

task .

Tasks Estimate

Arrival

Time

Computation time

(wcet)

Period Deadline

 0 1 3 3 0.33

 1 2 5 5 0.4

 3 1.8 4 4 0.45

17

Fig.2.4 EDF Scheduling On Single Processor

Example of EDF in Distributed System:

Table2.4. Arrival Time, wcet, Period, Deadline and node for assignment of tasks .

Tasks Arrival

Time

Computation

time

(wcet)

Period Deadline

Processor

 0 1 3 3 0.33

 1 2 5 5 0.4

 3 1.8 4 4 0.45

 5 3 6 6 0.5

 1 0.5 2 2 0.25

 2 2 4 4 0.5

In distributed case, migration technique is employed to overcome the overloading problem of

CPU. Few tasks of overloaded processor will migrate towards another processor where

utilization is less than one [J. Anderson, 2005].

0 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15 16 17

Preemption of

 on

Preemption of

on

 Missing the

deadline

Preemption of

 on

Occurrence

of

Preemption

Missing

Deadline

Normal

Scheduling

18

Fig.2.5 EDF scheduling in distributed system

In figure (2.5), utilization of task is which meet the requirements of scalability, but due

to the increasingly arrival of new tasks, utilization becomes which is greater than one.

The arrival of task , processor becomes overloaded. Hence, migration method is used here

to balance the load. The processor having least utilization value becomes the destination

processor for the victim task (task selects for migration). In above example processor

utilization is less than . During migration when task transfers from one processor to another

processor, reallocation of task takes some migration time . Given that, the migration time is

negligible when compared with fundamental unit time of task operation.

 Tasks

 Tasks

 Tasks

Migration time +

Missing

Deadline

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 and

Victim Task

Preemption

Occur

Migrated

Task

19

2.2.2 Static priority based scheduling algorithms

The static priorities are assigned on the basis of cycle duration of the job: shorter the cycle

duration is, the higher the job's priority. Rate Monotonic Scheduling (RMS), Static Cyclic

Scheduling (SCS), Deadline Monotonic Scheduling (DMS), Least Laxity First (LLF) are few

examples of static priority based scheduling algorithms.

As author has mentioned in previous chapter that this thesis will discuss an algorithm in which

EDF and RMS algorithms are used together. So, henceforth takes an overview of RMS

algorithm.

Rate Monotonic Scheduling (RMS) Algorithm

RMS is a static priority based algorithm and its working is based on the logic: shorter the inter-

arrival period higher the priority of task [V. Darera, 2006 & J. Lehoczky, 1989].

 (2.3)

For this algorithm, task-set is schedulable on a given processor if [V. Darera, 2006]

 ⁄ (2.4)

Where is total number of tasks

Table2.5. RMS algorithm for uniprocessor and distributed system as well

RMS scheduling algorithm in uniprocessor

RMS scheduling algorithm in Distributed system

BEGIN

1. If

2. If (

 ⁄)

3. task is schedulable and

 assign of task on given processor

4. Else task is non-schedulable

END

BEGIN

1. If

2. If (

 ⁄)

3. then task is schedulable and

 assign of task on given processor

4. else migrate the task

5. Else task is non-schedulable

END

20

Example of RMS in uniprocessor:

The accomplishment of RMS algorithm is discussed here with the data of a given table (2.6). In

RMS algorithm

 ⁄ is a worst case utilization bound which decreases monotonically

from 0.83 when to as . This utilization based result shows that any

periodic tasks set will be able to meet all the deadlines when the total utilization is not greater

than 0.693 [V. Darera, 2006].

 √

 (2.5)

 (2.6)

 ∑

 (2.7)

As we remarked before that in RMS worst case utilization bound of processor is 0.693 as →∞.

Equation (2.6) mentions the individual utilization values of tasks . In equation (2.7)

the cumulative addition of first two tasks is 0.73 that lies between 0.693 and 1, hence

both tasks are schedulable. However, arrival of third task increases cumulative utilization to

1.15, which is greater than . Therefore, third task may or may not be schedulable on a given

processor.

Table2.6. The following table shows some values of on different number of tasks

Number of

Tasks ()

Tasks

 ∑

 =

 ⁄

Comparis

on

with

Conclusion

1

 is

schedulable

2

 is

schedulable

3

 can be

schedulable

21

As we know that static priorities are assigned to tasks in RMS. Based on such criteria, priority of

tasks in figure (2.6) is in descending order: and execution of tasks takes place

accordingly. Individual utilization values of tasks and processor utilization

 on every arrival of tasks are mentioned in the table (2.6). In figure (2.6), initially

tasks starts with normal scheduling and after that preemption due to higher priority task starts

and hence task miss its deadline due to preemption.

Fig.2.6 RMS Scheduling On Single Processor

Example of RMS in Distributed System:

The computation method of processor utilization is discussed previously in table

(2.6). Arrival of third task exceeds the limit of processor utilization. Here, we will discuss how

this overloading is managed in distributed systems. In the beginning, processor is redundant

and utilization of processor is . As processor is idle, so it will be a destination

processor for overloaded task. Now, victim task is migrated towards and its utilization

becomes 0.45.

After the simulation of above-mentioned proposed algorithms, authors have noticed that only

utilization of a given processor generates dynamism (task generation, migration and execution)

in the system. Till now, utilization is the only parameter that plays a vital role in balancing the

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17

 Missing

deadline

 Preempts

 Preempts

 Preempts Preempts

Occurrence

of

Preemption

Missing

Deadline

Normal

Scheduling

22

load as well as scheduling algorithms. After getting some shortcomings of utilization factor in

this thesis author has proposed, a new dynamics governing parameter information theoretic

entropy for RTDS. The concept of Information theory is proposed together with the US

mathematicians C. E. Shannon (1916-2001) and Warren Weaver (1894-1978) in 1949 [C.E.

Shannon, 1949], it focuses on how to transmit data most efficiently and economically, and to

detect errors in its transmission and reception. After that many researchers has figured out on it

and utilized this information theory in several disciplines. Applied mathematics, electrical

engineering, Bioinformatics, computer science, statistical inference, natural language processing,

cryptography, neurobiology, etc. are some fields where information theory exploits successfully.

All above-mentioned fields motivate author to use information theoretic entropy in RTDS.

Hence, next section gives the general idea of information theory, entropy and the principle of

maximum entropy. Usage/Role of information theoretic entropy in RTDS will be explained in

further chapters.

2.3 Information Theory

Information theory is a branch of applied mathematics and computer science involving the

quantification of information. Claude E. Shannon first developed Information theory to find the

fundamental limits on signal processing operations such as compressing data and on reliably

storing and communicating data [D. Feldman, 2002].

Following is the general procedure that computes the information on given event E

 (2.8)

Where is the probability distribution of an event How author has computed this

probability distribution and information of an event (real time tasks) of RTDS will be explained

in chapters 7 and 8.

23

2.4 Information Theoretic Entropy

A key measure of information is entropy, which is usually expressed by the average number of

bits needed to store or communicate one symbol in a message. Entropy quantifies the uncertainty

involved in predicting the value of a random variable [D. Feldman, 2002].

The basic method that computes the entropy of given event E is

 or

 (2.9)

Let us consider an event E has set of probabilities then the entropy of this

event is

 ∑

 (2.10)

2.5 Principle of Maximum Entropy

The principle of maximum entropy first expounded by E.T. Jaynes (Edwin Thompson Jaynes) in

1957 [E. T. Jaynes, 1957]. According to the principle of maximum entropy, if nothing is known

about a distribution except that it belongs to a certain class, then the distribution with the largest

entropy should be chosen as the default. The motivation is twofold: first, maximizing entropy

minimizes the amount of prior information built into the distribution; second, many physical

systems tend to move towards maximal entropy configurations over time. It specifies that, in

order to calculate the accurate verification of previous data, the probability distribution that

represents best current state of information is the one that gives largest entropy. In other words,

we should choose the probability that gives the maximum entropy value, which decides the

maximum extent of entropy values of an event.

In general, the entropy, because it is expressed in terms of probabilities, depends on the observer.

One person may have different knowledge of the system from another, and therefore would

calculate a different numerical value for entropy. The Principle of Maximum Entropy is used to

24

discover the probability distribution, which leads to the highest value for this uncertainty,

thereby assuring that no information is accidentally assumed.

2.6 Summary

In this chapter, the background of RTDS along with information theoretic entropy and maximum

entropy value has been hashed out. We hereby claim that we have used information theoretic

entropy for the first time in RTDS. Any activity in RTDS can be called information processing

hence, bound to follow information theoretic concepts. Here entropy comes into play parallel to

utilization factor (has been discussed in chapter 6). The maximum entropy value decides the

entropy limit of a particular processor / system that helps in scheduling of real time tasks. Thus,

guiding the dynamics of RTDS. Further chapters will explain the relation between entropy and

utilization or real time distributed system. Additionally, scheduling algorithms for task

duplication and task migration with the help of utilization factor and replacement of utilization

with entropy parameter will be talked about in further chapters.

25

CHAPTER 3

DUPLICATION WITH TASK ASSIGNMENT IN MESH

TOPOLOGY

Distributed System consists of numerous self-ruling processors that communicate via

interconnection network. As previous chapter discussed that, each network follows different

connectivity architectures, known as network topology. Mesh topology is one of the topologies

[L. N. Bhuyan, 1984] that are employed in this chapter for network connectivity. However,

handling of mesh topology is very difficult because of the inter-connectivity between every

node. Such network connectivity among processors can be of homogeneous or heterogeneous

type. Homogeneous systems share identical architecture, whereas diverse architecture flows in

heterogeneous. Therefore, task scheduling is complicated in heterogeneous systems due to

non-uniform speed and communication bandwidth. List-based and cluster based are two

important scheduling classes that help in task scheduling of heterogeneous systems [D.

Bozdag, 2006]. In order to resolve the complication of processor heterogeneity, the author has

used cluster based scheduling. Based on processor computational capacity [Y. Jegou, 1997]

entire system splits into three clusters (High, Medium and Low).

Parallel task execution is the primary advantage of distributed system. In parallel execution

independent subtasks executes correspondingly on various processors. These subtasks are

generated from single task that is called as a Directed Acyclic Graph (DAG) that shows

interdependency in-between subtasks. In order to accomplish the complete DAG as fast as

possible, subtasks are allocated to separate processors on the given system. These processors

execute allocated tasks in parallel according to their computational speed. After achieving the

results, destination processor transmits it to the source processor (origin) of tasks. This chapter

explains the strategic duplication of tasks on the various processors that finally reduces the

schedule length of the entire DAG.

Execution of any task passes through following two heuristics:

26

1. Partitioning heuristic under which tasks split into dependent/independent tasks known as

DAG [J. Lopez, 2000]. This DAG represents the size of each task along with

computational power consumption.

2. Allotment of processors to these distributed sub-tasks is another phase. First-Fit, Worst-

Fit, Best–Fit and Communication aware worst-fit (CAWF) are some task assignment

heuristics [J. Lopez, 2000; A. Burchard, 1995 & C. Wang, 2007] that works with/ without

task duplication.

These partitioning and assignment heuristics come under the scheduling problem. This

problem is also known as grain size determination [J.E.G. Coffman, 1996], clustering problem

[A. Bashir, 2013& J. Baxter, 1989] or internalization pre-pass [B. Kruatrachue, 1988].

First-Fit, Worst-Fit and Best-Fit heuristics work in a sequential manner and duplication of task

is not followed here. CAWF is designed for the reduction of communication cost in which two

dependent tasks (predecessor-successor) can be allocated on a same processor that reduces the

communication cost between tasks. In case of multiple successors of single predecessor,

CAWF assign one of the successors on the same processor with its predecessor and rest

successors use worst case heuristic for allocation. Hence, this is the downside of CAWF

algorithm.

This chapter discusses a new task duplication method that will overcome the limitation of

CAWF. Author has chosen basic heuristic algorithms (where duplication is not allowed),

CAWF and HEFT-TD algorithms to compare with proposed algorithm. Since these algorithms

have their own properties, time complexities and advantages during task assignment. There are

many other algorithms for the execution of DAG in heterogeneous environment, i.e. DBUS

and HEFT-TD [D. Bozdag, 2006 & P. Chaudhuri, 2010] algorithms (few properties are

comparable to proposed algorithm with different approach).

In this division, author has projected a duplication of task at the time of its allocation before

the execution. In this projected algorithm, DAG is traversed from bottom to up approach that

checks the interdependencies of tasks. If two independent tasks are found then those tasks will

execute independently (parallel). Next section will discuss about some existing scheduling

algorithms of task duplication along with proposed task duplication algorithm followed by its

performance.

27

3.1 Existing Scheduling Algorithms

Load balancing is one of the main approaches of distributed system. This load balancing is

accomplished by using task duplication or migration in-between processors. As we are dealing

with dependent tasks, duplication of tasks is employed here. Main role of task duplication is to

reduce the communication cost that helps in diminution of the overall schedule length of entire

DAG. Many researchers have suggested various strategies of task duplication [S. Ranaweera,

2000; P. Chaudhuri, 2010 & J. Singh, 2012].

DAG is an arrangement of multiple tasks, out of which some tasks are dependent on previous

tasks and some are independent. In case of dependency, successor tasks could not execute

before the execution of dependent predecessor tasks. On the other side, independent tasks can

execute in parallel on several processors. In a DAG, 𝐺 = (𝑉, 𝐸), 𝐸 is a link between two

nodes that explains the communication cost between two dependent tasks. These subtasks

(tasks) are assigned to various processors based on following features already discussed in

many other papers [P. Chaudhuri, 2010; R. Sharma, 2011 & S. Ranaweera, 2000]:

Definition3.1: Computation cost (Execution time) of any task on a given processor is

dependent on the computational capacity of a particular processor. Time taken by a processor

to execute a particular task is known as the computation cost. Computation cost also depends

on the size of task as well.

Consider 𝐶𝐶(𝑡𝑖,𝑘) is the computation cost of task 𝑡𝑖 on 𝑘𝑡ℎ processor from 𝑝 number of

processors. Hence, the average computation cost of any task 𝐶𝐶(𝑡𝑖) is defined as:

𝐶𝐶(𝑡𝑖)=∑ 𝐶𝐶(𝑡𝑖,𝑘) 𝑝⁄𝑝
𝑘=1 (3.1)

Definition3.2: Communication Cost (𝐶𝑡𝑖,𝑡𝑗
) is the time consumed by the processor in sending

data (results) of one task to another processor. This communication cost is dependent on the

volume of communicating data and data transfer rate from source to destination processor [P.

Chaudhuri, 2010 & J. Singh, 2012].

𝐶𝑡𝑖,𝑡𝑗
= 𝑆𝑦 +

 𝑣(𝑡𝑖,𝑡𝑗)

𝐷𝑥,𝑦
 (3.2)

28

If two jobs are assigned on same processor, then the communication cost, 𝐶𝑡𝑖,𝑡𝑗
= 0.

Definition3.3: Total Finish Time (TFT) [E.G. Coffman, 1998]: Total finish time of 𝑘𝑡ℎ tasks

on 𝑃𝑛 processor is

𝑇𝐹𝑇(𝑃𝑛, 𝑘) = ∑ (𝑛𝑒𝑤 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 (𝑇𝑖)
𝑘
𝑖=1 + 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒(𝑇𝑖)) (3.3)

𝑛𝑒𝑤 𝑎𝑟𝑟𝑖𝑣𝑎𝑙(𝑇𝑖) = 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒(𝑝𝑟𝑒𝑑(𝑇𝑖)) + 𝐶𝑝𝑟𝑒𝑑(𝑇𝑖),𝑇𝑖
 (3.4)

𝑃𝑛 is the number of processors i.e. 𝑃1, 𝑃2, 𝑃3, … … … 𝑃𝑛 and 𝑘 are number of tasks scheduled on

given processor. Hence, 𝑇𝐹𝑇(𝑃𝑛, 𝑘) is total finish time of 𝑘𝑡ℎ task on 𝑛𝑡ℎ processor.

Fig. 3.1. Arbitrary DAG with Communication Cost

Figure (3.1) explains the DAG that contains tasks (subtasks) *𝑇1, 𝑇2, 𝑇3, 𝑇4, 𝑇5, 𝑇6+ and

*25,30,50,65,70,15,25+ are their respective communication costs in-between the dependent

tasks. Later on, the generation of subtasks (tasks of the DAG) will be assigned to respective

processors. Task assignment is the process of multiple task allocation to the numerous

processors along-with parallel allocation and execution method for the same [Lo.V.M., 1988].

In distributed system, the selection of processors for task allocation can be sequential or

parallel. For sequential task allocation First Fit (FF), Best Fit (BF) and Worst Fit (WF) are well

known. All these mentioned sequential allocation heuristics focuses on computation costs but

not on communication costs. In [C.Wang, 2007] author has discussed an assignment heuristic

approach that focuses on communication cost along with computation cost. This heuristic is

known as communication aware worst fit (CAWF). According to CAWF, same processor is

 T5

 T6

 T4

 T3
 T2

 T1

25

50

30

65
70

15 25

29

assigned to a pair of predecessor-successor that brings down the communication cost in-

between assigned pair. However, if one predecessor has multiple successors then the worst fit

algorithm is used for rest successors. Although, sequential assignment of tasks is also present

here but this algorithm seems helpful in reducing the communication cost.

Equation (3.3) calculates the total finish time of complete DAG on a particular processor. This

TFT is dependent on the execution cost of every subtask (task) on the respective processors

and communication cost between dependent tasks (subtasks). Table (3.1) explains the

execution cost (computation cost) of tasks on respective processors:

Table 3.1. Execution costs of tasks to processors

This section is working on distributed system, parallel execution and allocations of tasks are

considered here. Let us consider the case when processors are selected randomly for task

assignment and execution as well. In figure (3.2), 𝑃3 processor is selected randomly for

𝑇1, 𝑇4 𝑎𝑛𝑑 𝑇6 tasks; 𝑃2 is assigned to 𝑇3 and 𝑇5; similarly 𝑃1 execute 𝑇2 task. Based on their

execution cost on assigned processors and communication costs between tasks overall DAG

schedule length has been calculated. In arbitrary selection, DAG schedule length may vary

because it is dependent on preferred processor. There is no criterion of processor selection for

task execution in arbitrary method.

𝑇𝑖

 𝑃𝑗 𝑃1 𝑃2 𝑃3 𝑃4

𝑇1 35 5 15 10

𝑇2 9 4 10 7

𝑇3 6 8 4 12

𝑇4 23 45 15 26

𝑇5 10 7 9 11

𝑇6 30 9 5 18

30

Fig. 3.2. Arbitrary allocation of tasks on processors of distributed system

𝐷𝐴𝐺 𝑆𝑐𝑒𝑑𝑢𝑙𝑒 𝐿𝑒𝑛𝑔𝑡 = max1≤𝑛 𝑇𝐹𝑇(𝑃𝑛) (3.5)

 = max(𝑇𝐹𝑇(𝑃1), 𝑇𝐹𝑇(𝑃2), 𝑇𝐹𝑇(𝑃3)) = 𝑚𝑎𝑥(39,96,138)

 = 138 𝑢𝑛𝑖𝑡 𝑜𝑓 𝑡𝑖𝑚𝑒 (3.6)

Now, in figure (3.3) tasks are assigned according to CAWF algorithm. Tasks having

predecessor and successors are allocated to the same processor and another task will follow

worst fit. (Figure (3.1)) 𝑇1 is the only predecessor of tasks 𝑇2 & 𝑇3. Similarly, 𝑇2 is predecessor

of tasks 𝑇4 & 𝑇5. According to CAWF, one of the successors of these predecessors will

allocate on the same CPU and other tasks following worst fit. Therefore, 𝑇1 and 𝑇3 (dependent

tasks) are assigned on processor 𝑃1. Similarly, 𝑇2, 𝑇4, 𝑇5 and 𝑇6 are interdependent tasks and

sequentially assigned to next processor 𝑃2. Lastly, on the basis of computation and

communication cost DAG schedule length has been calculated which is lesser than the

previous method due to reduction in communication costs.

Fig. 3.3. DAG Execution using CAWF heuristics

𝐷𝐴𝐺 𝑆𝑐𝑒𝑑𝑢𝑙𝑒 𝐿𝑒𝑛𝑔𝑡 = 𝑚𝑎 𝑥(𝑇𝐹𝑇(𝑃1), 𝑇𝐹𝑇(𝑃2)) = 𝑚𝑎𝑥(41,165)

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

𝑃3

𝑃2

𝑃1

𝑇3

𝑇2

𝑇5

𝑇4 𝑇6

TFT=138unitof time

𝑇1

 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

𝑃3

𝑃2

𝑃1 𝑇1 𝑇3

𝑇2 𝑇5 𝑇4 𝑇6

TFT=165unitof time

31

 = 165 𝑢𝑛𝑖𝑡 𝑜𝑓 𝑡𝑖𝑚𝑒 (3.7)

Further, Third type of allocation is proposed task duplication algorithm that is essentially an

advanced adaptation of CAWF. In this method, tasks having less execution cost as compared

to communication cost becomes a duplicated task on a given processor.

From above example task 𝑇1 duplicates on 𝑃4 processor because its communication costs

towards dependent tasks 𝑇2 and 𝑇3 is greater than its computation cost on particular

processors. Similarly, the computation costs of other dependent tasks are greater than their

communication costs and therefore those tasks will not duplicate on other processors. By

applying such duplication technique, overall schedule length of DAG is comparatively lower

than the previous methods.

Fig. 3.4. Proposed Task Duplication methodology

𝐷𝐴𝐺 𝑆𝑐𝑒𝑑𝑢𝑙𝑒 𝐿𝑒𝑛𝑔𝑡 = 𝑚𝑎 𝑥(𝑇𝐹𝑇(𝑃2), 𝑇𝐹𝑇(𝑃3), 𝑇𝐹𝑇(𝑃4)) = 𝑚𝑎𝑥(13,103,28)

 = 103 𝑢𝑛𝑖𝑡 𝑜𝑓 𝑡𝑖𝑚𝑒 (3.8)

The proposed duplication algorithm is somewhat similar with HEFT-TD and DBUS

algorithms. Additionally, the approach used here is different. The approach used in HEFT-TD

in top-down whereas bottom-up approach is used in present scenario. Therefore, proposed

algorithm gives alike or little bit improved result than the existing. Next section will explain

the new algorithm of task duplication followed by simulation results.

3.2 Task Duplication Assisted Schedule Length Minimization

(TDASLM) Algorithm

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

𝑃4

𝑃3

𝑃2

𝑃1

𝑇1

𝑇1

𝑇3

𝑇2

𝑇4

𝑇5

𝑇6

TFT=103unitof time

Duplicate Task
Normal

scheduled tasks

32

There are many approaches has been used for task assignment i.e. First-fit, Best-first, Worst-fit

and CAWF etc. but all these heuristics, select processors sequentially (first processor assigns

first and so forth) for the assignment of tasks without duplication. CAWF algorithm reduces

the communication cost by assigning the predecessor and successor on a single processor. This

approach works fine if the predecessor has single successor therefore, downside of CAWF

approach is multiple successors of single predecessor. As we recognize that, the primary

motive of task duplication is to reduce the communication cost that affects the overall

schedule length of DAG. Hence, in order to overcome the problem of CAWF task duplication

methodology has been used. Now a day’s numerous researchers have designed many task

duplication algorithms [D.Bozdag, 2006; P.Chaudhuri, 2010 & J. Singh, 2012] with different

approaches.

Topology we are using is a mesh that connects every processor with each other processor of

the system. After the generation of DAG on given processor, proposed algorithm uses Bottom-

up traversing of DAG similar to DBUS algorithm [D.Bozdag, 2006]. This approach

determines the dependency and independency in-between sub-tasks of DAG. Independent

tasks can execute in parallel and duplication is used for dependent tasks. Task assignments

depend on the computational capacity of an assigned processor because the job will execute on

allotted processors. Duplication of task is based on the communication cost and execution cost

of processors. At the time of duplication, few critical things must remember:

1) Limited number of duplicates: Algorithm must understand the number of duplications of

any task (Successor/Predecessor). Avoid useless duplication of tasks. Consider the

𝐶𝑡𝑖,𝑡𝑗
between 𝑖𝑡ℎ and 𝑗𝑡ℎ task is less than the 𝐶(𝑃𝑗) of 𝑗𝑡ℎ processor then there is no need

of task duplication.

2) By Bottom-up traversing of DAG all child tasks execute first and then parent task. Due to

which parent task duplication decreases.

In the remainder of this section different module of task duplication has elucidated.

3.2.1 Clustering of Heterogeneous Processors with Mesh Topology

Mesh topology is used here for the interconnection of heterogeneous processors. Therefore,

processor computational power shows a discrepancy. In order to handle this heterogeneous

33

behavior of system, the complete distributed system splits into three clusters (based on

computational capacity) i.e. High, Medium and Low. For the grouping of processors, we have

fixed some range that determines the efficiency level of processors. These ranges make a

decision randomly from 0 to 10.

Fig. 3.5. Clustering of Processors

In figure (3.5), each cell represents a node (processor) and based on efficiency range complete

system divides into three groups:

Blue color represents “Low efficiency” that comes under 0 to 4 ranges. Yellow color

represents “Medium efficiency” and this range lies between 5 and 7. Lastly, Red color is for

“High efficiency” and its range lies from 8 to 10.

Along with efficiencies these nodes also have communication costs in-between and author

represent this cost with the help of adjacency matrix. Figure (3.6) is a matrix of

communication costs between several CPUs. For example: 𝐶3,2.

Fig. 3.6. Communication costs between nodes

34

3.2.2 Generation of Task on Nodes

In a distributed heterogeneous system, DAG’s (tasks) can be generated on any node at any

time. In figure (3.7), task generation on particular processor is indicated by green color.

Fig. 3.7. Task Generation on any node of system

Following is the task generation algorithm:

The algorithm generates task randomly on any node and by getEfficiency() function retrieve

the efficiency of a particular node.

BEGIN

 TASKEXECUTION-ACTIONPERFORMED (java.awt.event.ActionEvent evt)

1. Calendar c= Calendar.getInstance()
2. long m=c.getTimeInMillis()
3. Random r=new Random(m)
4. xcor=r.nextInt()
5. m=c.getTimeInMillis()
6. r.setSeed(m)
7. ycor=r.nextInt()
8. jbArray[Math.abs(xcor%5)][Math.abs(ycor%5)].setBackground(Color.GREEN)
9. group.getEfficiency(Math.abs(xcor%5),Math.abs(ycor %5))

END

After the generation of DAG following algorithm retrieve the efficiency of that node and its

communication cost with near (other) nodes.

getmatrix() function obtain the communication costs from one processor (where task generate)

to other nodes. gettaskmatrix() function set the DAG on particular node.

35

SHOW-ACTION-PERFORMED (java.awt.event.ActionEvent evt)

BEGIN

1. ndag.getmatrix()
2. tdag.gettaskmatrix()

END

3.2.3 DAG Matrix and its Tracing

Above module is the basic framework of simulation. This module explains the DAG (in

matrix format) of tasks that shows the dependency/independence between tasks. In DAG

matrix, 0 represents an independent task and 1 represents a dependency between two tasks

(figure (3.8)).

Fig. 3.8. DAG representation in terms of matrix

For the execution of complete DAG Bottom-up approach is used. Task 𝑇7 is independent task

(Column of 𝑇7 contains 0), 𝑇6 is dependent on 𝑇7 (𝑇6 column has 1 on 𝑇7 row). Similarly,

other dependencies have been made. For traversing of this matrix of tasks (DAG); first, we

check the dependencies (occurrence of 1’s in a column) and based on this occurrence sorting

of tasks are done. This computation takes 𝑂(𝑛2) time.

Input: A sequence of n subtasks of DAG (𝑡1, 𝑡2, 𝑡3 … … … 𝑡𝑡𝑎𝑠𝑘𝐷𝐴𝐺).

Output: DAG in terms of matrix has been generated.

BEGIN cost times

1. count=0 𝑐1 1

2. for i=0 to taskDAG.length 𝑐2 𝑛 + 1

3. for j=0 to taskDAG.length 𝑐3 𝑛2

4. if taskDAG[j][i]==1 𝑐4 𝑛 − 1

5. count++ 𝑐5 𝑛 − 1
6. End for
7. End for

END

36

Hence, in the worst case, the running time of DAG generation is

𝑇(𝑛) = 𝑐1. 1 + 𝑐2. (𝑛 + 1) + 𝑐3. 𝑛2 + 𝑐4. (𝑛 − 1) + 𝑐5. (𝑛 − 1)

 = 𝑐1 + 𝑐2. 𝑛 + 𝑐2 + 𝑐3. 𝑛2 + 𝑐4. 𝑛 − 𝑐4 + 𝑐5. 𝑛 − 𝑐5

 = 𝑐3. 𝑛2 + (𝑐2 + 𝑐4 + 𝑐5)𝑛 + (𝑐1 + 𝑐2 − 𝑐4 − 𝑐5) = 𝑂(𝑛2).

Running time of algorithm is the sum of running times for each executed statement. Above

equation can be expressed in the form of 𝑎𝑛2 + 𝑏𝑛 + 𝑐 for constants 𝑎, 𝑏, and 𝑐 that again

depends on statement costs 𝑐𝑖; it is thus a quadratic function of 𝑛 i.e. 𝑛2.

After getting the dependent tasks, scheduler checks whether this dependency is direct or

indirect. For example, in figure (3.8) task 𝑇6 directly dependent on 𝑇7 task and 𝑇2 is indirectly

dependent on 𝑇6 (𝑇2 → 𝑇4 → 𝑇6). These dependencies are determined by using Boolean

matrix multiplication.

Input: Two copies of generating DAG of tasks for Boolean Matrix

Multiplication.

Output: Dependency of tasks.

CHECK-INDIRECT-DEPENDENCY (matrixsize1[][],matrixsize2[][],Row, Column)

BEGIN

1. m= ((matrixsize1.length)*(matrixsize1.length))/2
2. for count=0 to m
3. ResultMatrix=new int[matrixsize1.length][matrixsize1.length]
4. for i=Row to matrixsize1.length
5. int [] rowVector=getCurrentRow(matrixsize1, i)
6. for j=Column to matrixsize2.length
7. int[] columnVector=getCurrentColumn(matrixsize2, j)
8. for k=0 to matrixsize2.length
9. if rowVector[k] == 1 && columnVector[k]==1
10. ResultMatrix[i][j]=1

11. flag=true

12. break

13. End if

14. End for

15. if !flag

16. ResultMatrix[i][j]=0

17. End for

18. End for

19. for i=Row to matrixsize2.length

20. for j=Column to matrixsize2.length

21. End for

22. End for

23. if ResultMatrix[Row][Column] == 1

37

24. return true

25. else

26. matrixsize1 = ResultMatrix

27. End for

28. return false

End CHECK-INDIRECT-DEPENDENCY ()

END

Similar to above algorithms running time, author examine that all rows of giving matrix have

log 𝑛 elements, each of which is either 0 or 1. Similar examination happens with columns of

the given matrix. In Boolean matrix multiplication, divide complete matrix into rows and

columns and each row (column) is having log 𝑛 elements. Therefore, here the complexity is

𝑂(
1

log 𝑛
). The first for loop calculates the number of multiplications (number of intermediate

nodes from one task to another) and within it Boolean multiplication between matrices

having 𝑂(𝑛2) complexity. Hence, the overall running time here is 𝑂(𝑛3/𝑙𝑜𝑔𝑛).

This traversing of DAG gives a set of dependent and independent tasks. Further, this set

adjoins the Queue of sets that works as a dispatcher. The purpose of a dispatcher is to

discharge the tasks on the nodes; Task sets come in front executes in parallel on different

processors and next set is dependent on that previous set. This operation dispatch sets one by

one, so, it is taking 𝑂(1) time.

Input: Independent or dependent tasks add into a queue.

Output: Dispatch tasks for execution.

QUEUE<SET<STRING>> QUEUEOFSET ()

BEGIN

1. Set<String> s = Independenttaskset()
2. if (setqueue.isEmpty())
3. setqueue.add(s)
4. return setqueue

 End QUEUEOFSET ()

QUEUE<SET<STRING>> TASKEXECUTION ()

1. Queue<Set<String>> q = queueofset()
2. while (q.iterator().hasNext())
3. Taskexecution(q.element())
4. return setqueue
 End TASKEXECUTION ()

END

38

Above function QUEUEOFSET() add the returned set of independent task and other function

dispatches the sets for execution. Tracing and dispatching of the tasks of DAG takes 𝑂(𝑛3/

𝑙𝑜𝑔𝑛) time in total.

3.2.4 Assignment without Duplication

The previous module is actual backbone of complete simulation. Dispatcher dispatches the

independent tasks on the nodes and execution of the project will continue on assigned

processor.

Figure (3.5) shows the clusters of processors and Table (3.1) represents the computation cost

of processors with respect to tasks. Execution of tasks from the dispatcher depends on the

priorities of tasks. Here, queue for a set of tasks has maintained that follows FIFO criterion.

Fig. 3.9. Dispatcher Queue (FIFO)

The above dispatcher works on every processor separately. 𝑇5, 𝑇7 tasks will execute parallel

on different processors. Now 𝑇6 is dependent on 𝑇7, after getting the result from 𝑇7 , 𝑇6

assign to other processor. 𝑇3, 𝑇4 are dependent on 𝑇6. After getting output from 𝑇6; 𝑇3 𝑎𝑛𝑑 𝑇4

can execute in parallel. Now 𝑇2 requires output from 𝑇5, 𝑇3 𝑎𝑛𝑑 𝑇4. Finally 𝑇1executes on its

own processor (source).

In figure (3.7), random tasks generate on four different processors having different

efficiencies. Let us take above explained DAG that generates on high efficiency processor. In

arbitrary assignment heuristic algorithms, dispatcher assigns task on other processors

randomly. If its neighbor node will unable to execute more tasks than a source processor will

switch to another processor.

3.2.5 Duplication Scheduling Explanation

This module explains the proposed duplication strategy that helps in diminution of schedule

𝑇5,𝑇7 𝑇6 𝑇3,𝑇4 𝑇2 𝑇1

39

length of DAG. After the generation of DAG (task) its computational capability (efficiency)

and communication cost on other processors is calculated. After bottom-up tracing of DAG

dispatcher queue is maintained that initially allocate processors to the first set of independent

tasks. Those assigned independent tasks can execute in parallel on allocated processors. After

the execution of assigned tasks, processor of dependent tasks starts execution because output

of predecessor becomes the input for its successor.

Now, for the execution of such dependents, task duplication is used. Our duplication

approach is based on following factors:

1. Communication cost: Time taken in the resettlement of the predecessor output towards its

successor is the communication cost between them. If this data transfer rate is high then

there is a requirement of duplication.

2. Computation cost: We all are aware that the time occupied by a processor to execute the

specified task is the computation cost of the assigned tasks on allotted processor.

In order to execute our approach, first we set computation costs of particular task (let us say

𝑡𝑎𝑠𝑘𝑖) on all processors in ascending order. Additionally, communication costs between

𝑡𝑎𝑠𝑘𝑖 and its successors will arrange in descending order. Afterwards, scheduler compares the

successors computation cost on source processor of 𝑡𝑎𝑠𝑘𝑖 and communication cost between

tasks. If computation cost is smaller than the 𝐶𝑡𝑎𝑠𝑘𝑖,𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠 then duplication of successor

task on source processor of 𝑡𝑎𝑠𝑘𝑖 is achievable. This way of duplication along with bottom-

up approach decreases the number of duplications also. Following algorithm is explaining the

conditional duplication of our approach.

Input: task with execution time (ET) and communication cost (𝐶𝑡𝑖,𝑡𝑗
) between

connected tasks.

Output: Duplicate tasks to the destination processor (DP).

BEGIN

1. IF (𝐸𝑇 < 𝐶𝑡𝑖,𝑡𝑗
)

2. DUPLICATE (𝑇𝑖 , 𝐷𝑃)

3. ELSE

4. setqueue. TASKEXECUTION (𝑇𝑖 , 𝑃)

END

40

__

During the simulation of this duplication algorithm, author suspect that the number of

processors affect the schedule length of the complete DAG with or without duplication. In it,

one common DAG is simulated on two different distributed systems with or without

duplication. The schedule length of DAG varies from the number of processors. Author

checked it for 5 and 10 processors.

Question 3.1: If we increase the number of processors in any distributed system then, can

there be a need of task duplication?

Explanation: Addition of any processor in a system means accumulation of new

computational power in the same. We can say that if we are increasing the number of

processing powers than schedule length of DAG should become small even without

duplication.

Let us assume following common DAG and two different pairs of distributed system. One

system is a group of 5 processors. Other system is a group of 10 processors.

Figure (3.10) explains the computation costs of tasks on given processors of the system. This

theorem explains the relation between task duplication and schedule length. In order to

establish the relation between both, let us consider following two examples:

1. Less number of processors with or without duplication:

Figure (3.10(b)) is a system of 5 processors with general computational capacity. If we

executes given DAG (figure (3.10 (a))) on this system by using duplication, overall schedule

length of DAG is comparatively low (as shown in figure (3.11)).

2. More number of processors with or without duplication:

After the implementation of small system, we expand the given system by the addition of 5

supplementary processors to extra computational capacity. Following the execution of same

DAG on this new arrangement, we again figure out that the schedule length of the DAG is less

by using duplication.

For task duplication, author uses the following criteria:

If (𝐸𝑇 <𝐶𝑡𝑖,𝑡𝑗
) then duplication of task occurs but if reverse happens then there is no need of

duplication.

41

Fig. 3.10. (a) Arbitrary DAG (b) Distributed System of 5 (c) 10 processors

Other side of the coin is that when we increase the limit of processors by 5 then DAG schedule

length has been increased as compared to 5 processor systems. Consequently, we cannot say

that schedule length is dependent upon size of system. By increasing the number of

processors, overall schedule length may or may not be reduced without duplication. Reason

behind it, that execution of a task is dependent on computational capacity of any processor of

the system and usage of duplication is best way to shorten the schedule length. Figure (3.11) is

showing the result of given theorem.

 (a)

 T7

 T9

 T4

 T2
 T3

 T1

16

60

7

5
12

8
 10

 T5 T6

 T5

 25 9

 12
 8

 15

 P
T

𝑃1 𝑃2 𝑃3 𝑃4 𝑃5 𝑃6 𝑃7 𝑃8 𝑃9 𝑃10

𝑇1 25 10 6 24 12 15 11 6 10 14

𝑇2 18 15 16 20 10 21 17 19 14 16

𝑇3 9 11 8 16 14 15 13 7 10 9

𝑇4 8 9 7 10 3 9 6 11 4 5

𝑇5 12 13 15 10 8 7 11 9 14 16

𝑇6 7 13 15 12 11 8 14 16 13 15

𝑇7 19 15 20 12 10 21 16 18 11 17

𝑇8 13 20 17 14 12 14 21 16 13 15

𝑇9 16 11 15 10 12 17 10 14 11 9

 (c)

P

T
𝑃1 𝑃2 𝑃3 𝑃4 𝑃5

𝑇1 25 10 6 24 12

𝑇2 18 15 16 20 10

𝑇3 9 11 8 16 14

𝑇4 8 9 7 10 3

𝑇5 12 13 15 10 8

𝑇6 7 13 15 12 11

𝑇7 19 15 20 12 10

𝑇8 13 20 17 14 12

𝑇9 16 11 15 10 12

(b)

42

Fig. 3.11. Schedule length vs. DAG execution with or without duplication

3.3 Results and Comparisons

The proposed algorithm for task duplication in heterogeneous system with mesh topology is

simulated. Simulation results on Bottom-up approach of random DAG shows that the

makespan generated by the proposed algorithm is better than the existing arbitrary task

assignment heuristics, CAWF and HEFT-TD algorithm. The concept of Task Duplication is

used in Task Assignment Heuristic in Mesh Topology. This new algorithm is named as Task

Duplication Assisted Schedule Length Minimization Algorithm (TDASLM). The given

example and simulations performed, explain that in the given case total finish time can be cut

down by reducing the communication cost because of duplication using optimal assignment

(communication cost must be greater than Execution time of related tasks on that processor).

3.3.1 Experimental Set-up and Test Bed

Figure (3.12) explains the experimental setup of proposed study. Following are some attributes

that explain the functioning of given set-up:

1. Topology

In a distributed system, connectivity architecture follows by the processors of the entire

system is known as topology. Some basic topologies followed by any network/ distributed

system are BUS, Ring, Star and connected Mesh topologies. The implementation of BUS,

Ring and Star topologies are simpler than connected Mesh topology. In connected Mesh

5 Processors 10 Processors

Without Duplication 110 153

With Duplication 83 93

83 93

110

153

0

50

100

150

200

250

300

S
ch

ed
u

le
 L

en
g
th

(i
n

 m
il

li
se

co
n

d
)

DAG Schedule length vs with/without duplication

43

topology, each processor is associated with every other processor of the system. Due to the

connectivity complexity of mesh topology its handling is difficult to enforce. We simulate

mesh topology in our proposed work.

Fig. 3.12. Experimental Set-up of Proposed Work

2. Participating processors

Participating processors are the processor that belongs to distributed system. The participation

of processors devises an environment of the system that determines the overall performance of

the system. Here, heterogeneous processors are utilized in this simulation. Heterogeneous

means, each processor of the system share different architecture. Internal storage capacity and

computational power are the main components of any architecture. In heterogeneous, every

processor has different computational capacities. Hence, we have used clustering method that

split the entire system into three clusters i.e. Low, Medium and High. All clusters have some

fix range of computational efficiency (Figure (3.5)).

3. Normal DAG subtasks

The proposed duplication algorithm is working on DAG. As previous section discussed that

independent tasks will execute in parallel on different processors. Those assigned tasks behave

like normal executable tasks.

𝑃1 𝑃2 𝑃3 𝑃4 𝑃5

𝑃6 𝑃12

𝑃11 𝑃10 𝑃9 𝑃8 𝑃7

Normal DAG

subtasks

Duplicate

subtasks

Inter-connectivity

in-between

processors (mesh

topology)

Processors

Participated in

Distributed

System

44

4. Duplicate subtasks

The entire DAG (task) is divided into dependent or independent tasks. Duplication

methodology is used to decrease the communication cost between dependent tasks. There are

various methods for task duplication but the way of processor selection for the execution of

duplicate tasks/subtasks varies. This proposed algorithm compares the computation and

communication cost of duplicated task on destination processor. If its computation cost on

processor is greater than the communication cost than there is no requirement of duplication.

These above techniques and all components of the framework are implemented in Netbeans

6.9 IDE environment running with Ubuntu Version 11.10. Periodic generation of random DAG

takes place on any processor. Matrix is used to execute the DAG and Queue data structure has

been used to implement the dispatcher. Java threads are used to execute and communicate

subtasks with each other. 100 DAG’s up to 30 times on 12 and 16 processors run in order to

compute the overall schedule length of DAG. With this new duplication algorithm CAWF,

Arbitrary task assignment heuristics and HEFT-TD scheduling algorithms are simulated on

above designed framework.

Proposed algorithm is the reproduction of HEFT-TD [P. Chaudhuri, 2010], but it is

implemented by using mesh topology (loosely coupled distributed system) and bottom-up

approach. Therefore, its complexity is high.

Table 3.2. Algorithmic Complexity of Existing Duplication DBUS, HEFT-TD and Proposed

TDASLM Algorithm

Duplication Algorithms Complexity

DBUS 𝑂(|𝑛2||𝑃2|)

HEFT-TD 𝑂(|𝑉2|(𝑝 + 𝑑))

TDASLM(Proposed Algorithm) 𝑂(
𝑛3

𝑙𝑜𝑔𝑛
)

Mesh topology is good for a limited number of processors. As processors increases

connectivity’s between them also increases, due to which system becomes more complex. It

is the limitation of proposed algorithm that this algorithm is finer for inadequate size of

distributed system.

45

3.3.2 Comparisons:

3.3.2.1 Schedule Length:

Schedule length (TFT) of DAG is computed by using the equation (3.3). Total finish time of

DAG without duplication (Arbitrary processor selection method) is very high as compared to

CAWF where schedule length is decreased by cutting down the communication cost in-

between tasks. When duplication is used, the resultant schedule length is very low as

compared to CAWF and arbitrary method as well. As HEFT-TD method uses top- down

approach in DAG traversing in multiprocessor (tightly coupled distributed system) and

proposed algorithm employs a bottom up approach on loosely coupled distributed system.

Therefore, schedule length of proposed algorithm gives alike or little bit well results than other

two algorithms.

Fig. 3.13. Comparison of proposed algorithm with existing assignment algorithms

3.3.2.2 Computation to communication Ratio (CCR):

Computation to communication ratio (CCR) is the ratio of number of calculations a process

does to the total size of the messages it sends. This ratio depends upon the average

communication volume and average task execution weight. Speed of communication channel

also affects the CCR and this speed depends on the computational speed of processors. In this

chapter, author has used heterogeneous processors having different computational speed. It is

a mesh topology also, so high processing power processor may connect with low processing

power processor and vice versa is possible. Therefore, if any data moves from the higher

efficiency processor to less efficient processor and speed of communication channel is very

fast than CCR will be higher but if the speed of channel is high and computational cost of

0

20

40

60

80

100

120

140

DAG1 DAG2 DAG3 DAG4 DAG5 DAG6 DAG7 DAG8 DAG9 DAG10

S
ch

ed
u

le
 L

en
g
th

(I
n

 m
il

li
se

co
n

d
s)

Randomly Generated DAG

Random Generated DAG vs Schedule Length

Arbitrary

CAWF

HEFT-TD

TDASLM

46

processor is very low than CCR will again get affected. Therefore, CCR is varying with both

processor speeds as well as a communications channel because mesh topology with

heterogeneous processors use here.

3.4 Summary

The task duplication concept has been employed here during assignment procedure (before

implementation of tasks). This duplication reduces the total finish time of task. By theorem

3.1, author also explained that total finish time (schedule length) of task is utterly dependent

upon the execution power of the processor and if duplication is used then it will generate

good results. During simulation of task duplication author realizes that duplication of task too

can overload a processor also. Hence, in order to overcome this overload problem author has

used task migration methodology. How this migration technique is used with task duplication

will be explained in next chapter. Therefore, further author extend this algorithm with task

migration in Distributed System.

47

CHAPTER 4

METHOD FOR MIGRATION OF TASKS WITH DUPLICATION

__

Previous chapter discussed about the task duplication methodology that helps in reduction of

schedule length of DAG and balance the load among processors. Author also mentioned about the

overloading problem that can occur due to duplication of tasks. So, this chapter discusses about

the solution of this overloading problem. Many authors [G. Couloris, 2001; A. Tanenbaum, 2002

& K. Nadiminti, 2006] describe distributed system in their own way and their overall philosophy

may be described as “A distributed system is a collection of various processors within a single

system which work together for the termination of various tasks”. Task migration and duplication

are techniques applied for the management of tasks.

Task migration and duplication are two independent concepts, but “similarity between two is

relocation of tasks” and dissimilarity is “one transfer the original tasks to single processor” and

“second transfer the duplicate copies of particular task to various processors”. So, this chapter

has been introduced with another novel algorithm which is the mishmash of task duplication and

migration.

Task migration is the most widely studied method used to overcome the overloading of tasks on

nodes by using various scheduling algorithms [T. T. Y. Suen, 1992]. Load between nodes is also

balanced [L. M. Ni, 1985] by the task migration from heavily loaded node to lightly loaded node

of the system. Similarly, duplication also uses to balance the load of the system by reducing the

communication cost between the tasks and for the optimal assignment of tasks on nodes of the

system [C. Wang, 2007].

Job of task assignment heuristics is to assign tasks to the processors and thus their executions

proceed. If two dependent tasks are allotted to a same processor, then the communication cost

between tasks will be nil but if those tasks are on separate processors then schedule length of

complete problem will be large, because communication time is added along with execution time.

48

If overloading will occur during the assignment of tasks then migration of overloaded task (victim

task) will done with the help of task migration method.

Task duplication reduces the communication cost between two dependent tasks but it can also

create overloading situation. If duplicated task is reason behind the overloading than two options

are present in front of scheduler i.e. either discard that task or migrate it. The removal of

overloaded duplicate task will not affect much to the dependencies, because its execution is

running on another processor. This chapter describes a method of migration to avoid the

overloading problem.

Further sections explain the related work on task assignment, duplication and migration, new

algorithm of task migration with example.

4.1 Task Migration and Processor overloading

Migration is an ability to shuffle a process/task from source node (executing node) to another

destination node dynamically. There are following scenarios in which migration of tasks is

beneficial:

1) Load Balancing (L)

2) Node Overloading(O)

Mathematically above two scenarios represent as L and O variables and both are dependent on

each other i.e.

 () () (4.1)

Equation (4.1) explains the dependency of overloading on load balancing between nodes of the

system or if overloading occurs then there will be a need of load balancing.

49

Fig.4.1. Allocation and utilization percentage of Processors

Following is the explanations of figure (4.1) with following variables and equations:

 , Perfect utilization of every processor in the system.

 Utilization of processor. Where

 Total number of processors in the system.

 Total number of tasks in the given processor.

 Task on particular processor.

{ }

Figure (4.1) derives the following equations:

 () () (4.2)

 () () (4.3)

 () () (4.4)

P1 P2

P3

80% 23% 50%

45%

35%

10%

13%

20%

30%

50

Task utilizes 45% and utilizes 35% resources of processor P1. Similarly, other tasks utilize

P2 and P3 processors.

To elaborate the Load balancing scenario let us elucidate proposed algorithms:

Algorithm 4.1: The utilization factor of P1 processor is 80% and 20% are rest to meet U (100%)

of P1, if any new task say will generate and it needs 25% resource utilization then it crosses

100% utilization due to which local overloading occurs.

In order to avoid overloading, task of heavily loaded node migrate to lightly loaded node (before

 task arrives). Now choice is to select the eligible task for migration (which should least affect

system’s dynamics).

Following Algorithm explains this migration as follows:

Initializations:

 ,- * +

 , - * +

 , - { }

 [], - is a 2D Array or Matrix containing Computation Cost of every task on each

processor. It looks like:

TABLE 4.1. Matrix of computation costs

 () : returns the heavily loaded Processor of the System.

 (): returns the lightly loaded Processor of the System.

 [], - P1 P2 P3

 30 5 15

 2 6 9

 7 20 25

 21 2 4

 3 12 10

 21 23 11

51

Above equations (4.2), (4.3) and (4.4) calculate the heavily and lightly loaded processor of the

system.

 () Gives 80% (Heavily loaded) (4.5)

 () Givees 23% (Lightly loaded) (4.6)

Next Step is swapping of task from heavily loaded node to lightly loaded node.

 , - () , task of P1 will assign to P2.

In this way, migration has occurred for load balancing.

Here is the completion of task migration process in 1
st
 scenario.

Fig.4.2. Migration of from P1 to P2

Algorithm 4.2 Overloading of task in a node.

Overloading on particular node occurs by two ways:

1) Normal Task Assignment Overloading (discussed in Algorithm 4.1).

2) Duplicated Task Assignment Overloading: If overloading on particular node will take place

by task duplication then according to following conditions migration of overloaded task

must occur:

i) On basis of communication and computation cost of duplicated task on destination node.

ii) Percentage of resource utilization on destination node.

P1 P2

P3

(80-35)% 58% 50%

45%

35%

10%

13%

20%

30%

 Migrated

Task

52

iii) This migration will not affect the dependencies of task.

4.2 Advantages of Migration with Duplication

Duplication and Migration of task is used to improve the overall performance of system by load

sharing. Due to load balancing, hardly system faces the overloading problem. Here a threshold

limit is considered (based on Processor utilization factor,) when crossed should invoke the

Algorithm 4.1 & 4.2.

Fig.4.3. (a) Directed Acyclic Graph (DAG) (b) Task Duplication on the basis of Communication Cost

Here values of are 75%, 105% and 70% respectively. P2 processor is overloaded

because it has crossed the threshold level.

Let us consider an arbitrary DAG (figure (4.3(a))) shows dependency of tasks on one another

 , and ; is the only predecessor of , and .

If successor and predecessor assigned on identical processor then the communication cost

between those two tasks are zero.

In given example is the predecessor of , and and therefore assign on P3 and its

duplicate is on P2. However, copy of task overload P2 processor. Now scheduler has two options

either discard that overloaded task or migrate it to light weighted node.

Following Algorithm will follow when overloading occurs by duplicated task:

t6

t4

t5

t3 t2

t1

35

20

15

14 10

12

9

7

28

(a)

P1 P2

P3

 (75)% 105% 70%

45%

35%

25%

45%

20%

30%

30%

20%

(b)

53

 () Gives 105% (Heavily loaded) (4.7)

 () Gives 70% (Lightly loaded) (4.8)

Step1. Compare max with U, either U is less than max (Overloading case) or U is greater

than max .

Step2. If max is greater than U than calculate the overloaded percentage as follow:

Calculations of overloaded percentage i.e.

 (4.9)

This () overloaded percentage must be migrate to least weighted node.

Step3. If max less than U, than before migration following selection criteria has to be used:

 Selection of task for migration (victim task): Task having least dependents (based on DAG)

will be migrated to least weighted node.

 Selection of destination node for migration: For the migration of selected task, selection of

destination node based on computation cost of victim task on Destination node. Computation

Cost must be less than the available nodes. If migrated task is duplicate then check the

communication cost between tasks of destination node with victim task.

Following example will clear the above steps of Algorithm 4.2 (if) :

1) By using function, selection of Source Node has done (in both algorithms).

2) Comparison between and U tells which one is greater and

 ()

 Shows the overload percentage on Source Node.

According to figure (4.3), amount of load is migrated from Source (P2) to Destination (P3).

 shows the least weighted node in the system and this node is the Destination Node for

overloaded task.

When in Algorithm 4.2 then victim task and Destination Node for Load Balancing

has to be selected by following ways:

Following is the for the selection of victim node:

54

__

BEGIN

1. ()

2. *

3.

4. , -

5. ()

6. *

7. , -

8.

9. +

10. +

END

 , - returns the task having least number of dependent tasks.

If that victim task is duplicated task i.e. having least dependents can be migrated on node that

satisfies following attributes:

1) Lightly weighted node only.

2) Lightly weighted node with less computation cost for migrated task.

3) Least weighted node having dependent task on victim task, Hence, communication cost is

another attribute.

First necessary attribute is for the selection of destination node but second and third are optional.

Because it is not necessary that node having least weight contain predecessor of victim task and

same case with computation cost.

In [P. Chaudhuri, 2010] method for taking the computation cost of tasks on particular nodes has

been provided and accordingly node selection (based on least computation cost of victim task) is

performed.

55

By using , -, - function minimum computation cost value will be retrieved

and with the help of it, destination node will be assigned.

For the migration of task, selections of following three parameters are necessary:

Source node, victim task and destination node.

Fig.4.4. Load on processors after removal of .

Example:

In figure (4.3), is a victim task that is going to migrate because this task is having only one

predecessor . According to the first and third attribute processor P1 is destination node.

According to algorithm 4.2 (), 5% load of must be migrate towards processor P1

but is already there, so, discard from P2 processor. After the implementation of algorithm2

() the load on processors looks like figure (4.4).

According to algorithm4.2, where and is processor P1 and here both tasks

 , have same number of predecessor. Ratio of load of task is less hence, victim task

here. Now according to third attribute, destination node is P2 and according to second attribute

destination node is P2. Therefore, task is migrating on P2 processor. After migration,

 become 55%, 80% and 70% respectively.

P1 P2

P3

75% 60% 70%

45%

30%

25%

35%

20%

30%

 20%

56

4.3 Summary

This chapter explains the optimal methods for the migration of duplicate task. Above example

describes two algorithms for migration of duplicate and normal task. It also describes the

advantage of duplication before migration in which if overloaded duplicate task is concurrently

running on different processor then scheduler can easily discard that task. It also explains the

important parameters for migration.

In next chapter, this task management will apply on real time tasks in which migration of tasks is

dependent on the deadline of task as well as the utilization parameter. The main motive here will

be the achievement of deadline without discarding of task. Therefore, Real time scheduling

algorithms with their characteristics and author’s proposed work will be explained in next chapter.

57

CHAPTER 5

REAL TIME TASK MIGRATION AND SCHEDULING

ALGORITHMS

__

Till previous chapter, we have discussed about management of those tasks where notion of

temporal correctness is weak or not significant. Now, this chapter is going to discuss on those

tasks that respond to external events within a bounded interval of time that are known as real time

tasks. Established on such temporal properties this real time system splits into hard and soft RTS.

Hard real time systems impose an assertion that all chores are finished within a specified time

constraint. A late reply may generate a catastrophic result [M. Joseph, 1996]. Hence, we can say

that correctness in response time is a key measure of RTS. Some models of hard real time systems

are nuclear power plants; embedded braking systems, avionics control systems and signal-

processing systems worked for the department of defense. Supplementary, soft real time systems

has a less accurate perception of time-based correctness and the result of delayed response is not

catastrophic [M. Joseph, 1996]. Examples of soft real-time systems include electronic games, on-

line transaction systems and telephone switches.

Hence, this chapter deals with real time tasks of distributed system. In chapter 1 and 2 author has

discussed about scheduling algorithms of real time systems along with their advantages and

disadvantages. In order to overcome disadvantage of EDF (dominos effect) and increase the

success ratio, author has discussed one more algorithm that is the combination of EDF and RMS

algorithm. How this algorithm works and about its architecture will be talked about in further

parts of this chapter.

5.1 An Overview of RTDS

The system under deliberation is a Real Time Distributed System (RTDS), which is by definition

“A Distributed System having Real Time Properties” [R. Sharma, 2013]. The architecture of

processors in a distributed system can be homogenous as well as heterogeneous. In homogenous

58

system processors share the similar architecture and dissimilar in heterogeneous. This new

scheduling algorithm is implemented on homogenous system [A. Tanenbaum, 2002].

In real time system, every task has a deadline (by that time task should execute). For

programming of real time tasks, RMS and EDF are two well-known scheduling algorithms under

which execution of jobs based on its point of arrival or deadline as well. RMS algorithm works

with static priority scheduling (offline tasks) and EDF algorithm does with dynamic priority

scheduling (online tasks). The arrival of tasks in a particular system can be periodic, aperiodic and

sporadic. Most systems set aside the arrival of tasks periodically because the point of task arrival

is fixed and these tasks are capable to fulfill their respective deadlines (relative deadline) [J. W. S.

Liu, 2000 & J. W. S. Liu, 2003].

Every scheduling algorithm has its own merits and demerits, like EDF assign priority based on

deadline of the task and working well for single processor in underloading condition but working

inefficiently in overloaded case [K. Kotecha, 2010]. RMS is a static algorithm and priorities are

assigned on the basis of periods, but it is not as capable as dynamic algorithms for underloaded

conditions [C. Wang, 2007 & K. Kotecha, 2010] but performing well in overloaded as compared

to dynamic algorithms. In distributed system, this overloading and underloading problem has been

balanced by using the task migration method.

For scheduling of periodic task systems on distributed system there have been two approaches:

partitioning and global scheduling. In global scheduling, single priority ordered queue of eligible

tasks are maintained and scheduler selects the highest priority task for execution. However, in

partitioning scheduling, each task is assigned to single processor deterministically and processors

are scheduled independently [J. Carpenter, 2004]. Out of these two schedulers, previously one

requires task migration and in later task migration is prohibited [C. L. Liu, 1973].

Load balancing (in RTDS) is managed by using task migration with optimal scheduler and for

the implementation of real time tasks either RMS or EDF algorithms are applied according to the

need of the system. This chapter explains RMS and EDF together with migration.

59

Timely response to an event is necessary in real time system. EDF, RMS, Least laxity first, Pfair,

deadline monotonic are some well-known algorithms that works well in their own perspective

(discussed in former chapters). As we recognize, in EDF Domino’s effect is a very usual

problem that generates due to overloading condition. Similarly, RMS performs gets deprived in

underloading condition [K. Kotecha, 2010 & N. W. Fisher, 2007]. We can say that both

algorithms are complementary to each other. Deadline missing in both algorithms happen

because of the utilization bounding approach. So, in this chapter a new scheduling algorithm will

be discussed that take care of both existing algorithms drawback. Joint EDF-RM scheduling

algorithm is used in the global scheduler where task migration mechanism is permissible. In

order to check the superior performance of proposed algorithm, simulation on Eclipse has been

carried out. Performance of the new scheduling algorithm is evaluated with few existing

scheduling algorithms (EDF, RM and D_R_EDF) in terms of success ratio (SR) / failure ratio

(FR), average processor utilization and maximum tardiness parameters.

5.2 Real Time Scheduling Algorithms

In chapter 2, author already explained basic real time scheduling algorithms (EDF and RMS).

Along with these algorithms, this chapter also explains one more algorithm that is acting along

the basis of EDF and RMS algorithms.

5.2.1 D_O_EDF and D_R_EDF scheduling algorithms

The primary motive behind the elucidation of the EDF scheduling algorithm is domino’s effect

problem creates due to overloading condition. We must keep in our mind that we should not let

the processor shoot in such a way that causes overloading. Hence, in order to reduce this problem

many authors have proposed their algorithms [J. Anderson, 2005; J. Anderson, 2008 & K.

Kotecha, 2010]. D_O_EDF and D_R_EDF are one of them.

In the D_O_EDF scheduling algorithm, scheduler allocates static priorities 0 and 1 to jobs. These

static priorities are further used in overloading condition. Tasks that are expected to miss the

deadline scheduler discard those tasks and assign their static priority 0. Additionally, scheduler

assign priority 1 to tasks having firm deadline and also expected to miss the deadline or set aside

to execute [K. Kotecha, 2010] (figure (5.1)).

60

Fig.5.1. Real time tasks frame format according to D_O_EDF scheduling algorithm

The second algorithm D_R_EDF is a combination of dynamic and static scheduling algorithms

i.e. EDF and RMS. [K. Kotecha, 2010] cited in his paper that EDF performs well in underloaded

situation but it reduces exponentially in overloading condition. Similarly, RMS works regular in

underloaded condition, but well in overloaded situation. Hence, in this algorithm primarily

processor uses EDF for task performance but due to overloading as tasks start missing deadline

scheduler switch towards RMS algorithm. Due to RMS when tasks continuously meet the

deadline and now system is in underloaded condition then scheduler again switches towards EDF

algorithm [K. Kotecha, 2010].

In the next segment, the writer will discuss about her proposed work where EDF and RM

algorithm works simultaneously. Before discussing this new Joint EDF-RM Scheduling

algorithm let us discuss about the architecture first.

5.2.2 Explanation of Proposed Joint EDF-RM algorithm Architecture

A loosely coupled distributed system is assumed here where all processors share identical

architecture (homogeneous RTDS). In order to execute the tasks, EDF scheduling algorithm is

employed by every processor where the threshold limit of each processor is fixed. All tasks are

independent and their . Based on the priority of task preemption is allowed

means higher priority job can preempt the lower priority task. Global scheduler is used in this

system that maintains the global task queue for the entire system.

Hard/Soft real time task frame format under D_O_EDF

 Static

priority

Tasks with static priority expected to miss the

deadline will be discarded from the system.

Static

priority

Tasks with static priority 1 expected to miss the

deadline are allowed to execute task.

Firm real time task frame format under D_O_EDF

61

Fig.5.2. D_R_EDF scheduling algorithm Flowchart

Due to task migration permissible characteristic global scheduler is used in the proposed study.

A threshold value for task migration also set in every processor based on which scheduler takes

the decision whether a task is picked out for migration or not. In figure (5.3), global scheduler

maintains a waiting task queue. Overloading problem is cut due to arrival of the limited amount

of tasks in the queue whose boundary limit is set by using an RMS algorithm. Tasks having

BEGIN

Dynamic Arrival of

tasks with D_O_EDF

frame format

EDF Scheduling Execute tasks ()

If (two tasks

continuously

miss the

deadline)

YES

RM Scheduling Execute tasks ()

If (five tasks

continuously

meet the

deadline)

NO YES

NO

END

62

 ∑

 (

 ⁄) will be easily executable or if

 ∑

 (

 ⁄) then not all tasks will be executable.

Fig.5.3. Architecture of proposed algorithm

The working of global task queue is based on first in first out (FIFO) and tasks are randomly

assigned to processors. Tasks on each processor executes with the help of EDF scheduling

algorithm. In this algorithm, minute change is a migration threshold limit that determines the

migration of task from is given processor. In figure (5.4), processor utilization is

 () and

after the arrival of processor utilization becomes ()

 but arrival of reaches utilization in-between ()

 . Continuous arriving of tasks increases by and afterwards all approaching tasks

start missing deadline that generates domino’s effect. Scheduler checks the utilization values of

other processors after getting the migration threshold alarm. Later on that victim task will be

migrated towards processor having least utilization. processor is a destination node according

to figure (5.4).

New Task

Global task

waiting queue

 (

 ⁄)

Global task queue

bound follows RM

utilization bound limit

i.e.

For each processor

EDF scheduling

algorithm is used

for task execution.

Alarm threshold for

migration is 0.810

Random Selection

of processors

 Task IN Task OUT

…………………….

…………………..............

63

Fig.5.4. Migration Scenario in proposed algorithm

Theorem 5.1: If the upper bound of global task queue is (

) then overloading of

processor is reduced [R. Sharma, 2014].

Proof: Given set of aperiodic tasks arrives in a global task queue, whose

periods and execution times are and

 respectively.

 are per task utilization. We

are considering here . There are 4 processors are present in our RTDS with

 are their respective utilizations. Global

scheduler randomly selects processors for the apportionment of tasks, but tasks follow FCFS

discipline for allocation.

In order to proof given theorem following three cases has been hashed out:

Case I: global queue has infinite limit

As the global queue is containing no acceptance test of task. Without checking its utilization;

based on FCFS Task assigns to the randomly selected processor whose

and after the assignment of two conditions can occur:

Task crosses the migration

threshold limit; hence, it is a victim

task

Migration ()

 ; Hence it

becomes Destination Node

 After

migration

64

 {

} (5.1)

 {

} (5.2)

 {

} (5.3)

In this case there are more chances of overloading on every processor.

Case II: Boundary limit of global queue is 1 i.e. ∑

Here only those tasks are allowed to enter in a global task queue whose .

If tasks in a queue are waiting for an appointment and the arrival of new task increases the

boundary limit by 1, then all upcoming tasks will not allow for entrance fee.

 {

} (5.4)

In this case equation (5.1) is satisfied only 1
st
 condition i.e.

 (5.5)

This case gives a guarantee of schedulability of every task. Equation (5.2) and (5.3) behaves

similar to 1
st
 case. The restriction of the EDF scheduling algorithm is if one task starts missing

deadline, then upcoming tasks also miss deadline continuously (Domino’s Effect).

Case III: global queue has boundary limit (

)

Tasks having ∑

 (

) are allowed to to execute on assigned processors.

As we know the value of

 (

) {

} (5.6)

According to RM scheduling, every task is schedulable if its (

) but its

execution is doubtful if it is in-between (

) and . Therefore, here queue allows only

those tasks for further execution whose (

).

∑

 (

) (5.7)

65

 {
 (

)

} (5.8)

After the allocation of tasks on the processor, it will execute tasks by using EDF.

 {

} (5.9)

However, in 3
rd

 case very rare tasks utilization reaches towards 1, but not beyond 1. Hence, we

can say that if the upper bound of global task queue is (

) then overloading of

processor gets reduced.

Another reservation regarding this algorithm is the reason behind threshold limit of task

migration (i.e. 0.81). With our experience after simulating periodic tasks, we rule that maximum

number of tasks, meets their deadline when the utilization is 0.81. As in RMS, the lower bound is

0.69 and upper bound is 0.83. When we simulate EDF, we find utilization value 81% on which

maximum tasks meet the deadline and that value lies between 0.69 and 0.83 i.e.

 . Therefore, we have taken 0.81 as a threshold limit for task migration.

5.3 Explanation of Joint EDF-RM scheduling algorithm

In Joint EDF-RM scheduling algorithm, RMS and EDF algorithms are used in synchrony. The

upper bound of processor is computed by (

) in RMS where is a number of tasks. This

upper bound of RMS will set a boundary limit of global task queue of global scheduler. If

collective utilization of approaching tasks is less than or equal to then tasks will distribute

towards randomly selected processors of the system for execution, otherwise that task will be

discarded.

An EDF scheduling algorithm is used for assigned tasks execution on a particular processor.

Global scheduler helps in task migration among processors. Figure (5.4) explains the task

migration methodology.

Joint EDF-RM scheduling algorithm is divided into following three modules:

1) Maintenance of global task queue

2) Execution of assigned tasks on allotted processors

66

3) Migration of tasks in-between processors if needed (if overloading alarm generates).

Following algorithm (5.1) explains all above-stated three modules.

Algorithm 5.1 Joint EDF-RM Scheduling Algorithm_____________________________

Input: Random arrival of tasks with

Output: Number of tasks meet/miss the deadline along with another parameters

BEGIN

GlobalScheduler() // Global task Queue

1. The aperiodic // Periodic arrival of tasks with arrival time, wcet,
assigned deadline and period

2. tasku = wcet/Period;
3. UB=n*(Math.pow(2, 1.0/n)-1);
4. IF tasku<=UB
5. Generated task is schedulable
6. pselection(task)

7. Else
8. The task is non-schedulable

pselection(task) // Random Selection of Processors

1. Random Selection of Processor
2. PQueue(task);

PQueue(task) // Processors local queue

1. Assign priorities to tasks on the basis of deadline

2.

3. TaskExecution(task)

TaskExecution(task) // Task Execution by using EDF Scheduler

1. If tasku<=1
2. U= U+ tasku //Cumulative accumulation of task utilization
3. If(U<=.810) //Processor utilization
4. The task is ready for execution
5. Else
6. Task Migration (task, tasku)

Taskmigration(task, tasku) // Task Migration on the basis of a processor

utilization factor

1. Sort all processor utilization
2. Assign task to the processor having least a utilization factor
3. PQueue(task);

END

67

5.4 Comparison of Joint EDF-RM with existing scheduling

algorithms

In order to evaluate the performance of given new scheduling algorithm author has used Eclipse

Java EE IDE. The action of the projected study is measured by calculating the average CPU

utilization, success ratio, failure ratio and maximum tardiness. Simulation is done with more than

26000 transactions in 3, 5, 8 and then 10 processors of RTDS. In simulation results, we have

mentioned transactions up to 3000. Before progressing to the demonstration of calculating

simulation results, let us discuss those parameters that influence the operation of joint EDF-RM

scheduling algorithm with several existing algorithms (EDF, RM, D_O_EDF and D_R_EDF).

5.4.1 Average CPU Utilization () is defined as

 ∑

 (5.10)

0

0.5

1

1.5

2

2.5

3

3.5

4

500 1000 1500 2000 2500 3000

A
v
er

ag
e

C
P

U
 U

ti
li

za
ti

o
n

Number of transactions

Average CPU utilization vs. Number of Transactions

Number of Processors=8

EDF

RM

D_R_EDF

Joint EDF-RM

68

Fig.5.5. Average CPU Utilization vs. Number of transactions on 8 and 10 processors

From above figure (5.5), author has simulated more than 26000 tasks on 3, 5, 8 and 10

processors. If utilization exceeds the limit by 1, it means occurrence of overloading on

processors and we can observe that processor utilization in proposed Joint EDF-RM scheduling

algorithm is always less than or equal to 1.

5.4.2 Success Ratio (SR):

 (5.11)

Meeting a deadline is necessary for all real time tasks, therefore author has computed success

ratio that tells the percentage of successful implementation of tasks from total transactions.

0

0.5

1

1.5

2

2.5

3

3.5

4

500 1000 1500 2000 2500 3000

A
v

er
a

g
e

C
P

U
 U

ti
li

za
ti

o
n

Number of transactions

Average CPU utilization vs. Number of Transactions

Number of Processors=10

EDF

RM

D_R_EDF

Joint EDF-RM

69

0

20

40

60

80

100

500 1000 1500 2000 2500 3000

%
S

R

Number of Transactions

Number of transactions vs Success Ratio

 No. of Processors = 3

EDF

RM

D_R_EDF

Joint EDF-RM

0

20

40

60

80

100

500 1000 1500 2000 2500 3000

%
S

R

Number of Transactions

Number of transactions vs Success Ratio

 No. of Processors = 5

EDF

RM

D_R_EDF

Joint EDF-RM

0

20

40

60

80

100

500 1000 1500 2000 2500 3000

%
S

R

Number of Transactions

Number of transactions vs Success Ratio

 No. of Processors = 8

EDF

RM

D_R_EDF

Joint EDF-RM

70

Fig.5.6. Number of transactions Vs. Success Ratio on 3,5,8 and 10 Processors

After simulating thousands of tasks author find that EDF, RM and D_R_EDF scheduling

algorithm’s success ratio can vary, sometimes however Joint EDF-RM algorithm has a higher

success ratio. Reason behind its good performance should be credited to threshold value of task

migration.

5.4.3 Failure Ratio (FR)

 (5.12)

This parameter computes the other phase of coin, i.e. percentage of those scheduled tasks which

are unable to meet the deadline. Missing deadline is also a big task in front of all algorithms.

Consequently, we also calculate the failure ratio that tells us the natural event of missing

deadline.

0

20

40

60

80

100

500 1000 1500 2000 2500 3000

%
S

R

Number of Transactions

Number of transactions vs Success Ratio

 No. of Processors = 10

EDF

RM

D_R_EDF

Joint EDF-RM

71

0

20

40

60

80

100

500 1000 1500 2000 2500 3000

%
F

R

Number of Transactions

Number of transactions vs Failure Ratio

 No. of Processors = 3

EDF

RM

D_R_EDF

Joint EDF-RM

0

20

40

60

80

100

500 1000 1500 2000 2500 3000

%
F

R

Number of Transactions

Number of transactions vs Failure Ratio

 No. of Processors = 5

EDF

RM

D_R_EDF

Joint EDF-RM

0

20

40

60

80

100

500 1000 1500 2000 2500 3000

%
F

R

Number of Transactions

Number of transactions vs Failure Ratio

 No. of Processors = 8

EDF

RM

D_R_EDF

Joint EDF-RM

72

Fig.5.7. Number of transactions Vs. Failure Ratio on 3,5,8 and 10 Processors

5.4.4 Maximum Tardiness

Tardiness is the occurrence of lateness in tasks execution, i.e.

 (5.13)

 () where (5.14)

While missing a deadline, author has computed the time after which task successfully executes

on 8 and 10 processors. Figure (5.8) explains that the proposed algorithm has minimum tardiness

as compared to other algorithms.

0

20

40

60

80

100

500 1000 1500 2000 2500 3000

%
F

R

Number of Transactions

Number of transactions vs FailureRatio

 No. of Processors = 10

EDF

RM

D_R_EDF

Joint EDF-RM

0.35

0.37

0.39

0.41

0.43

0.45

0.47

0.49

500 1000 1500 2000 2500 3000

M
ax

im
u
m

 T
ar

d
in

es
s

(I
n
 S

ec
o

n
d

s)

Number of Transactions

Number of transactions vs. maximum tardiness

Number of Processors =8

EDF

RM

D_R_EDF

Joint EDF-RM

73

Fig.5.8. Number of Transactions vs. Maximum Tardiness on 8 and 10 processors

5.5 Summary

As the name of this new Joint EDF-RM scheduling algorithm explains itself that it is a hybrid of

EDF and RM scheduling algorithms. It overcomes the overloading problem of any processor.

Because of threshold limit 0.81 every processor generates alarm for the migration of upcoming

tasks due to which overloading on task is restricted. Author simulates this work for

homogeneous system; further same can be implement for heterogeneous arrangement of central

processing units. One main problem happens when running tasks are preempted by higher

priority new tasks due to which running tasks miss the deadline. Hence, the author also planning

to work on preemption technique of programming algorithms with fault tolerant techniques.

Now, the next chapter will explain how new dynamics governing parameter will replace this

utilization factor.

0.35

0.37

0.39

0.41

0.43

0.45

0.47

0.49

500 1000 1500 2000 2500 3000

M
ax

im
u
m

 T
ar

d
in

es
s

(I
n
 S

ec
o

n
d

s)

Number of Transactions

Number of transactions vs. maximum tardiness

Number of Processors =10

EDF

RM

D_R_EDF

Joint EDF-RM

74

CHAPTER 6

VISUALIZATION OF INFORMATION THEORETIC MAXIMUM

ENTROPY MODEL IN RTDS

__

Before going through this chapter, let us take an overview on some essential key points of

previous chapters. In chapter 3 and 4, we have discussed about task duplication and migration

algorithms in which scheduler decides the load on given processor based on utilization

parameter. On the other side, when we are dealing with real time tasks (chapter 5) scheduler

checks the schedulability of given tasks on the basis of some schedulability tests and these tests

also work with the help of utilization parameter. Rate Monotonic Scheduling (RMS) and Earliest

Deadline First (EDF) are well-known fundamental scheduling algorithms that schedule incoming

tasks with the help of processor’s utilization factor. We can say that utilization factor maintains

the task-load in motion hence preserves the overall working capability of processor. It is the only

parameter available (been reported till date) that governs the systems dynamics of task

scheduling. In this chapter author will discuss about another parameter that can take place of

utilization parameter. Author has reported entropy as a candidate to govern the dynamics of

RTDS task scheduling with its handling procedure.

By using real time task’s information (arrival time, deadline and worst-case execution time), the

probability of meeting and missing of deadline can be computed. This figured information assists

to analyze entropy values of tasks/processors. Further, this entropy value can work similar to

utilization with several advantages. This chapter commences another facilitator, maximum

entropy model (MEM) in to action. The parameter will be desirable as it justifies the system

boundary. As the confirmatory remark, the simulation results witness one to one mapping in-

between both parameters (utilization and entropy). In the end, author justifies the modeled

simulation with mathematical explanation of MEM in RTDS. With the help of interdisciplinary

approach, we theoretically describe a new dynamics-governing stricture with some critical

advantages for task scheduling of RTDS. Merit of new Entropy model over utilization factor lies

75

in the fact that, the later considers time complexity alone. However, as in the definition of

fundamental task, both time as well as space complexity has been defined. Therefore, this

chapter deals with a new parameter for real time tasks scheduling algorithms. Instead of deriving

new scheduling algorithms, author’s main motive is to commence a new dynamics-governing

factor that behaves alike utilization in existing scheduling algorithms. . Before moving towards

entropy concept in depth, next section will deliver a concise preface on utilization factor and its

role in RTDS followed by entropy concept.

6.1 Utilization Factor and Entropy

This section briefly explains the origin and role of utilization in computer science (in RTDS)

followed by concept of entropy.

6.1.1 Utilization Factor

If we are talking in general terms that utilization is the usage or consumption of any

paraphernalia for some amount of time. In language of computer discipline, we can say,

“utilization is the ratio of quantity of time to perform any task (Worst case execution time) by the

maximum possible time can be used (Period)”. Real time scheduling algorithms uses utilization

factor for the acceptance tests of the task schedulability. For example, in RMS scheduling,

 ⁄ is sufficient but not necessary condition [A. Mohammadi, 2005] where

is number of tasks. Similarly, in EDF ∑

 where is worst-case execution

time (WCET) and is Period of task. In RTS time is an important constraint by which task

has to finish its execution [M. Joseph, 1996 & S. Shimokawa, 2001]. The assurance of timing

activities necessitates a predictable system. Here predictability signifies that after the

commencement of tasks it ought to be possible to decide the completion time of tasks with

certainty. It is also pleasing that the system manage a high degree of utilization while fulfilling

the timing limitations of the system [P. Penfield, 2003; G. C. Buttazzo, 2003 & J. A. Stankovic,

1988].

76

6.1.2 Information Theoretic Entropy

Following terms are required to understand and then the role of entropy in RTDS.

Above-mentioned paragraph notifies that timing constraint-based system needs to be predictable.

Our basic aim behind the entropy concept in RTDS is predictability or presence of uncertainty in

the system. Entropy is a term that is used to compute the amount of uncertainty (doubt) in the

system [C. E. Shannon, 1949].

Any data that passes from source to destination for communication, encoding of any message as

a sequence of independent data in cryptography, input of any random data that is used for

compression algorithms in data compression or because of available information, maximum

entropy principle has used for image reconstruction [S. F. Gull, 1984]. Hence, information

theoretic entropy is the measure of uncertainty in random variable [D. Feldman, 2002]. In

computer science, every information (data) is measured in bits, bytes etc. The arrival and

execution of randomly generated tasks (information) creates uncertainty in the system. This

chapter will discuss about this entropy concept and its implementation in RTDS.

6.2 Utilization and RTDS

So far, utilization factor is the only parameter that decides the scheduling of real time tasks in

existing scheduling algorithms (RMS and EDF). All scheduling algorithms first check the

acceptance test of each newly arrived task then permit particular task for the execution. We can

define the utilization factor as the proportion of particular processor time spent in the execution

of the task set [J. Goossens, 1999].

Following are some parameters of real time tasks:

77

Fig.6.1. Existing Attributes of Real Time Tasks

For Example: In RMS [G. Umarani, 2012] acceptance test based on utilization is

∑

 ⁄
 and in EDF [A. Srinivasan, 2003 & R. Sharma, 2012] acceptance test is

 ∑

Similarly, in RTDS these above computed utilization values decide the destination node or source

node for load balancing i.e. task migration or duplication as well.

Liu and Layland have also defined an efficient sufficient condition for the schedulability of a

task set, based on the utilization factor [C. L. Liu, 1973].

Theorem 6.1: Load Balancing in Real Time Distributed System is dependent on the utilization

factor of processors of entire distributed system.

Proof: As we know that Distributed System is a system in which various

processors/computers/nodes, interconnect with each other through networking topology. Suppose

 is a Distributed System consists of and are their

respective utilization factors.

Let us take four processors and

 are values of utilization factors of

respective processors. Consider the following scenario

 ∑

 (6.1)

 ∑

 (6.2)

 ∑

 (6.3)

Real Time

Task

Arrival
WCET

Deadline

Inter-arrival

period
Utilization

Factor

Arrival Time 𝐴𝑖

Worst Case Execution Time 𝑊𝐶𝐸𝑇𝑖

Deadline 𝐷𝑖

Period 𝑃𝑖

After the arrival of every task, scheduler computes the utilization factor of per

task: 𝑢𝑖
𝑊𝐶𝐸𝑇𝑖

𝑃𝑖
.

78

 ∑

 (6.4)

Only those tasks are schedulable or accept by the scheduler whose

utilization of processor (equation 6.4) is greater than but according to existing criteria of

scheduling algorithms (EDF) utilization factor should be less than or equal to . Similarly,

equation 6.3 explains the utilization factor of processor equals to 1 (threshold limit of). We

can say that value of must lie between 0 to 1 i.e.

 (6.5)

Hence, if utilization factor of any processor crosses its upper bound then those tasks due to

which it crosses the upper bound limit will not be schedulable. In order to balance the load;

victim tasks must migrate towards those processors whose utilization value follows the equation

6.5. According to equation 6.5, if we transfer tasks from and processors towards or

processor then load of entire system is balanced.

Let , are utilization values of and processor’s victim task. After the migration of these

victim tasks equation 6.1, 6.2, 6.3, and 6.4 becomes:

 ∑

 (6.6)

 ∑

 (6.7)

 ∑

 (6.8)

 ∑

 (6.9)

After the migration of victim task based on utilization values the load of entire system is

balanced now because utilization values of all processors lies between to 1. Hence, from above

derivation we can say that load balancing in RTDS is dependent on upper bound of utilization

values.

79

The working of every real time scheduling algorithm based on utilization factor. With the help of

EDF scheduling algorithm tasks schedulability are discussed on following situations:

Table 6.1. Truth table for utilization based scheduling algorithms (Uniprocessor)

 (per task utilization) (processor utilization) Result

True False True False Task is schedulable

False True False True Task is non-schedulable

True False False True Task is schedulable but misses the

deadline.

In RTDS, if a task is schedulable but processor is not able to execute given task then scheduler

uses migration or duplication of task for its execution on another processor. In that case, above

table becomes:

Table 6.2. Truth table for utilization based scheduling algorithms (RTDS)

 (per task utilization) (processor utilization) Result

True False True False Task is schedulable

False True False True Task is non-schedulable

True False False True Task is schedulable but migrates

to other processor.

As we stated before, this chapter introduces a new dynamics governing parameter i.e. entropy.

The working of this new parameter is based on all possible information of available real time

tasks or processors. Here, information of tasks are the meeting and missing deadline probability

that will be computed by above stated parameters. Moreover, entire system avail the load

balancing by recalculating the amount of uncertainty of all processors after the arrival or

execution of any task. Yes, author is talking about the entropy concept that has been discussed

until now in natural language processing (NLP), image processing, thermodynamics etc [S. F.

Gull, 1984; L. Brillouin, 2004; W. H. Zurek, 1989a & W. H. Zurek, 1989b]. In further section,

foundation of entropy and dynamics governing method of entire system will be discussed.

80

6.3 Maximum Entropy Model and RTDS

Up-till now utilization is the dynamics-governing factor in RTDS but here we are visualizing the

entropy instead of utilization. This section explains the milieu of MEM and its groundwork in

RTDS followed by utilization factor. In previous section, we have introduced entropy

conceptually, now we will move towards MEM systematically.

Fig.6.2. Systematic explanation of MEM

6.3.1 Information Theory

Shannon developed information theory in “A mathematical theory of communication” [C. E.

Shannon, 1949]. In networking, data used for communication is information and many

operations are applied on given information like compression, encryption etc. This information

can be an image that moves in terms of bits or . Since, every data in computer is measured in

bits or bytes. Therefore, here the unit of information is bits or bytes. During the processing of

encryption or compression of information the amount of uncertainty of given information is

calculated by entropy. For example if a coin is tossed and we want to calculate the amount of

information of all possible events of coin then,

 (6.10)

 (6.11)

As we are talking about distributed system, any data that moves from one system to another is

information.

Statistical information theory tells the amount of information present in the event occurred. After

the arrival of every task, probability of two events has occurred i.e.

 and . Meeting and missing of

Information

Theory

Entropy

Calculation
MEM

81

deadline is completely dependent on time and space allocated to the task. Time is a continuous

variable therefore; here we have to calculate the probabilities of events instantaneously at a unit

time interval [AoPS Incorporated and Solving, 2006].

 (6.12)

 (6.13)

For convenience author has defined some fundamental task attributes in terms of unit space and

unit time. Here for simplification author considers every task occupies unit space strictly

everywhere.

6.3.2 Entropy

Equations (6.10) and (6.11) give the amount of information of any event and entropy will tell the

amount of ambiguity being there in given information. Hence, we can define “Entropy is the

measure of uncertainty of given information” [W. R. Derek, 2008]. This improbability is

calculated by:

 ∑
 (6.14)

Tossed coin has two events i.e. head or tail. Hence, (6.14) becomes

 ∑
 (6.15)

 (6.16)

Entropy is calculated in terms of bits. In this way, entropy incarcerates the quantity of

unpredictability or improbability in any information.

6.3.3 Maximum Entropy Model

Information theory provides a constructive criterion for setting up probability distributions based

on partial knowledge, and leads to a type of statistical inference, which is called the maximum

82

entropy estimate. It is least biased estimate possible on the given information. It is maximally

noncommittal about missing information [E. T. Jaynes, 1957; P. Penfield, 2003; Dong Yu, 2009

& R. Malouf, 2002]. Here, maximally noncommittal means that it covers all possible information

diversity whatsoever. When characterizing some unknown events with a statistical model, we

should always choose the probability having maximum entropy. Initially, maximum entropy

concept is used in NLP area. Maximum Entropy Modeling has been successfully applied to

computer vision, spatial physics, NLP and many other fields.

Again, we are taking above stated example of tossed coin. Let us consider the values of

 and are .75 and .25 respectively. Then compute the

entropy values with respect to each probability value

 (6.17)

 Similarly,

 (6.18)

The value of entropy in (6.18) is maximum then (6.17). gives the maximum

entropy as compared to other one. Hence, here the maximum entropy value is .

Correspondingly, for a large system we will design a maximum entropy model that decides the

maximum entropy value for the entire system.

6.3.4 Relation between Maximum entropy model and RTDS

Information theoretic entropy is worked out with the help of information. Whatever data is

processed in the system is information. In RTDS, number of arrival and execution of tasks are

information for processor and all parameters of tasks are information of given task. The

probability of meeting and missing of deadline of particular task is calculated by using the

probability computation. These probability values tell the bits of information and from this

information, per task or processor entropy will be computed. Every node has its own threshold

83

limit of number of tasks and this threshold value decides the maximum allowed entropy of node.

All nodes has its own maximum entropy value that decides the load in-between nodes. Figure

(6.3) will explain the working of entire system based on entropy.

According to the principle of maximum entropy, scheduler must choose the probability that gives

maximum entropy [E. T. Jaynes, 1957; P. Penfield, 2003; Dong Yu, 2009 & R. Malouf, 2002].

Every task in processors allocates some space and time for its execution. In present scenario

space complexity is not a big question but time complexity (running time) of task execution

matters a lot specially in RTS. Every processor has some maximum information processing

capacity in per unit time. Hence, we define the maximum carrying capacity in the terms of

maximum entropy of a given processor.

By using following characterizations, scheduler decides the maximum entropy of given

processor:

Fundamental definition of task: An atomic task that cannot be further divided into subtasks. It

occupies unit space and will take the fundamental unit time to execute.

Fundamental unit time: For a given processor or a system, the smallest amount of time span

below which no information switching (task generation, task execution) can take place. For

example in given system, author assumes 10-millisecond as fundamental time unit.

Fundamental unit space: For a given processor or a system, the smallest size of allowed space

below which no space allocation is possible. For example, 1 bits as a fundamental space unit.

Fundamental unit of task parameters: Arrival time , Worst-case execution time ,

Deadline and Period are fixed parameters of any real time task. In order to compute

maximum entropy author has fixed some finely granular values of given parameters. For

example, each task arrives at same time with and

 . They are bound to follow fundamental unit space and time

rule base without exception.

Based on above-stated terms and time limitations, author has done simulation by using finely

granular fundamental task and computed maximum entropy values for the system. From these

84

calculated entropy values the limit (maximum/minimum) of given processor under which

working of entire system is defined. All these are theoretical explanation on entropy-based work.

Further, mathematical set-up of entropy-based work has been explained.

Let us consider the hauling capability of particular processor is 100 tasks (threshold space limit).

We already discussed that every task arrives at same time with worst-case execution time and

deadline (already discussed). With the help of equations (6.12) and (6.13), probabilities of

processor’s task are:

 (6.19)

With these evaluated probabilities of task, entropy values for per task occurrence is calculated.

 and

 (6.20)

In [Dong Yu, 2009 & R. Malouf, 2002] authors has talked about how we should prefer the

probability with higher entropy (or ambiguity). In above evaluated entropy values we are getting

maximum entropy from and therefore it will be our maximum entropy for

given task.

Main motive is to decide the maximum entropy of particular processor whose maximum carrying

capacity is 100 tasks. Therefore maximum entropy of given processor will be:

 ∑

 (6.21)

Where is maximum number of allowed atomic tasks (carrying capacity) on a processor, in our

case it is and therefore here the maximum entropy limit is:

 ∑

 (6.22)

85

Here, maximum entropy is a reference standard. Now this value is used as a dynamics governing

factor (in place of , we will take).

In this way maximum entropy model is implemented on RTDS that depends on the carrying

capacity of any processor (vary from processor to processor). In a multiprocessor system, it

should work in same manner as utilization factor. Further advantages of proposed maximum

entropy principle over existing utilization factor are discussed.

Figure (6.3) explains the working model of RTDS based on Entropy values. There are 5 nodes

present in a system. Each node has fixed threshold limit of 10 tasks. By using same fundamental

concepts (already discussed), maximum entropy of each processor has been computed. Entropy

is the confusion that is generated due to arrival and execution of tasks when it reaches towards its

threshold limit. After the arrival and execution of task, every node updates its entropy values to

the scheduler that decides the destination node at the time of migration. Node B executing 10

tasks and arrival of 11
th

 task crosses its threshold limit. When threshold limit has achieved there

the higher probability of tasks missing deadline because of overloading. Therefore, when entropy

value of processor crosses maximum entropy value, a selected victim task has to migrate towards

another node for load balancing. In current scenario, Node B migrate chosen victim task to the

scheduler and scheduler selects the node of maximum available_entropy value. Node A has

maximum available_entropy value among all processors reasonably.

Difference here is that we have used maximum entropy value, instead of utilization maximum

limit (that is 1). Next section will discuss the calculation of maximum entropy for every

processor and the reason behind its usage in place of utilization factor.

86

Fig.6.3. Maximum Entropy Based Proposed model

6.4 New Dynamics Governing Parameter

This chapter introduces new-fangled parameter entropy for the scheduling algorithms of RTDS

that works according to deadline (meeting and missing) information. On the other side, in

utilization factor execution of tasks depends on its resource consumption power. Consumption

power here refers to the capacity of a task to occupy the processor space and time. Common

property regarding both (existing and proposed) parameters is their dependency on

 . Now this section will explain the similar behavior of entropy parallel to

utilization along with its advantages over utilization.

6.4.1 One to one Mapping between utilization and entropy:

Till date researchers derive many scheduling algorithms for real time tasks execution that works

on utilization factor only [J. Singh, 2012; J. Anderson, 2005; J. Anderson, 2008; B. T. Akgün,

1996; D. R. Cheriton, 1988; M. Bertogna, 2009; A. D. Ramírez, 2012; N. W. Fisher, 2007; P.

Emberson, 2007; X. Wang, 2005 & C. Lu, 2004]. Processors of the entire system achieve load

Real Time Scheduler

Nodes available_entropy MaxEnt

Node A 3.662 5.231
Node B 0.523 5.231
Node C 3.139 5.231
Node D 2.616 5.231
Node E 1.570 5.231

Node A,

current entropy

is 1.569 and

MaxEnt is

5.231

Node D, current

entropy is 2.615

and MaxEnt is

5.231

Node C, current

entropy is 2.092

and MaxEnt is

5.231

Node B, current

entropy is 5.754

and MaxEnt is

5.231

Node E,

current entropy

is 3.661 and

MaxEnt is

5.231

New task crosses

the threshold value

and increases the

entropy value.

Send task with

entropy details

for migration

Entropy of node A

is minimum, it is a

destination node.

Update entropy

values Update entropy

values

Update entropy

values

Arrival &

execution

of tasks

87

balancing by checking their own utilization factor. However, now author has introduced entropy,

another nominee for real time systems field. In previous sections, the working of entropy in RTS/

RTDS has been explained. We can only allow entropy in place of utilization if there is some

significant similarity exist in-between both. In very simple terms if entropy behaves like

utilization then only we can state that entropy is a good participant that governs dynamics similar

to utilization.

As we know that maximum limit of utilization factor is 1. During simulation recalculation of

processor’s utilization after arrival and execution of every task, every time has been recorded.

With criteria [J. Anderson, 2005] task migration using current utilization factor also handled.

Similarly, by using equations (6.20), (6.21) first maximum entropy is computed and then

compare current processor entropy with maximum entropy. A distributed system of 10

processors (with above said MEM criteria [Dong Yu, 2009 & P. Penfield, 2003]) is simulated for

some time and take values of current entropy at several instances.

In terms of mathematics, every element of one set is allied with at least one component of

another set [O'Leary, 2003] shows one to one mapping between two sets. Here, Entropy and

utilization are two sets. When author simulate EDF scheduling algorithm by using entropy as

well as utilization of processor parallely and plot graphs of the same then the resultant values of

both follow same dynamics due to arrival and execution of tasks. Following figure (6.4) is the

graph of any two processors:

88

Fig.6.4. (Up and Down)Graph shows visible mapping between Entropy and utilization values

As we know that utilization is a normalized number, (values lay from 0 to 1) and entropy is a

positive real number (values lay from 0 to infinity). Therefore, for affirmation, following is

another plot of mapping between normalized entropy and utilization values (figure (6.5)).

0

0.5

1

1.5

2

2.5

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0
3

1
0
9

1
1
5

1
2
1

1
2
7

1
3
3

1
3
9

1
4
5

U
ti

li
za

ti
o

n
 a

n
d

 E
n
tr

o
p

y

Number of Tasks

Utilization vs. Entropy

Processor2

Entropy

Processor2

Utilization

0

0.5

1

1.5

2

2.5

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

U
ti

li
za

ti
o

n
 a

n
d

 E
n
tr

o
p

y

Number of Tasks

Utilization vs. Entropy

Processor3

Utilization

Processor3

Entropy

89

Fig.6.5. (Up and Down) Graph clearly shows one to one mapping between Normalized Entropy and

utilization values

From above-stated results author want to ensure that if graph based on values of entropy and

utilization follow the same pattern that generates due to arrival and termination of real time tasks

then entropy can be used in place of utilization.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 6

1
1

1
6

2
1

2
6

3
1

3
6

4
1

4
6

5
1

5
6

6
1

6
6

7
1

7
6

8
1

8
6

9
1

9
6

1
0
1

1
0
6

1
1
1

1
1
6

1
2
1

1
2
6

1
3
1

1
3
6

1
4
1

U
ti

li
za

ti
o

n
 a

n
d

 N
o

rm
al

iz
ed

 E
n
tr

o
p

y

Number of Tasks

Utilization vs. Normalized Entropy
Processor2 Utilization

Normalized Entropy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

U
ti

li
za

ti
o

n
 a

n
d

 N
o

rm
al

iz
ed

 E
n
tr

o
p

y

Number of Tasks

Utilization vs. Normalized Entropy Processor3 Utilization

Normalized Entropy

90

6.4.2 Utilization and Entropy based Algorithm with Complexity

As we know that utilization factor is the fraction of the amount of time used to execute the task

to the maximum possible time to be used for the execution of given task. Utilization factor of per

task/ processor decides the execution (schedulability) of task. Following is the algorithm for EDF

scheduling:

--- ---------------

Earliest Deadline First Scheduling Algorithm with utilization Factor
(Existing)

BEGIN cost times

SCHEDULABILITY TEST ()

1. if task.Arrival+task.duration<=task.deadline 1

2. if task.utilization<=1 1

3. U= U+ task.utilization 1

4. if U<=1 1

5. EXECUTION(task) 1

6. End if

7. else

8. TASKMIGRATION(task, task.utilization) 1

9. U = U -task.utilization 1

10. End else

11. End if

12. else

13. Print “task.taskname of Processor1 is Not Schedulable” 1

14. End else

15. End if
END SCHEDULABILITY TEST ()

EXECUTION (task)

16. while task.duration!=0

17. Thread.sleep(10)

18. task.Arrival=task.Arrival+10

19. task.duration=task.duration-10
20. End while

21. stop = calendar1.get(GregorianCalendar.MILLISECOND) 1

22. if stop <=task.deadline 1

23. Print “Task meet the deadline” 1

24. U = U -task.utilization 1

25. End if

26. else

27. Print “Task miss the deadline in P2” 1

28. U = U-task.utilization 1

29. End else
END EXECUTION (task)

91

END

--- ---------------

Hence, we find that in the worst case, the running time of above scheduling algorithm is

 .

Equations (6.20) and (6.21) computes the value of that behaves as maximum limit for

entropy value.

--

Earliest Deadline First Scheduling Algorithm with Entropy Factor (Proposed)

BEGIN cost times

 =6.64

SCHEDULABILITY TEST ()

1. if task.Arrival+task.duration<=task.deadline 1

2. if task.Entropy<= 1

3. currentE = currentE + task.Entropy 1

4. if totalE<= 1

5. EXECUTION(task) 1

6. End if

7. else

8. TASKMIGRATION (task, task.Entropy) 1

9. currentE = currentE - task.Entropy 1

10. End else

11. End if

12. else

13. Print “task.taskname of Processor1 is Not Schedulable” 1

14. End else

15. End if
END SCHEDULABILITY TEST ()

EXECUTION (task)

16. while task.duration!=0

17. Thread.sleep(10)

18. task.Arrival=task.Arrival+10

19. task.duration=task.duration-10

92

20. End while

21. stop = calendar1.get(GregorianCalendar.MILLISECOND) 1

22. if stop <=task.deadline 1

23. Print “Task meet the deadline” 1

24. currentE = currentE - task.Entropy 1

25. End if

26. else

27. Print “Task miss the deadline” 1

28. currentE = currentE - task.Entropy 1

29. End else
END EXECUTION (task)

MEMORY-PROCESSOR ()

30. available_entropy= -currentE 1

[Update available_entropy of given processor to scheduler]

END MEMORY-PROCESSOR ()

END

--- ---------------

Hence, we find that in the worst case, the running time of above algorithm with proposed

parameter is

 .

Order of complexity of algorithm with both parameters is same but entropy has following

advantages over utilization:

1. Entropy is not just a number: As utilization is a normalized number, which just shows

the system state in terms of efficiency. Besides this, no other information can be retrieved

unless provided otherwise. In processors, every task requires a physical memory space in

terms of bits/bytes (but not in the form of time). Entropy is measured in terms of bit/bytes

(now this is space unit), while utilization is just a dimensionless quantity. Checkpoint

here is the entropy can directly point out the available free space on processor.

 Refer to the code line no 30: available_entropy= -currentE.

93

2. Entropy is appreciable scaling-up factor: Let us presume we have nodes (processors) in

a complex heterogeneous clustering scenario (clustering of clusters) and we need a

universal scaling up parameter that can administer the global and local (task) workload

allotment. Utilization factor is doomed to fail because it is a normalized number (U<=1)

and we do not use mathematical operators upon normalized numbers in a complicated

scenario like this. However, there in the case of entropy we have references from

thermodynamics [W. H. Zurek, 1989a & W. H. Zurek, 1989b] and information theory [S.

Shimokawa, 2001] that entropy scales up easily (figure (6.6)).

Fig.6.6. (left) Scaling with utilization (right) Scaling with Entropy Value.

6.5 Summary

This chapter introduces the entropy insight in RTDS field. Till date only utilization factor is used

to govern the dynamics of real time tasks that works on the basis of time only [J. Singh, 2012; J.

Anderson, 2005; J. Anderson, 2008; B. T. Akgün, 1996; D. R. Cheriton, 1988; M. Bertogna,

2009; A. D. Ramirez, 2012; N. W. Fisher, 2007; P. Emberson, 2007; X. Wang, 2005 & C. Lu,

2004]. Author has reported entropy as a candidate to govern the dynamics of RTDS task

scheduling. Preliminary simulation study of this chapter on RTDS provides enough evidence to

convince, that entropy can serve as a good competitive parameter besides conventional

utilization factor. We conclude stating that entropy consumes the same order of complexity

when compared to utilization factor. Entropy however supersedes in the matter that its

 Select Destination

nodes on the basis of

entropy values of 𝐷𝑆 ,

𝐷𝑆 ,𝐷𝑆 and 𝐷𝑆 .

𝐷𝑆

𝐷𝑆 𝐷𝑆

𝐷𝑆

Nodes

𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐷𝑆1

 bits

𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐷𝑆2

 bits

𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐷𝑆4

 bits
𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐷𝑆3

 bits

 Check 𝑊𝐶𝐸𝑇 of victim

task on every node of

Destination𝐷𝑆 , 𝐷𝑆 ,

𝐷𝑆 and 𝐷𝑆

𝐷𝑆

𝐷𝑆 𝐷𝑆

𝐷𝑆

Nodes 𝑈𝑛𝑜𝑑𝑒

𝑈𝑛𝑜𝑑𝑒

94

fundamental unit task definition complies with both space and time complexity at once.

Furthermore, instantaneous entropy of a system or a processor carries more information (i.e. the

free space on a given processor) that is not given by utilization factor as such. The critical

advantage of this extra information provided can be used in bulk load assignment and destination

processor selection. In a complex clustering scenario of multiple and heterogeneous processors

this extra information would be advantageous. Next chapter will discuss on implementation of

this entropy with EDF scheduling algorithm in homogeneous system with its performance. For a

more complicated scenario, the same system can simulate real time dependent tasks (DAG).

95

CHAPTER 7

ENTROPY, A NEW DYNAMICS GOVERNING PARAMETER IN

REAL TIME DISTRIBUTED SYSTEM: A SIMULATION STUDY

In previous chapter author has introduced new dynamics governing parameter that replaces

utilization parameter. Along with this introduction, one to one mapping between utilization and

entropy among algorithm also has been established. This chapter is going to discuss the

implementation of entropy in RTDS and its performance. RTS first processes the given

information then produces the outcome within a limited amount of time and if result will not

generate by assigned time (deadline) then calculated tardiness either break down the system or

degrade its performance. The breaking up of the system comes under hard RTS and degradation

of system operation is in soft RTS [G. Umarani, 2012]. We have discussed many times that EDF

and RMS [A. Srinivasan, 2003 & R. Sharma, 2012] are two very well-known and age old real

time scheduling algorithms. EDF works with Dynamic tasks and RMS works with static tasks.

Author has simulated a RTDS Environment in Eclipse IDE in which periodic arrival of tasks are

managed by the EDF scheduling algorithm where schedulability test is based on utilization as

well as entropy. Load balancing of tasks plays a vital role in distributed systems and this

important task is done by using task migration methodology. Many researchers have been

working on the dynamics (task generation, execution, migration or duplication) of RTDS (or

distributed system) [J. Singh, 2012; J. Anderson, 2005 & J. Anderson, 2008] and utilization is

the only dynamics leading factor that is absorbed by all scheduling algorithms for system. In this

chapter author replace this utilization parameter with information theoretic entropy.

7.1 Earliest Deadline First (EDF) with utilization

Chapter 2 discussed EDF in detail, again let us take an overview on it with the help of following

example. As the name of EDF scheduling algorithm explain itself that task with least deadline is

having first priority and based on their deadline tasks will placed in priority queue.

96

 (7.1)

Example7.1: Consider three tasks are running on a given processor with following details of

Arrival Time, Execution time and Deadline.

Following steps are taken while above-mentioned tasks arrive for execution on processors:

Step1. Arrival of tasks: The arrival of tasks follow periodic, aperiodic or sporadic patterns. For

our system we consider periodic tasks in which arrival of tasks chases a fixed time pattern i.e. the

inter-arrival time of two tasks are equal. Real time task generates with four tuples

 where is arrival time, is worst case execution time, inter-arrival period

and is the deadline of task.

Step2. Acceptance Test: Before the execution of tasks, utilization factor of each task is

calculated by dividing the worst case execution time with inter-arrival period of task

i.e.

 (7.2)

[

] (7.3)

Overall cpu utilization will be i.e.

 ∑

 (7.4)

 (7.5)

Tasks Arrival time Execution time

(unit of time)

Deadline (=Period)

(unit of time)

 0 3 8

 1 2 5

 2 1 6

97

In EDF the utilization bound is of . If any task does not follow equation (7.2) then that task

will not be schedulable and if equation (7.2) satisfies but (7.3) not gratify then the task will not

be scheduled by EDF in uniprocessor case but can be schedulable in distributed system with the

help of task migration approach.

Step3. Scheduling: After passing the acceptance test of previous step (Step2), the task is ready

for execution. During execution of tasks, if any task of higher priority arrives then already

running task will be preempted by the new task of higher priority (according to equation 7.1)

(figure (7.1)).

Fig.7.1. Earliest Deadline First Scheduling Algorithm

As we know that load balancing is fundamental obsession of RTDS. Load among the processors

is balanced by using task migration methodology under which heavily loaded nodes transfer their

load to lightly loaded nodes. The load on nodes is determined by the number of tasks running on

a particular processor or by finding out its load capacity. For normal tasks of DS there is no time

constraint but for real time tasks there is. Hence, in both cases utilization factor is the key that

decides the overloading on the mainframe. This overloading of processor has reduced by

migration of task on the processor having less utilization value. Now, during the migration of

task two situations can come to play:

1. Migrated task is successfully executed on the destination processor.

2. During migration new task generates due to which processor becomes overloaded.

Due to surprisingly arrival of migrated task, processor becomes uncertain. If scheduler computes

this amount of uncertainty of the processor/system, then the overall performance of the system

could be increased. Consequently, this chapter establishes a concept of entropy that calculates

𝑡 Preempt

𝑡

time
0 1 2 3 4 5 6 7 8 9

𝑡 𝑡 𝑡 𝑡 𝑡 𝑡

𝐷 𝑡 𝐷 𝑡 𝐷 𝑡

𝑡 Preempt

𝑡 𝑡 Preempt

𝑡

98

the amount of uncertainty on a given processor. As author mentioned earlier, this chapter

introduces the entropy concept as dynamics governing parameter in the domain of RTDS. Before

the explanation of entropy application, we will give a few details about the entropy and

information theory.

7.2. Background of Utilization based algorithms

This section first discusses the different ways of load balancing techniques that is explained by

various researchers. After that comparison between entropy and utilization factor of given

processor has been discussed. In distributed operating system, distributed scheduler works for a

resource management (by load balancing) that increases the performance of the system. The

implementation of load balancing algorithm is based on the measurement of processor utilization

[B. T. Akgün, 1996].

In [B. T. Akgün, 2001] author explains the policies of load balancing i.e. transfer (host node is in

appropriate state for task relocation), selection (decide tasks for transfer), location (finding a

suitable transfer pair), and information (assemble load information of nodes in predestined gaps

of time) policy. Author implements task migration with the help of BAG real time operating

system (RTOS). The BAG RTOS is based on message passing processes like V-system [D. R.

Cheriton, 1988]. In order to fulfill four basic policies of load balancing he has considered three

phases: negotiation, transfer and establishment phase that is handled by three processors (host,

source target module and destination target module). The selection policy of V- systems select

only newly arrived tasks for transfer and its load index is the CPU-utilization at a node.

Anderson et.al [J. Anderson, 2005 & J. Anderson, 2008] proposed a new algorithm; EDF-fm

based on EDF. This new algorithm places restriction on per-task utilization but no capped on

overall system utilization. Author calculates the task utilization as in equation (7.2) and if

then that task is known as light task. The execution of every project is assumed to be light

because a light task can devour up to half the capability of a given processor. Under this

algorithm, only enclosed number of tasks needs to be migrated and each migrated task (two

subtasks of a task) will execute on two processors only. Because the victim task is divided into

99

two subtasks and sum of the utilization factor of both subtasks equal to the total utilization of

that single task. In short, this paper reduces the frequency of migration and number of migrated

tasks as well. Since, the author has been working on a soft real time system; this paper also

reduces the actual tardiness of tasks. The limitation of this study is that it is not being able to

support dynamic task systems in which the set of tasks and their parameters preserve change at

run time.

In 2009, Bertogna et. al. [M. Bertogna, 2009] designed a schedulability tests for EDF and fixed

priority scheduler. Here, the authors assume that migration of task is permissible because the

global scheduler is used in this algorithm. For scalability tests, the scheduler has to set some

upper bound on the number of feasible task sets total utilization in a range of 4% around the

point of resultant curve.

Arnoldo et. al. introduces a RealtssMP a tool [A. D. Ramírez, 2012] to perform scheduling

analysis and simulation of multiprocessor real time scheduling algorithms. This tool also checks

the schedulability test by calculating the utilization factor of tasks and based on these calculated

utilization values migrations of tasks taken place. Similarly, in [J. Singh, 2012; N. W. Fisher,

2007; P. Emberson, 2007; X. Wang, 2005 & C. Lu, 2004] authors use utilization factors of the

scheduling as well as for the migration of tasks. Author’s aim behind discussing above-cited

papers is to notify that up-till now every author uses utilization factor only for migration of tasks.

Moral of the story till now is that the dynamics governing parameter for task migration is

utilization factor and this is a generalization. Here, author recommends switching this dynamic

governing parameter to the information theoretic entropy instead of utilization factor. This

chapter elucidates how this could be better in the terms of selection policy, efficiency,

performance of the system etc. Entropy is the quantitative evaluation of disarray in a system.

Thermodynamics is the primary causal agent of entropy that occurs due to the transfer of heat

energy surrounded by a system. Similarly, in information theory term entropy is the presence of

uncertainty (or improbability) in a given amount of data [W. R. Derek, 2008]. In computer

science, information is a communicated data that transfer from one network (system) to another.

Moreover, in cryptography entropy is the measure of uncertainty that comes after receiving of

100

data. With the help of calculated entropy value, user can predict the presence of error in given

information-set. The unit of entropy is in bits because in computers the computation on data is in

the form of 0 or 1 bits [D. Feldman, 2002]. Similarly, maximum entropy calculates the amount of

uncertainty in image after or before its processing [S. F. Gull, 1984].

This chapter computes the entropy value imposed on per task and processor after the arrival of

tasks on given processor. Additionally, maximum entropy will control the dynamism of entire

system. Immediately the question arises on entropy that how it is applicable in RTDS and is

there any need of using such parameter. First, we explain the method of entropy’s application

and at the end of this chapter reason behind using this new parameter instead of utilization will

be excused.

7.3 Information Theoretic Entropy based Algorithm

Entropy is the uncertainty that means indecisive point for a particular system. It creates criticality

due to which no one can predict what will happen. Real time tasks generate periodically and each

task executes on the basis of its priority. Tasks due to which overloading occurs are migrated

towards other processors. Arrival, migration and execution of tasks create a critical condition due

to following reason:

1. If newly generate task follows the schedulability test (equation 7.2) condition but there is

no assurance of its successful execution on a particular processor. Might be another task

of high priority either migrate or generate on that processor and preempt it. Due to which

from time to time processor becomes overloaded or underloaded. The present scenario is

very uncertain.

2. The execution of a task is about to finish but by mean time a new task preempts it. This

situation is also very uncertain.

Hence, if the scheduler is able to compute the presence of uncertainty of system and task then

above-mentioned problems can easily reduce. This chapter sheds light on the entropy concept in

RTDS. In order to simulate task migration methodology by using entropy values author has

simulated following three errands:

101

 Existing EDF scheduling algorithm in RTDS.

 Entropy in place of utilization can be used if and only if there should be some similarity

between both. Therefore, in previous chapter author has shown one-to-one mapping in-

between both entities.

 Implementation of the EDF scheduling algorithm by using per task or processor entropy

values in RTDS.

7.4 Utilization Based Task Migration

7.4.1 Mathematical Explanation of EDF scheduling algorithm in

Distributed System scenario

Let us assume is a distributed system having number of processors.

 also written as

 (7.6)

 is a task set of number of independent tasks that arrives on a

particular processor , we can say that:

 (7.7)

Now calculate overall utilization of processor that cannot be computed without calculating

the per task utilization factor which must be less than or equal to 1,

 {

} (7.8)

 ∑

 (7.9)

 {

} (7.10)

102

In the similar way, overall utilization of other processors of the system will be computed.

Equation (7.8)-(7.10) calculates the utilization factor of per task and per processor as well.

Further equations explain the load balancing methodology:

Let us take the computed value of
 and it lies between . is the value of that

also lies between . Let us assume following scenario:

After the arrival of task value of
 is and utilization factor of next task is

 (7.11)

But value of
 increases the rate of

 (7.12)

Now in this case based on per-task utilization task is schedulable but overall utilization of

processor is greater than 1. Hence according to equation (7.3) scheduler is not able to execute

overloaded task.

Suppose the overall utilization value of other processor is

 (7.13)

As we know that and processors belong to distributed system . In order to balance the

load and execute the schedulable tasks, overloaded task (task increases the value of) has

to migrate towards other processor whose utilization value is less than 1. After the

migration of task utilization values of processors has modified now.

103

Fig.7.2. Processors scenario after and before Task Migration

7.4.2 Utilization based Task Migration Algorithm

In order to implement given algorithm following policies are adopted:

1. Threshold policy: Every processor has fix carrying capacity that restricts the total

number of task accommodation limit.

2. Execution Policy : The execution of task divides into two sections:

a. Schedulability Test: It checks whether the task is EDF schedulable or not.

b. Task Execution: This phase executes task.

3. Migration Policy: After the arrival of task, task has to run the acceptance test due to

which it has to migrate to other processors because of unavailability of time or utilization

capability of its source processor. Every processor of the system make its update after

fixed amount of time to the main real time scheduler. Moreover, main real time scheduler

sorts processors in descending order (in every millisecond) based on their latest

utilization value and migrate victim tasks to the processor having least utilization.

Algorithm Earliest Deadline First

Input: Random arrival of tasks with

Output: Number of tasks meets the deadline (hard), miss the deadline (with

tardiness) with other parameters.

𝒖𝒕𝒊 𝟏
 𝒙′

𝑼 𝒙

𝑼 𝒙′′

𝑼 𝑿 𝑼 𝑿′

𝝆𝒋 𝝆𝒋 𝟏

𝑫𝑺

(a) Before Migration

𝑼 𝒙
 𝑼 𝒙′

𝑼 𝒙′′

𝑼 𝑿− 𝒙′

𝑼 𝑿′ 𝒙′

𝝆𝒋 𝟏

(Migrate 𝒕𝒊 𝟏)

𝝆𝒋

𝑫𝑺

(b) After Migration

104

BEGIN

1. If

2. If

3. then task is schedulable and assign of task on given

processor

4. Else migrate the task

5. Else task is non-schedulable

END

7.5 Entropy Based Task Migration

7.5.1 Mathematical Explanation of Proposed task migration algorithm

Entropy is not a new term we all are aware with it. Every obsession where uncertainty, disorder,

confusion, or critical behavior is present entropy concept is applicable. In this chapter, we are

just calculating the amount of entropy of the processor or task and use that calculated value in

making our RTS stable, balanced and reliable.

Before the calculation of entropy values of given system, first we have rewritten equation (7.8)

and (7.10) confirm the presence of entropy in given task or processor.

 {

} (7.14)

Equation (7.14) tells about the existence of uncertainty after the arrival of task in uniprocessor.

The calculation method of amount of uncertainty and its significance will be discussed in further

equations.

Similarly, in Processor utilization will be

 {

} (7.15)

105

Hence, when value of was 1 at that time presence of uncertainty in processor is maximum

because within a given amount of time value of either (due to arrival of new task) or

(any running task may be complete its execution). In proposing technique, we calculate entropy

values of task as well as processor instead of calculating utilization factor.

Equation (7.14) and (7.15) tell us that there is a presence of doubt when a value of per-task

utilization or processor utilization reaches to . By using entropy concept, author has calculated

the presence of uncertainty in given processor.

At this juncture, information theory concept is used for the calculation of entropy values.

Because if we merge equation (7.6) and (7.7) then we will get

 (7.16)

Arrival and execution of number of tasks are information for processor and loads of

processors are information for entire RTDS. Hence, in order to analyze the entropy of processor

there is a necessity of information about given processor. Therefore, from that amount of

information the computation of the amount of disorder or uncertainty will be judged.

Let is some task, which occurs with probability: . Author has considered that

we have received

 (7.17)

bits of information about missing or meeting of deadline.

Here is real time task that occurs with . Since, time is continuous variable

therefore before calculating . Seek to understand following example taken

from [AoPS Incorporated and Solving, 2006]:

106

Example3.1. Lawrence parked his car in a parking lot at a randomly chosen time between 2:30

PM and 4:00 PM. Just half an hour later, he drove his car out of the parking lot. What is the

probability that he exited the car park after 4:00 PM?

Solution:

Fig.7.3. Probability of continuous variable

 (7.18)

Similarly, let us take an example of single task with following details:

Fig.7.4. Real Time Task scenario

Task can meet the deadline its . Hence, length of total outcome will be its deadline

i.e.60 minutes and length of successful outcome must be . Therefore,

 (7.19)

and

 − −

 (7.20)

3:00PM 3:30PM 4:00PM 4:30PM

Total Outcomes

Successful Outcomes

1:00PM 2:00PM 30 min

Arrival Time Deadline

107

Occurrence of task Arrival contains two outputs meeting and missing of deadline. Every event

has information about its output. Hence, computes following

information:

 (7.21)

Correspondingly,

 (7.22)

Now, entropy of the given task computes with probabilities.

 (7.23)

 (7.24)

 (7.25)

Entropy has following properties [D. Feldman, 2002]:

1. Non-negative value,

2. system is known with certainty. i.e. the probability of one

outcome is 1 and probability of all other outcomes is 0

3. Larger the value of , the more helpful, on average, a measurement of

system is.

Equation (7.14)-(7.25) is all about the calculation of entropy values of given task as well as

processor. Before the discussion of proposed migration algorithm, let us take a brief introduction

about the maximum entropy model. The principle of maximum entropy is based on hypothesis

that when we calculate the probability distribution, we should pick that distribution which leaves

the largest enduring uncertainty (the maximum entropy) [D. Chen, 1998; P. Penfield, 2003;

Dong Yu, 2009 & R. Malouf, 2002]. Space and time are two main complexities of a particular

processor based on which system has some time boundary restrictions for the processing of

108

allotted processes (task/information). Hence, we define the maximum information carrying

capacity (threshold) in the term of maximum entropy of given processor that is based on some

standard definition mentioned in previous chapter.

Author has executed a limited number of tasks having some fine granular task with fundamental

parameters (Worst Case Execution time, Deadline) on a given processor. Then the maximum

entropy of each task is computed and these calculated tasks entropy decides the maximum

entropy limit of a particular processor. This fixed maximum entropy limit works as a reference

standard . Now this reference standard will work as a dynamics-

governing factor in our simulation just like utilization factor (). Whenever system entropy

reaches the maximum entropy limit any further addition to the processor will invoke task

migration.

Author has considered the carrying capacity of given processor is 100 tasks (threshold). Each

task arrives at the same time by following finely granular fundamental parameters:

WCET= 100millisec and deadline=10000millisec

Equation (7.19) and (7.20) compute the two probabilities of each task. We will get:

 and

 (7.26)

Entropy values by using above calculated probabilities are:

and

 (7.27)

As in [S. Shimokawa, 2001] author has observed that we should choose the probability that

leaves with higher entropy (or uncertainty). From above calculated entropy values, we get

109

maximum entropy from () and so it will be our maximum entropy value for a

given task.

We are talking about the processor’s maximum entropy limit:

 ∑
 (7.28)

In this way, author has decided a maximum entropy limit for a given processor and it depends on

maximum carrying capacity of processor that can vary from processor to processor. For load

balancing, it works same as utilization based work.

7.5.2 Entropy Based Algorithm

Entropy Based Algorithm

Input: Periodic arrival of tasks with

Output: Number of tasks meets the deadline (hard), miss the deadline (with

tardiness) with other parameters.

BEGIN

1. If

2.

3. −

4. If

5. then task is schedulable and assign of task on given

 processor

6. Else migrate()
7. Else task is non-schedulable

__

migrate()

BEGIN

1. If (())

2. then destination =

3. Else

4. destination =

END

END

110

7.6 Simulation, Results and Discussion

In this section, author presents the simulation, results and discussion. Up-till now the dynamics

of any distributed system or real time distributed system are determined by using the utilization

factor. Although, utilization factor is working excellent, somewhere we doubt it is the only

reasons due to which many tasks are unable to meet the deadline. We utilize the concept of

entropy because it is the only factor that evaluates the presence of uncertainty in the performance

of tasks. Additionally, it is measured in bits, which is a memory allocation unit in our computer

systems. The working of utilization depends only on the time needed by the processor on

finishing single task. Thus, we scale up the whole system. Before execution of task, it requires

some space/memory in the CPU; for waiting or halt, it also occupies the same space. Based on

utilization value scheduler assign tasks to particular processor, but at mean time task miss its

deadline. All this happens because scheduler’s center of attention (time) is only one side of coin.

From our simulation results, we realize that with time, memory is also an important factor in the

performance of real time tasks. Pushing memory space to the boundary is not advisable; we must

set an accommodating threshold so that extra space/time requirement is always satisfied. Here

we have defined fundamental unit of time as well as space. For any activity, we use this unit

space and time.

First, author anticipate one-to-one mapping in-between both parameters and surprisingly got it as

shown in previous chapter. In order to verify this mapping, normalized entropy of given

processor has been mapped with utilization factor. After receiving the results of one-to-one

mapping, author simulate RTDS by using well known scheduling algorithm EDF. Then, we put

our new parameter entropy in place of utilization and finally got alike or improved results.

At the outset of this section, we first understand the existing scenario of RTDS followed by

entropy-based work with experimental set-up. Afterwards, the performance of system will be

discussed on the basis of existing and new parameter.

7.6.1 Existing scenario of RTDS

Figure (7.5) elucidates the working of RTDS. All real time tasks arrive is maintained by Global

task queue of the global scheduler of distributed system. This global scheduler selects processors

111

for task allocation. Every processor has some threshold limit of tasks. In this simulation, no

processor will perform more than 10000 tasks (as per the simulation constraint). If tasks cross the

utilization limit of a processor than task will migrate to another processor having The

task that preempts number of times from a higher priority task will also become the victim task.

How migration of tasks occurs is explained in Figure (7.2). Selection of victim task is framed on

the per-task utilization as well as its priority in the priority queue.

Fig.7.5. Existing scenario of RTDS

7.6.2 Experimental Set-up and TestBed

For the purpose of implementation and simulation of the algorithm, author has designed a

simulator for the execution of real time tasks of RTDS. Figure (7.6) shows the architecture of

RTDS that schedule and execute tasks by using a proposed entropy parameter. Figure (7.6)

architecture contains following components and technique:

1. The Global Task Queue: All newly arrived periodic independent real time tasks are

arranged in global task queue, which is maintained by a global scheduler of DS. This

global scheduler allows task migration from one to another processor. As we know

distributed system distribute load to all participated processors of the system. Hence,

scheduler assigns tasks of global queue to the randomly selected processor.

2. The Local Task Queue: Every processor holds this local task queue. Execution of tasks

follows EDF priority based scheduling algorithm.

Global Task Queue

𝝆𝟏 𝝆𝟐 𝝆𝟑 𝝆𝟒 𝝆𝟓 𝝆𝟔 𝝆𝟕 𝝆𝟖 𝝆𝟗 𝝆𝟏𝟎

𝒖𝒕𝒊

𝑼𝝆

 𝑻𝟏 𝑻𝟐 𝑻𝟑 𝑻𝟒 𝑻𝟓 𝑻𝟔 𝑻𝟕 𝑻𝟖 𝑻𝟗 𝑻𝟏𝟎 𝑻𝒏

𝑻 𝑾𝑪𝑬𝑻

𝑻 𝑷𝑬𝑹𝑰𝑶𝑫

𝑷𝒓𝒐𝒄𝒆𝒔𝒔𝒐𝒓𝑼𝒕𝒊𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏

 𝒖𝑻𝒊

𝒏

𝒊 𝟏

112

3. Entropy Values: As we have noted in our previous section, that measuring unit of

entropy is in bits. In computer technology, space is measured in terms of bits. The

availability of uncertainty in retrieving information is computed in bits. Hence,

 tells the scheduler that particular task will occupy that much amount

of space in processor. Similarly, computes amount of vacant space in

given processor. Therefore, in order to balance the load of distributed system

 plays a lead role. Processor having maximum

 becomes the destination processor for victim tasks.

4. Earliest Deadline First: In order to execute the tasks we have used deadline priority

based EDF scheduling algorithm.

These techniques and all components are implemented in Eclipse Java EE IDE environment

running with Ubuntu Version 11.10, and we periodically generate random independent real time

tasks. Java threads and synchronization between them is implemented here for real time tasks

generation and execution. We continuously ran upto 10,000 independent real time tasks 30 times

on 3, 5, 8 and 10 processors to compute the success ratio, failure ratio, maximum tardiness and

efficiency of the entire system.

113

Fig.7.6. Architecture of Real Time task Execution with task Migration (Based on Entropy Parameter)

7.6.3 Comparison of Dynamics governing parameters

7.6.3.1 Success Ratio (SR)

 (7.29)

Meeting the deadline is very essential for all real time tasks; therefore, we have computed

success ratio that tells the percentage of successfully implemented tasks out of total transactions.

𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑀𝑎𝑥𝐸𝑛𝑡𝑟𝑜𝑝𝑦

− 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐸𝑛𝑡𝑟𝑜𝑝𝑦

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑡𝑖 𝑒𝑛𝑡𝑟𝑜𝑝𝑦

𝑛

𝑖

Processor 𝑀𝑎𝑥𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑒𝑛𝑡𝑟𝑜𝑝𝑦

𝑃 6.6 2.

𝑃 6.6 3

𝑃 6.6 5

𝑃 6.6 0

Details maintain by real

time scheduler

𝑃

Each task arrives with its arrival
time, WCET, Deadline, Period

and Entropy Parameter

Global task queue

𝑃

𝑃

𝑃

𝑃 𝑙𝑜𝑐𝑎𝑙 𝑡𝑎𝑠𝑘 𝑞𝑢𝑒𝑢𝑒
𝑃 𝑙𝑜𝑐𝑎𝑙 𝑡𝑎𝑠𝑘 𝑞𝑢𝑒𝑢𝑒

𝑃 𝑙𝑜𝑐𝑎𝑙 𝑡𝑎𝑠𝑘 𝑞𝑢𝑒𝑢𝑒 𝑃 𝑙𝑜𝑐𝑎𝑙 𝑡𝑎𝑠𝑘 𝑞𝑢𝑒𝑢𝑒

Global

Scheduler
assigns tasks to

any processor

randomly

Task priority is
based on its

deadline.

Maximum
carrying

capacity

(Threshold
Value) is fixed.

𝒊𝒇 (𝒕𝒆𝒏𝒕𝒓𝒐𝒑𝒚)

 𝑀𝑎𝑥𝐸𝑛𝑡𝑟𝑜𝑝𝒚
𝒕𝒉𝒆𝒏 𝒎𝒊𝒈𝒓𝒂𝒕𝒆 𝒕𝒂𝒔𝒌

𝒕𝒆𝒏𝒕𝒓𝒐𝒑𝒚 𝑀𝑎𝑥𝐸𝑛𝑡𝑟𝑜𝑝𝑦

Given

Migrate given task to processor

having maximum 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒𝑒𝑛𝑡𝑟𝑜𝑝𝑦

𝑃 has maximum available entropy, hence it is a

destination processor for victim task of 𝑃

EDF is used for the execution of

tasks.

114

(a) Success Ratio for 3 Processors

(b) Success Ratio for 5 Processors

0

20

40

60

80

100

500 1000 1500 2000 2500 3000

%
S

R

Number of Transactions

Number of Transactions vs Success Ratio

 No. of Processors = 3

Utilization Based

Entropy Based

0

20

40

60

80

100

500 1000 1500 2000 2500 3000

%
S

R

Number of Transactions

Number of Transactions vs Success Ratio

 No. of Processors = 5

Utilization Based

Entropy Based

115

(c) Success Ratio for 8 Processors

(d) Success Ratio for 10 Processors

Fig.7.7. (a-d) Number of transactions Vs. Success Ratio on 3,5,8 and 10 Processors

0

20

40

60

80

100

500 1000 1500 2000 2500 3000

%
S

R

Number of Transactions

Number of Transactions vs Success Ratio

 No. of Processors = 8

Utilization Based

Entropy Based

0

20

40

60

80

100

500 1000 1500 2000 2500 3000

%
S

R

Number of Transactions

Number of Transactions vs Success Ratio

 No. of Processors = 10

Utilization Based

Entropy Based

116

7.6.3.2 Failure Ratio (FR)

 (7.30)

This parameter figure out the percentage of tasks those are unable to meet the deadline. Missing

deadline breaks down the system in HRT system and slows down the performance of the system

in SRT system. Hence, it is also an arduous task for all algorithms. Hence, failure ratio

computation is necessary as well.

(a) Failure Ratio for 3 Processors

0

20

40

60

80

100

500 1000 1500 2000 2500 3000

%
F

R

Number of Transactions

Number of Transactions vs Failure Ratio

 No. of Processors = 3

Utilization Based

Entropy Based

117

(b) Failure Ratio for 5 Processors

(c) Failure Ratio for 8 Processors

0

20

40

60

80

100

500 1000 1500 2000 2500 3000

%
F

R

Number of Transactions

Number of Transactions vs Failure Ratio

 No. of Processors = 5

Utilization Based

Entropy Based

0

20

40

60

80

100

500 1000 1500 2000 2500 3000

%
F

R

Number of Transactions

Number of Transactions vs Failure Ratio

 No. of Processors = 8

Utilization Based

Entropy Based

118

(d) Failure Ratio for 10 Processors

Fig.7.8. (a-d) Number of Transactions vs. Failure Ratio on 3, 5, 8 and 10 processors

7.6.3.3 Maximum Tardiness

As we know that tardiness is the lateness, occur in tasks execution, i.e.

 − (7.31)

 (7.32)

In soft RTS, missing deadline degrades the performance of entire system, therefore tardiness

computation is required. Tardiness tells about the performance of the system.

0

20

40

60

80

100

500 1000 1500 2000 2500 3000

%
F

R

Number of Transactions

Number of Transactions vs FailureRatio

 No. of Processors = 10

Utilization Based

Entropy Based

119

(a) Maximum Tardiness of missed tasks on 3 Processors

(b) Maximum Tardiness of missed tasks on 5 Processors

0.35

0.37

0.39

0.41

0.43

0.45

0.47

0.49

500 1000 1500 2000 2500 3000

M
ax

im
u
m

 T
ar

d
in

es
s

(I
n
 S

ec
o

n
d

s

Number of Transactions

Number of Transactions vs. Maximum Tardiness

 No. of Processors = 3

Utilization Based

Entropy Based

0.35

0.37

0.39

0.41

0.43

0.45

0.47

0.49

500 1000 1500 2000 2500 3000

M
ax

im
u
m

 T
ar

d
in

es
s

(I
n
 S

ec
o

n
d

s)

Number of Transactions

Number of Transactions vs. Maximum Tardiness

 No. of Processors = 5

Utilization Based

Entropy Based

120

(c) Maximum Tardiness of missed tasks on 8 Processors

(d) Maximum Tardiness of missed tasks on 10 Processors

Fig.7.9. (a-d) Number of Transactions vs. Maximum Tardiness on 3, 5, 8 and 10 processors

0.35

0.37

0.39

0.41

0.43

0.45

0.47

0.49

500 1000 1500 2000 2500 3000

M
ax

im
u
m

 T
ar

d
in

es
s

(I
n
 S

ec
o

n
d

s)

Number of Transactions

Number of Transactions vs. Maximum Tardiness

Number of Processors =8

Utilization Based

Entropy Based

0.35

0.37

0.39

0.41

0.43

0.45

0.47

0.49

500 1000 1500 2000 2500 3000

M
ax

im
u
m

 T
ar

d
in

es
s

(I
n
 S

ec
o

n
d

s)

Number of Transactions

Number of Transactions vs. Maximum Tardiness

Number of Processors =10

Utilization Based

Entropy Based

121

7.6.3.4 Efficiency

The average global efficiency of the system is calculated by using:

 (7.33)

(a) Efficiency of RTDS for 3 Processors

(b) Efficiency of RTDS for 5 Processors

0

20

40

60

80

100

500 1000 1500 2000 2500 3000

%
 E

ff
ic

ie
n
cy

Number of Transactions

Number of Transactions vs. Efficiency for 3 Processors

Utilization

Based

Entropy Based

0

20

40

60

80

100

500 1000 1500 2000 2500 3000

%
 E

ff
ic

ie
n
cy

Number of Transactions

Number of Transactions vs. Efficiency for 5 Processors

Utilization

Based

Entropy Based

122

(c) Efficiency of RTDS for 8 Processors

(d) Efficiency of RTDS for 10 Processors

Fig.7.10. (a-d) Efficiency of the system based on Entropy and Utilization

In order to evaluate the performance of entropy based algorithm author run 10,000 independent

tasks 30 times on 3, 5, 8 and 10 processors. Results of one-to-one mapping between both

0

20

40

60

80

100

500 1000 1500 2000 2500 3000

%
 E

ff
ic

ie
n
cy

Number of Transactions

Number of Transactions vs. Efficiency for 8 Processors

Utilization

Based

Entropy Based

0

20

40

60

80

100

500 1000 1500 2000 2500 3000

%
 E

ff
ic

ie
n
cy

Number of Transactions

Number of Transactions vs. Efficiency for 10 Processors

Utilization

Based

Entropy Based

123

parameters encouraged author to replace entropy over utilization. After putting entropy in place

of utilization, we get better results. Our performance matrix contains success ratio, failure ratio,

maximum tardiness and overall efficiency of the entire system. Graphs of figure (7.10) show that

if we carry through the EDF scheduling algorithm by using entropy parameter maximum number

of tasks meet the deadline as compared to utilization. Failure of tasks in real time system is very

important that tells scheduler about the worst performance of system. The failure ratio of entropy

based scheduling is less as compared to existing one (Figure 7.11). Whenever, tasks miss the

deadline, its tardiness tells about the lateness in execution. We always compute worst situation

therefore, we have computed the maximum tardiness in each case (Figure 7.12). Efficiency of

entire system depends on the number of tasks meet and misses the deadline. Figure (7.13)

explains the efficiency of a system with 3, 5, 8 and 10 processors and we get better efficiency as

compared to existing one. Along with all above discussed parameters, entropy has some

additional features.

7.7 Summary

In this chapter, author has demonstrated a new dynamics governing parameter entropy to replace

utilization factor in RTDS. We have simulated real time environment by using maximum entropy

instead of utilization factor. The threshold value of utilization is usually set to one;

synonymously here we assume the entropy threshold value to be the maximum entropy for a

given processor. Maximum entropy for a processor can be defined as the total amount of entropy

present instantaneously when a processor (fully loaded with the task) cannot additionally

accommodate new task. Further, we use an entropy threshold in place of utilization factor,

calculated average efficiency of the entire system and verified our results with one-to one

mapping and then with performance of entire processor. Author is happy with results that the

efficiency of both type systems (govern by utilization factor and entropy) independently show

similar fluctuation range. Results we obtain are alike or healthier than the existing one. These are

just preliminary results but are worth mentioning. Ultimately, we conclude to have another

parameter that can regulate the dynamics in RTDS parallel to utilization factor. Here,

comparison of entropy based EDF algorithm is compared with utilization based EDF algorithm.

In next chapter author has compared their results with RMS algorithm with some additional

parameters. In future, author is planning to complicate it by implementing this on DAG. Author

124

has attempted to determine the best-case scenario and direct applications. More advance model

will be investigated in the next scope of this new approach.

125

CHAPTER 8

EVALUATION AND COMPARISON OF LOAD BALANCING

IN RTDS USING INFORMATION THEORETIC ENTROPY

In previous chapter, author implements EDF algorithm with the help of entropy in place of

utilization. Afterwards compare both results and find entropy based algorithm working better

than the existing one. Now, this chapter compare this entropy based EDF with RM

scheduling algorithm based on some other parameters. Main benefit and requirement of any

distributed system is load balancing that is achieved by using task migration or task

duplication methodology. The task migration technique can be used for independent as well

as dependent tasks but duplication of tasks specially implement on dependent tasks in order

to lessen the execution cost of an entire DAG by reducing the communication costs in-

between tasks [R. Sharma, 2011 & A. Bestavros, 1996].

8.1 An Overview on CPU Utilization

This chapter exploits Information theoretic entropy concept for load balancing in loosely

coupled distributed system. Till now processor utilization is the only parameter that plays the

vital role in load balancing. Many years back some researchers state that CPU load is

efficient for load balancing as compared to CPU utilization [D. Ferrai, 1987]. The cause

behind CPU load did better is possible because when a host is heavily loaded, its CPU

utilization is expected to be nearly 100% and it is unable to reveal the exact load level of the

utilization. In contrast, CPU queue lengths can directly reflect the amount of load on a

processor.

By the passage of time, techniques for load balancing have been improved. Now, researchers

start working on CPU utilization instead of load. Mostly scheduling algorithms use CPU

utilization for the same purpose of loosely coupled RTDS. However, here author follows the

older concept of CPU load with some extra zest i.e. entropy. Simply dissimilarity between the

CPU load and entropy is that the later one is computed by gathering the information from

126

previous one. Further, computed values are used to determine the entropy values that tell

about the presence of uncertainty (improbability) in retrieved information. Before giving the

computation methods of entropy, let us talk about load balancing with the help of CPU

utilization and CPU entropy

8.1.1 Load Balancing

Load balancing is the advantage of any distributed system or we can say that without load

balancing distributed system is worthless. Load balancing itself is a self-descriptive term that

regularly distributes the load among nodes/processors by the migration of tasks of heavily

loaded or utilized processors (Source) to lightly loaded or less utilized processors

(destination/target). The tasks that migrate in-between the nodes are known as victim tasks.

Load among the processors are balanced by using task migration or task duplication

techniques [N. W. Fisher, 2007; X. Wang, 2005; X. Wang, 2007 & A. Srinivasan, 2003].

CPU load and CPU utilization are some parameters that help in taking the decision for

selection of target processor for migration or duplication of victim tasks. But in this chapter,

we are using a parameter CPU Entropy instead of load and utilization. Previous chapters

already explain the reason behind using entropy in place of utilization but here we are using

entropy for balancing the load of processors.

8.1.2 Load Balancing and Utilization

As we know that CPU utilization is the time taken by CPU to execute the given task. If

processor’s utilization is near about 100% then it will be a source processor and processor

having least utilization becomes the target processor. Based on such judgment of utilization,

researchers design many tools and scheduling algorithms that execute real time tasks of

distributed system. EDF-fm, RealtssMP tool etc. [A. D. Ramírez, 2012; J. Singh, 2012; M.

Bertogna, 2009; J. Anderson, 2005; J. Anderson, 2008; P. Emberson, 2007; J. Goossens,

1999; B. T. Akgün, 1996 & D. R. Cheriton, 1988] has been used CPU utilization for the

scheduling as well as migration of tasks.

127

8.1.3 Load Balancing and Entropy

Although, the conception of entropy initially a thermodynamic construct, it has been

customized in the other fields of study together with information theory, NLP, image

processing, thermo-economics/ecological-economics and evolution. All these are few

interdisciplinary applications of entropy [C. Lu, 2004; W. H. Zurek, 1989 & R. Malouf,

2002]. This chapter uses information theoretic based entropy for managing the load of

participant processes of loosely coupled distributed system.

The arrival and execution of periodic tasks generate arbitrariness in the system. The term

entropy is used to calculate the amount of uncertainty of a particular processor. Less

uncertain processor becomes the destination and most uncertain will be a source of victim

task. With the help of maximum entropy model () [P. Penfield, 2003& S. F. Gull, 1984]

scheduler decides the threshold limit of entropy () that behaves like the

maximum limit of utilization i.e. (). The computation of maximum entropy

value is explained in next section.

8.2 Proposed Entropy based load balancing scheduling

algorithm

This chapter explains the load balancing with the help of information theoretic entropy

concept. This entropy perception follows the CPU load concept. It uses the information of

task to compute entropy values of task and processor as well. Basic difference between

entropy and utilization parameter is that the entropy deals with space and time but utilization

deals with time only [R. Sharma, 2013]. Load Balancing is done by computing the available

entropy of participant processors of RTDS. Next section describes an overview of entropy

and maximum entropy computation.

8.2.1 Entropy Computation

Entropy computes the amount of uncertainty present in the given information. Amount of

information is figured by using the occurrence probability of particular events. Any real time

task has two events missing and meeting of deadlines. The presence of amount of information

128

about the meeting and missing a deadline is computed by evaluating the probability of

occurrence of these two events.

 ()

 (8.1)

 () () (8.2)

With the help of equation (8.1) and (8.2), amount of information about meeting and missing

of deadline will be computed in equation (8.3) and (8.4).

 ()

 ()
 (8.3)

 ()

 ()
 (8.4)

Equations (8.5) and (8.6) are evaluating the amount of uncertainty present in retrieved

information from (8.3) and (8.4).

 () () (8.5)

 () () (8.6)

Further equation (8.7) is used to evaluate the total entropy of entire task.

 () () () () (8.7)

Now, equation (8.8) computes the entropy of particular processor by the accumulation of

entropy values of all available tasks on a given processor.

 ∑

 (8.8)

8.2.2 Maximum Entropy Computation

In order to compute the maximum entropy of system, we should choose the probability that

gives higher values from available entropies of all events [P. Penfield, 2003]. Hence,

equation (8.5) and (8.6) computes the entropy of all events and equation (8.9) and (8.10)

129

returns the maximum entropy valued event. These computed maximum entropy is used to

decide the maximum entropy value of entire system.

From equation (8.5) and (8.6)

If ()

 (8.9)

Else

 (8.10)

Equation (8.11) is used to determine the maximum entropy value of a particular processor.

For deciding the maximum entropy value of any processor, we have taken some fundamental

definitions of parameters of given task (discussed in previous chapters). Consider the

threshold limit of given processor is 200 tasks. For 200 tasks maximum entropy will be

 ∑

 (8.11)

Following table is showing the values of maximum entropy on different threshold limit.

Table8.1. Maximum Entropy Values and CPU Maximum Utilization with respect to threshold limit

CPU Threshold Limit CPU Maximum Entropy

200 19.9

400 66.4

600 139.5

800 239.1

1000 365.4

8.2.3 Available Entropy Computation

The measurement unit of entropy is in bits [D.Feldman, 2002], which is used to evaluate the

volume of space present in the CPU memory. Every task requires some space for allocation

and then time for execution. Therefore, available entropy gives scheduler the existing vacant

space in the memory of a given processor. Equation (8.12) is used to evaluate the available

space in the CPU.

 (8.12)

130

This computed available entropy plays main role in balancing the load in-between processors

of the RTDS. Following is the algorithm that is used to balance the load by using entropy

values.

ALGORITHM 8.1 ENTROPY BASED LOAD BALANCING

INPUT: Periodic generation of independent tasks with its , ,
and

OUTPUT: Execution of tasks with , , and Execution Ratio of total
tasks

BEGIN

1. // For 200 independent tasks on each processor

2.

3.

4. ()

5.

6.

7. ()

8.

END

Above stated algorithm 8.1 and complete simulation is implemented in Eclipse Java EE IDE

environment running with Ubuntu Version 11.10. Java threads and synchronization functions

are implemented here for the generation, execution or synchronization between periodic

independent real time tasks. Following are some functions that are used to execute the entire

simulation.

Table8.2. Functions used in simulation and their responsibilities

Functions Responsibility

rand.nextInt(10)+1 Random generation of , .

c.get(GregorianCalendar.MILLISECOND) Generate attributes of task in

millisecond

(Math.log(1/P1)/Math.log(2)) Log function uses to compute the

amount of information as well as entropy

value

Thread.sleep(10) Generate tasks in every 10 milliseconds

starttime = System.nanoTime() Compute the start time of destination

searching

estimatedTime = System.nanoTime() –

starttime

Compute total time of destination

searching

131

list.addLast(task) Add tasks in a local task queue of a

given processor

Thread.currentThread().join(10) This function is used to maintain the

synchronization between tasks

Thread.currentThread().interrupt() Function is used to stop the execution of

tasks

8.3 Results and Discussion

EDF and RMS [J. Anderson, 2005 & B. T. Akgün, 2001] are aged and matured scheduling

algorithms that are used for the execution of real time tasks. In current scenario, load

balancing is done by using utilization parameter only. We consider here a loosely coupled

RTDS, and use EDF, RMS and proposed entropy based scheduling algorithms for the

execution of tasks with load balancing. Further, the performance of existing and proposed

scheduling algorithms will be evaluated on the basis of certain test parameters followed by

discussion.

8.3.1 Performance Evaluation

We asymptotically ran up to 5,000 independent real time tasks 30 times for 5 and 10

processors and took readings to compute the scheduling latency, deadline missing rate,

migration rate and execution ratio of total tasks.

8.3.1.1 Scheduling Latency()

Scheduling latency is the time when the system is unproductive because of scheduling tasks.

It is a system latency incurred because it has to spend time scheduling.

 (8.13)

132

(a) for 5 Processors

(b) for 10 Processors

Fig.8. 1. Performance of EDF, RM and Proposed Algorithm on for (a) 5 and (b) 10 processors

8.3.1.2 Deadline missing rate ()

This parameter calculates the number of tasks missing deadline per total number of tasks

generated at that period.

 (8.14)

0.25

0.27

0.29

0.31

0.33

0.35

0.37

0.39

200 400 600 800 1000

A
v
er

ag
e

S
ch

ed
u
li

n
g
 L

at
en

cy

(I
n
 S

ec
o

n
d

s)

Number Of Transactions

Average Scheduling Latency Vs. Number of Transactions

Number of Processors=5

EDF

EDF-

Entropy

RMS

0.25

0.27

0.29

0.31

0.33

0.35

0.37

0.39

200 400 600 800 1000

A
v
er

ag
e

S
ch

ed
u
li

n
g
 L

at
en

cy

(i
n
 S

ec
o

n
d

s)

Number of Transactions

Average Scheduling Latency Vs. Number of Transactions

Number of Processors=10

EDF

EDF-

Entropy
RM

133

(a) for 5 Processors

(b) for 10 Processors

Fig.8. 2. Performance of EDF, RM and Proposed Algorithm on for (a) 5 and (b) 10 processors

8.3.1.3 Migration rate ()

Number of tasks migrates per total number of tasks generated has been computed in this

parameter.

 (8.15)

0.3

0.35

0.4

0.45

0.5

0.55

200 400 600 800 1000

D
ea

d
li

n
e

M
is

si
n
g
 R

at
e

Number of Transactions

Deadline Missing Rate vs. Number of Transactions

Number of Processors=5

EDF

Entropy-

Based
RM

0.3

0.35

0.4

0.45

0.5

0.55

200 400 600 800 1000

D
ea

d
li

n
e

M
is

si
n
g
 R

at
e

Number of Transactions

Deadline Missing Rate vs. Number of Transactions

Number of Processors=10

EDF

Entropy-

Based

RM

134

Fig.8. 3. Performance of EDF, RM and Proposed Algorithm based on

8.3.1.4 Execution Ratio

Under the proposed schedulability test, only those tasks are schedulable whose

 , in EDF

 and in RM

 (

). After scheduling of tasks, these

tasks will be ready for the execution. Hence,

 (8.16)

(a) Execution Ratio for 5 Processors

0

0.002

0.004

0.006

0.008

0.01

200 400 600 800 1000

M
ig

ra
ti

o
n
 R

at
e

Number of Transactions

Migration Rate Vs. Number Of Transactions

EDF

Entropy-

Based
RM

0

20

40

60

80

100

200 400 600 800 1000

E
x
ec

u
ti

o
n
 R

at
io

 (
in

 %
ag

e)

Number of Transactions

Execution Ratio Vs. Number of Transactions

Number of processors=5

EDF

Entropy-Based

RM

135

(b) Execution Ratio for 10 Processors

Fig.8. 4. Performance of EDF, RM and Proposed Algorithm based on the Execution Ratio for (a) 5 and

(b) 10 Processors

8.3.2 Discussion

In order to evaluate the performance of information theoretic entropy parameter 5,000

independent tasks run up to 30 times for 5 and 10 processors. Our performance matrix

contains scheduling latency, deadline-missing rate, migration rate and execution ratio of total

tasks arrived in the system. Graphs of figure (8.1) shows that the computed scheduling

latency of entropy-based algorithm is comparatively lower than the EDF and RM as well. In

order to execute tasks on or before deadline real time environment has been used. Therefore,

the deadline-missing rate is computed in figure (8.2) in which we can see that entropy-based

algorithm gives healthier results than existing algorithms. Moreover, figure (8.3) is

explaining the migration rate that is used for balancing the load in-between processors.

Entropy based algorithm gives better migration rate comparatively. Our last parameter is

execution ratio that gives excellent results as compared to existing scheduling algorithms.

Our explanation behind these results is that entropy decides the acceptance of task on the

basis of space and time both.

8.4 Summary

In this chapter, independent real time tasks are generated in loosely coupled distributed

system. In order to perform load balancing among the processors, scheduling and execution

0

20

40

60

80

100

200 400 600 800 1000E
x
ec

u
ti

o
n
 R

at
io

 (
in

 %
ag

e)

Number of Transactions

Execution Ratio Vs. Number of Transactions

Number of processors=10

EDF

Entropy-Based

RM

136

of tasks; we have replaced utilization factor with entropy factor. Further, simulation of

existing algorithms EDF, RMS and entropy-based algorithm has been done on the same data.

After the evaluation of resultant parameters we have got comparatively good results of the

proposed algorithm. In future, this will be implementing on dependent tasks in which task

duplication will be used for load balancing and reduction of execution time.

137

CHAPTER 9

CONCLUSION AND FUTURE WORK

__

9.1 Summary

The focus of this thesis remains on proposing and accepting a dynamics governing parameter

that plays main role during generation, scheduling, execution, migration, and duplication of

tasks. At the very beginning thesis deals with usual dependent tasks that means tasks having no

deadline. In order to reduce the schedule length of directed acyclic graph (DAG) as well as

balance the load among processors task duplication scheduling algorithm (TDASLM) came in to

play. Afterwards, one common drawback of overloading that can occur due to task duplication

has been discussed and then it is solved by task migration technique. In this way focus switch

towards task migration method. Further author took turn towards real time tasks (tasks with

deadline). Initially, independent tasks are simulated with new real time scheduling algorithm

where task migration is allowed. For this, a Joint EDF-RM scheduling algorithm for real time

task migration is discussed that resolves the problem of Domino’s Effect of EDF scheduling

algorithm.

Now, we draws attention to the backbone of real time distributed system i.e. utilization factor. So

far, utilization is the only parameter that helps to govern the dynamics of any distributed system.

Hence, the author has devised an alternative of utilization that behaves in parallel (one to one

mapping) during arrival and execution of real time tasks. After getting one to one mapping,

author puts forward to replace this new parameter entropy with utilization. This new parameter is

information theoretic entropy that works by getting probabilities of the information of tasks

(event) i.e. arrival time, deadline, period and worst-case execution time of the real time task.

Finally, authors use this entropy parameter in place of utilization and applied it on earliest

deadline first scheduling algorithm that works comparatively better than a normal EDF and RMS

algorithm.

138

9.2 Future Work

Journey of entropy as a dynamics governing parameter has just begun with the EDF scheduling

algorithm on independent tasks. Further, we will complicate it by implementation on real time

DAG (Directed acyclic graph) with task duplication methodology. We shall attempt to determine

the best-case scenario and direct applications. Testing the same for its scaling up capabilities as

claimed briefly here, this remains another futuristic dimension for explorations. More advance

model shall be rigorously investigated in the next scope of our approach. After that in future, this

journey will move towards other scheduling algorithms and take a turn on the side of huge

distributed or complex systems i.e. Grid computing. We are anticipating that meritoriously

entropy can take over utilization parameter completely with certain additional advantages.

139

REFERENCES
__

[A. Bashir, 2013] A.Bashir, A. Madani Sajjad, Jawad Haider Kazmi, and Kalim Qureshi, Task

Partitioning and Load Balancing Strategy for Matrix Applications on Distributed System, Journal

of Computers 8, no. 3, 2013, pp. 576-584.

[A. Bestavros, 1996] A. Bestavros, Load Profiling in Distributed Real-Time Systems, 1996.

[A. Burchard, 1995] A.Burchard, J. Liebeherr, Y. Oh, and S. Son, New strategies for assigning

real-time tasks to multiprocessor systems, IEEE transactions on computers, 1995, pp. 1429-1442.

[A. D. Ramírez, 2012] A.D.Ramírez, Dulce K. O., Pedro Mejía-Alvarez, A Multiprocessor Real-

Time Scheduling Simulation Tool, 22nd International Conference on Electrical Communications

and Computers (CONIELECOMP), 2012, pp.157-161.

[A. Gantman, 1998] A.Gantman, Pei-Ning Guo, James Lewis, and Fakhruddin Rashid,

Scheduling real-time tasks in distributed systems: A survey, 1998.

[A. Mohammadi, 2005] A.Mohammadi and Selim G.Akl, Scheduling algorithms for Real-Time

Systems, Technical Report No. 2005-499, University of Maryland at College Park, 2005.

[A. Sarkar, 2011] A.Sarkar,F.Mueller and H.Ramaprasad, Predictable task migration for locked

caches in multi-core systems, In Proceedings of LCTES’11,2011,pp. 131-140.

[A. Srinivasan, 2003] A.Srinivasan, J.H. Anderson, Efficient scheduling of soft real-time

applications on multiprocessors, In Proceedings of the 15th Euromicro Conference on Real-Time

Systems, 2003, pp.51–59.

[A. Tanenbaum, 2002] A.Tanenbaum and M. Van Steen, Distributed Systems: Principles and

Paradigms,Prentice Hall, Pearson Education, USA, 2002.

140

[AoPS Incorporated and Solving, 2006] Articles and Excerpts, AoPS Incorporated and Solving,

A.P., vol.1, ISBN 9781934124000, http://books.google.co.in/books?id=x2YxTUc3G5kC, United

States of America, 2006.

[B. Kruatrachue, 1988] B.Kruatrachue and T. Lewis, Grain Size Determination for Parallel

Processing, IEEE Softw., 1988, pp. 23-32.

[B. T. Akgün, 1996] B.T. Akgün, et al., An Implementation of a Load Balancing Algorithm for

the BAG System, 14th IASTED International Conference on Applied Informatics, Austria, 1996,

pp.43-45.

[B. T. Akgün, 2001] B.T. Akgün, BAG Distributed Real-Time Operating System and Task

Migration, Turkish Journal Electrical Engineering, Vol. 9, 2001, pp.123-136.

[C. E. Shannon, 1949] C.E. Shannon, A Mathematical Theory of Communication, Bell Systems

Technical Journal, 1949, pp.1-54.

[C. L. Liu, 1973] C.L.Liu and James W. Layland, Scheduling algorithms for multi-programming

in a hard-real-time environment, Journal of the As-sociation for Computing Machinery,

Vol.20(1), 1973, pp. 46–61.

[C. Lu, 2004] C.Lu, X. Wang, and X. Koutsoukos, End-to-End utilization control in distributed

real-time systems, International Conference on Distributed Computing Systems (ICDCS), Tokyo,

Japan, 2004.

[C. Wang, 2007] C.Wang and W.R. Dieter, Power-Aware Task Assignment for Priority-Driven

Distributed Real-Time System, Technical Report ECE–2007–10–17, University of Kentucky,

2007.

[D. Bozdag, 2006] D.Bozdag, Umit Catalyurek and Fu¨sun O¨ zgu¨ner, A Task Duplication

Based Bottom-up scheduling algorithm for heterogeneous environments, 20th International

Parallel and Distributed Processing Symposium, 2006, pp. 1-12.

141

[D. Chen, 1998] D.Chen, A. Mok, S. Baruah, On Modeling Real-Time Task Systems,

Proceedings of The European Educational Forum School on Embedded Systems, in LNCS,

Springer Verlag No. 1494, 1998, pp.153-169.

[D. Feldman, 2002] D. Feldman, A Brief Introduction to: Information Theory, Excess Entropy

and Computational Mechanics, October 2002.

[D. Ferrai, 1987] D.Ferrai, Zhou, S., An Empirical Investigation of load indices for load

balancing applications, 1987.

[D. R. Cheriton, 1988] D.R.Cheriton, The V Distributed System, Comm. of the ACM, Vol. 31(3)

1988, pp.314-333.

[D. Sekhar, 1997] D. Sekhar and D.P.Agrawal, A task duplication based scalable scheduling

algorithm for distributed memory systems, Journal of parallel and Distributed Computing Vol.

46(1), 1997, pp.15-27.

[Dong Yu, 2009] Dong Yu, Li Deng, Alex Acero, Using continuous features in the maximum

entropy model, Pattern Recognition Letters 30, 2009, pp.1295–1300.

[E. G. Coffman, 1998] E.G.Coffman, G. Galambos, S. Martello and D. Vigo, Bin Packing

Approximation Algorithms: Combinational Analysis, Kluwer Academic Publishers, Ed. D. Z. Du

and P.M. Pardalos, 1998.

[E. T. Jaynes, 1957] E.T.Jaynes, Information Theory and Statistical Mechanics, Physical Review,

vol. 106 (4), 1957, pp.620-630.

[G. Buttazzo, 1995] G.Buttazzo, M Spuri and F.Sensini,Value and Deadline scheduling in

Overload Conditions,Real Time systems, ,1995, pp.90-99.

[G. C. Buttazzo , 2003] G.C.Buttazzo, Rate monotonic vs. EDF: Judgment day, In Proceedings of

the 3rd International Conference on Embedded Software, Philadelphia, 2003, pp.67-83.

142

[G. Couloris, 2001] G.Couloris, J.Dollimore, and T. Kinberg, Distributed Systems – Concepts

and Design, 4th Edition, Addison-Wesley, Pearson Education, UK, 2001.

[G. Umarani, 2012] G.Umarani Srikanth, A. P. Shanthi, V. Uma Maheswari et. al., A Survey on

Real Time Task Scheduling, European Journal of Scientific Research, Vol.69(1), 2012, pp.33-41.

[H. C. Wang, 2011] H.C.Wang and C.W.Yao, Task Migration for Energy Conservation in Real-

TimeMulti-processor Embedded Systems, International Conference on Cyber-Enabled

Distributed Computing and Knowledge Discovery, 2011, pp 393-398.

[J. A. Stankovic, 1988] J.A.Stankovic and K. Ramamritham, Tutorial Hard Real-Time Systems,

IEEE Computer Society Press, 1988.

[J. Anderson, 2005] J.Anderson, V. Bud and U. C. Devi, An EDF-based scheduling algorithm for

multiprocessor soft real-time systems, 17th IEEE Euromicro Conference on Real Time Systems,

2005, pp. 199-208.

[J. Anderson, 2008] J.Anderson, V. Bud and U. C. Devi, An EDF-based Restricted-Migration

Scheduling Algorithm for Multiprocessor Soft Real-Time Systems, Real-Time Systems ,

Vol.38(2), 2008, pp. 85-131.

[J. Baxter, 1989] J.Baxter and J.H. Patel, The LAST Algorithm: A Heuristic-Based Static Task

Allocation Algorithm, International Conference on Parallel Processing, 1989, pp. 217-222.

[J. Carpenter, 2004] J.Carpenter, S.Funk, P.Holman, A.Srinivasan et. al., A Categorization of

Real-Time Multiprocessor Scheduling Problems and Algorithms, in Handbook of Scheduling:

Algorithms, Models and Performance Analysis, Florida, 2004, pp. 30-1 - 30-19.

[J. E. G. Coffman, 1996] J.E.G. Coffman, M.R. Garey and D.S. Johnson, Approximation

algorithms for bin packing: a survey, Approximation algorithms for NP-hard problems, 1996, pp.

46-93.

143

[J. Goossens, 1999] Joel Goossens, Scheduling of Hard Real-Time Periodic Systems with

Various Kinds of Deadline and Offset Constraints, Ph.D Thesis, Universite Libre De Bruxelles,

Belgium, 1999.

[J. Goossens, 2002] Joel Goossens, S. Baruah and S. Funk, Real-time scheduling on

multiprocessor, 10th International Conference on Real-Time System, 2002.

[J. Lehoczky, 1989] J. Lehoczky, Lui Sha and Ye Ding, The Rate Monotonic Scheduling

Algorithm: Exact characterization and Average case behavior, IEEE Real Time Systems

Symposium, 1989, pp.166-171.

[J. Lopez, 2000] J.Lopez, J.Diaz, M.Garcia and D. Garcia, Worst-case utilization bound for edf

scheduling on real-time multiprocessor systems, In Proceedings of the 12th Euromicro Workshop

on Real-Time Systems, 2000, pp. 25-33.

[J. Singh, 2011] J.Singh and H.Singh, Efficient Task Scheduling for heterogrnous multiprocessor

using Genetic Algorithm with Node Duplication, Indian Journal of Computer Science and

Engineering, 2(3), 2011, pp. 402-410.

[J. Singh, 2012] Jagbir Singh and Satyendra Prasad Singh, Schedulability Test for Soft Real-Time

Systems under Multiprocessor Environment by using an Earliest Deadline First Scheduling

Algorithm, arXiv preprint arXiv:1205.0124, 2012.

[J. W. S. Liu, 2000] J.W.S. Liu, Real-Time Systems, Prentice Hall, Upper Saddle River, NJ,

2000.

[J. W. S. Liu, 2003] J.W.S.Liu, Real-Time Systems, Pearson Education, Delhi, India, 2003.

[Jiaying Zhang , 2006] Jiaying Zhang and Peter Honeyman, Naming, Migration, and Replication

for NFSv4, 5th International Conference on System Administration and Network Engineering,

Ann Arbor 1001, 48103-4978, January 2006.

144

[K. Kotecha, 2010] K.Kotecha and A.Shah, Efficient Scheduling Algorithms for Real-Time

Distributed Systems, In Proceedings of the 1st International Conference on parallel, Distributed

and Grid Computing,2010, pp 44–48.

[K. Nadiminti, 2006] K.Nadiminti, Marcos Dias de Assunção and R. Buyya, Distributed Systems

and Recent Innovations: Challenges and Benefits, InfoNet Magazine, Vol.16, 2006, pp.1–5.

[K. Ramamritham, 1990] K. Ramamritham, John A. Stankovic and P-F. Shiah, Efficient

scheduling algorithms for real-time multiprocessor systems, IEEE Transactions on Parallel and

Distributed Systems, Vol.1(2), 1990, pp.184-194.

[L. Brillouin, 2004] L.Brillouin, Science & Information Theory, Dover Publications, 2004, pp.

293.

[L. Kleinlock, 1976] L.Kleinrock, Queueing Systems – Vol.2: Computer Applications. Wiley

Interscience, 1976.

[L. Kleinlock, 1985] L.Kleinlock, Distributed Systems, Communications of the ACM,1985.

[L. M. Ni, 1985] L.M.Ni and K.Hwang, Optimal load balancing in a multiple processor system

with many job classes, IEEE Transantion on Software Eng., Vol.SE-11(5), 1985, pp. 491-496.

[L. N. Bhuyan, 1984] L.N.Bhuyan and D.P. Agrawal, Generalized Hypercube and Hyperbus

structures for a Computer Network, IEEE Transactions on computers, Vol.C-33(4), 1984, pp.

323-333.

[Lo. V. M., 1988] Lo.V.M., Heuristic Algorithms for Task Assignment in Distributed Systems,

IEEE Transactions on computers, Vol.37(11), 1988, pp. 1384-1397.

[M. Bertogna, 2009] M.Bertogna, Cirinei, M.,Lipari,G., Schedulability Analysis of Global

Scheduling Algorithms on Multiprocessor Platforms, IEEE Transactions on Parallel and

Distributed Systems, Vol.20(4), 2009, pp.553-566.

145

[M. Joseph, 1996] M. Joseph, Real-time Systems: Specification, Verification and Analysis,

Prentice Hall, 1996.

[M. Mitchell, 2001] M.Mitchell, Use Of Directed Acyclic Graph Analysis in Generating

Instructions for Multiple Users, Asia-Pacific symposium on Information visualisation, Australian

Computer Society, Vol.9,2001.

[N. Fisher, 2006] Nathan Fisher, Sanjoy Baruah et. al., The partitioned scheduling of sporadic

tasks according to static-priorities, 18th IEEE Euromicro Conference on Real-Time Systems,

2006.

[N. W. Fisher, 2007] N.W. Fisher, The Multiprocessor Real-Time Scheduling of General Task

Systems, Ph.D. dissertation. Department of Computer Science, The University of North Carolina

at Chapel Hill, NC, 2007.

[O. Zapata, 2005] O. Zapata, U. Pereira, and Pedro Mejıa Alvarez, Edf and RM multiprocessor

scheduling algorithms: Survey and performance evaluation., Seccion de Computacion Av. IPN

2508, 2005.

[O'Leary, 2003] O'Leary, The Structure of Proof: With Logic and Set Theory, Prentice-Hall

2003.

[P. A. Laplante, 1993] P.A.Laplante, Real-time Systems Design and Analysis, An Engineer

Handbook, IEEE Computer Society , 1993.

[P. Chaudhuri, 2010] P.Chaudhuri and J. Elcock, Process Scheduling in Multiprocessor Systems

Using Task Duplication, International Journal of Business Data Communications and

Networking, Vol.6(1), 2010, pp. 58-69.

[P. Emberson, 2007] P.Emberson, Iain Bate, Minimizing Task Migration And Priority Changes In

Mode Transitions, 13th IEEE Real Time and Embedded Technology and Applications

Symposium(RTAS'07), 2007, pp.158-167.

146

[P. Li, 2004] P.Li and B.Ravindran, Fast, Best-Effort Real-Time Scheduling Algorithms, IEEE

Transactions on Computers, Vol.53(9), 2004, pp. 1159-1175.

[P. Penfield, 2003] P.Penfield, Chapter-10, Principle of Maximum Entropy, Version 1.0.2,

www.mtl.mit.edu/Courses/6.050/2003/notes/chapter10.pdf, 2003.

[R. Malouf, 2002] R.Malouf, A comparison of algorithms for maximum entropy parameter

estimation, In Proceedings of the Sixth Conference on Natural Language Learning (CoNLL),

2002, pp. 49–55.

[R. Sharma, 2011] Rashmi Sharma and Nitin, Duplication with Task Assignment in Mesh

Distributed System, IEEE World Congress on Information and Communication Technologies

(WICT), 2011, pp. 672-676.

[R. Sharma, 2012] Rashmi Sharma and Nitin, Optimal Method for Migration of Tasks with

Duplication, 14th International Conference on Modelling and Simulation, 2012, pp. 510-515.

[R. Sharma, 2012] Rashmi Sharma, Nitin, Task Migration with EDF-RM Scheduling Algorithms

in Distributed System, International Conference on Advances in Computing and

Communications, 2012, pp. 182-185.

[R. Sharma, 2013] Rashmi Sharma, Nitin, Visualization of Information Theoretic Maximum

Entropy Model in Real Time Distributed System, In proceedings of International Conference on

Advances in Computing and Communications, 2013, pp.282-286.

[R. Sharma, 2014] Rashmi Sharma and Nitin, Performance Evaluation of New Joint EDF-RM

Scheduling Algorithm for Real Time Distributed System, Journal of Engineering, 2014.

[S. Dhakal, 2007] S.Dhakal, M. Majeed Hayat and E. Jorge Pezoa, Dynamic Load Balancing in

Distributed Systems in the Presence of Delays: A Regeneration-Theory Approach, IEEE

Transactions on Parallel and Distributed Systems, Vol.18 (4), 2007, pp.485-497.

[S. F. Gull, 1984] S.F. Gull and J. Skilling, Maximum entropy method in image processing, IEEE

Proceedings Vol. 131(6), 1984, pp.646-659.

147

[S. Ranaweera, 2000] S.Ranaweera and D.P. Agrawal, A Scalable Task Duplication Based

Scheduling Algorithm for Heterogeneous Systems, International conference on Parallel

Processing, 2000, pp. 383.

[S. Ranaweera, 2002] S.Ranaweera and D.P.Agrawal, A Task Duplication Based Scheduling

Algorithm For Heterogenous System, 14th International Parallel and Distributed Processing

Symposium, 2002, pp.445-450.

[S. Shimokawa, 2001] S.Shimokawa, H. Ozawa, On the thermodynamics of the oceanic general

circulation: entropy increase rate of an open dissipative system and its surroundings, Tellus, 2001,

pp.266–277.

[Shu-Kun Lin, 1999] Shu-Kun Lin, Diversity and Entropy, Entropy, 1999, pp.1–3.

[T. P. Baker, 2005] T.P.Baker, A comparison of Global and Partitioned EDF Schedulability

Tests for Multiprocessor, TR-051101, 2005.

[T. T. Y. Suen, 1992] T.T.Y. Suen, J.S.K.Wong, Efficient Task Migration Algorithm for

Distributed Systems, IEEE Transactions on Parallel and Distributed Systems, Vol.3(4), 1992, pp.

488-499.

[V. Darera, 2006] V.Darera, 2006 and J. Lawrence, Utilization bounds for RM scheduling on

uniform multiprocessors, 12th IEEE International Conference on Embedded and Real-Time

Computing Systems and Applications, 2006.

[W. H Zurek, 1989a] W.H Zurek, 1989a Algorithmic randomness and physical entropy, Physical

Review A, 40, 1989a, pp. 4731–4751.

[W. H Zurek, 1989b] W.H Zurek, Thermodynamic cost of computation, algorithmic complexity

and the information metric, Nature, 347, 1989b, pp. 119–124.

[W. R. Derek, 2008] W. R. Derek, Entropy and Uncertainty, Entropy 10, 2008, pp. 493-506.

148

[X. Wang, 2005] X.Wang, Jia, D., Lu, C., Koutsoukos, X., Decentralized Utilization Control in

Distributed Real-Time Systems, 26th IEEE International Real-Time Systems Symposium, 2005.

[X. Wang, 2007] X.Wang, Jia, D., Lu, C., Koutsoukos, X., DEUCON: Decentralized End-to-End

Utilization Control for Distributed Real-Time Systems, IEEE Transactions on Parallel and

Distributed Systems, Vol. 18(7), 2007, pp.996-1009.

[Y. J. Singh, 2009] Y.J. Singh, S. C. Mehrotra, An Analysis of Real Time Distributed System

under different priority policies, World Academy of Science, Engineering and Technology, 2009.

[Y. Jegou, 1997] Yvon Jégou, Runtime Support for Task Migration on Distributed Memory

Architectures, 11th International Parallel Processing Symposium, IPPS'97, 1997.

149

LIST OF PUBLICATIONS
__

International Journals Published:

[1]. Rashmi Sharma and Nitin, Duplication with task assignment in Mesh Distributed System,

Journal of Information Processing Systems (JIPS), Vol.10, No.2, pp.193-214, June 2014.

[2]. Rashmi Sharma and Nitin, Performance Evaluation of New Joint EDF-RM Scheduling

Algorithm for Real Time Distributed System, Journal of Engineering, Hindawi

publication Corporation, Volume 2014 (2014), Article ID 485361, 13 pages, January

2014.

[3]. Rashmi Sharma and Nitin, Entropy, a New Dynamics Governing Parameter in Real Time

Distributed System: A Simulation Study, International Journal of Parallel, Emergent and

Distributed Systems, Taylor and Francis, Vol. 29, No. 6, pp. 562-586,12 November 2013.

International Conference Papers Published:

[1]. Rashmi Sharma and Nitin, Evaluation and Comparison of Load Balancing in RTDS using

Information Theoretic Entropy, Proceedings of 4th IEEE International Advance

Computing Conference (IEEE IACC), ITM University, INDIA, pp. 674-679, February

21-22, 2014.

[2]. Rashmi Sharma and Nitin, Visualization of Information Theoretic Maximum Entropy

Model in Real Time Distributed System, Proceedings of the 3rd IEEE International

Conference on Advances in Computing and Communications (IEEE ICACC), Kerala,

INDIA, August 29-31, 2013, pp. 282-286.

[3]. Rashmi Sharma and Nitin, Task Migration with EDF-RM Scheduling Algorithms in

Distributed System, Proceedings of the 2nd IEEE International Conference on Advances

in Computing and Communications, Kerala (IEEE ICACC), INDIA, August 9-11, 2012,

pp. 182-185.

150

[4]. Rashmi Sharma and Nitin, Optimal Method for Migration of Tasks with Duplication,

Proceedings of the 14th IEEE International conference on Computer Modeling and

Simulation (IEEE UKSIM), Emmanuel College, Cambridge, UK, March 28-30, 2012, pp.

510-515.

[5]. Rashmi Sharma and Nitin, Duplication with Task Assignment in Mesh Distributed

System Scheduling, Proceedings of the IEEE World Congress on Information and

Communication Technologies, University of Mumbai, INDIA, December 11-14, 2011,

pp. 672-676.

	0Cover page
	AN OPTICAL STUDY OF CHALCOGENIDE GLASSES USING UV-VIS-NIR SPECTROSCOPY
	2BACK OF FIRST INNER PAGE
	for my loving parents
	4Abstract
	5ACKNOWLEDGEMENTS
	6Declaration by student
	CERTIFICATE
	8LIST OF Abbreviations
	8List_of_figures
	9list_of_tables
	10c Table of ontents
	11Chapter1 1-7
	12Chapter2 8-24
	13Chapter3 25-46
	14Chapter4 47-56
	15Chapter5 57-73
	16Chapter6 74-94
	17Chapter7 95-124
	18Chapter8 125-136
	19Chapter9 137-138
	20Refrences 139-148
	21List of Publications 149-150

