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Abstract

The objective of this thesis entitled, “Fuzzy Regression, Clustering and Gen-

eralized Measures of Fuzzy Information”, is to study fuzzy regression, fuzzy clus-

tering with application, to characterize new measures of fuzzy information and

to study their various generalizations. Fuzzy set theory has capability to de-

scribe the uncertain situations, containing ambiguity and vagueness. Fuzziness

is found in our decision, in our thinking, in the way we process information, and

particularly in our language.

As probabilistic “entropy” measures uncertain degree of the randomness in

a probability distribution, Fuzzy entropy measures fuzziness of a set which arises

from the intrinsic ambiguity or vagueness carried by the fuzzy set. The entropy

of a fuzzy event is different from the classical Shannon entropy, as no probabilis-

tic concept is needed in order to define it. We should note that fuzzy entropy

deals with vague and ambiguous uncertainties, while Shannon entropy deals with

probabilistic uncertainties. In literature, a number of measures of fuzzy entropy

corresponding to the various probabilistic entropy measures have been proposed

and studied.

The basic concepts and notions related to fuzzy sets and fuzzy information

measures are defined and explained in chapter 1.

In chapter 2, a fuzzy linear regression model is developed using the sym-

metrical triangular fuzzy number (STFN) under assumption that the regression

coefficients are subjected to some exact linear restrictions. The estimators of re-

gression coefficients which satisfy the given restrictions under the model are de-

rived. The dominance of the obtained estimators is demonstrated over the usual

unrestricted estimator through simulation study in the sense of mean squared

error and absolute bias.

In Chapter 3, we examine the projected convergence of per capita GDP of

ix



the G6 and BRIC countries using a comparatively new technique - Fuzzy c-means

Clustering Algorithm (FCM). In fuzzy clustering, the objects of the universe of

discourse are not classified as belonging to one and only one cluster, but instead,

they all possess a degree of membership with each of the clusters. In our appli-

cation, we have two groups of countries – BRIC and G6, the former comprises of

four countries while later of six countries. We have applied the algorithm (using

computer programming in C) on the projected Goldman Sachs Report (2003) for

both the groups individually by taking number of clusters as c = 2 and c = 3.

In Chapter 4, we define two new generalized measures of fuzzy directed di-

vergence and prove their validity. Particular cases and computational structure

of these directed divergence measures are also discussed. New measures of total

ambiguity and generalized measures of fuzzy information improvement have been

studied.

In Chapter 5, the monotonic nature of generalized fuzzy information mea-

sure with respect to the parameters is studied and verified by constructing the

computed tables and plots on taking different fuzzy sets and different values of

the parameters. Particular cases and comparison of monotonicity between the

corresponding probabilistic measure and the generalized measures of fuzzy infor-

mation are discussed. Similar kind of investigation has been carried out for the

generalized measure of fuzzy directed divergence. Under a given constraint, the

maximum fuzziness of the parametric generalized measures of fuzzy information

and fuzzy directed divergence have also been discussed.

In Chapter 6, a new generalized R-norm fuzzy information measure is charac-

terized and studied. A new R-norm fuzzy directed divergence measure has been

proposed and proved its validity. The monotonic nature of the proposed R-norm

fuzzy information measure and R-norm fuzzy directed divergence measure with

respect to the parameters is studied. New generalized R-norm measures of total

ambiguity and fuzzy information improvement have also been studied.

x



In Chapter 7, we introduce a new concept of ‘useful’ fuzzy information by

attaching utility to the uncertainties of fuzziness and probabilities of randomness.

A measure of total ‘useful’ fuzzy information is derived. We also define and prove

the validity of a new measure of ‘useful’ fuzzy directed divergence of a fuzzy set

from another fuzzy set. Under the given constraints, the optimization of ‘useful’

fuzzy information measure and ‘useful’ fuzzy directed divergence are studied.
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Chapter 1

Introduction

“We must exploit our tolerance for imprecision.”- Lotfi A. Zadeh.

1.1 Historical Background of Fuzzy Set

Binary logic deals with the variables which are either true or false, black or white,

1 or 0, yes or no, etc. The equivalent Fuzzy logic extends Boolean Logic to all

values in the interval [0, 1] so that the variable may have a truth value that

is neither completely true nor completely false. In other words, Fuzzy logic is

basically a multivalued logic that allows intermediate values to be defined between

conventional evaluations like yes/no, true/false, black/white, etc. Notions like

rather warm or pretty cold can be formulated mathematically and processed by

computers. In this way an attempt is made to apply a more human-like way of

thinking in the programming of computers. Gradual transition from

• Traditional View to Modern View

• Certainty to Uncertainty

• Precision to Imprecision
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• Specificity to Non-specificity

• Sharpness to Vagueness

• Consistency to Inconsistency

has made fuzzy logic a profitable tool for the controlling of subway systems and

complex industrial processes, as well as for household and entertainment elec-

tronics, diagnosis systems and other expert systems.

Fuzzy Logic was initiated by Lotfi A. Zadeh (1965), professor of computer

science at the University of California in Berkeley. However, the idea of an

extended multivalued logic had been considered by physicists early in the 20th

century, but had not become a standard part of science (there was the concept

of vague sets). Fuzzy system is an alternative to traditional concepts of set

membership and logic that has its origins in ancient Greek philosophy. Fuzzy

logic has ability to capture (mathematically) reasoning about the notions with

inherited fuzziness, such as being tall, young, fat, hot etc. Similar to probabilistic

logic, we have the real valued truth in fuzzy logic also i.e., the truth of certain

statement can be any real number in the interval [0, 1].

Fuzziness is found in our decision, in our thinking, in the way we process

information and particularly in our language. A Sunny day may contain some

clouds (avoiding sharpness). Phrases like “see you later”, “a little more” or “I

don’t feel very well” are fuzzy expressions. However, for most of the problems

that we face, Zadeh (1973, 1975, 1984) suggests that we can do a better job in

accepting some level of imprecision.

For any field S and any theory T can be fuzzified by replacing the concept

of a crisp set in S and T by that of a fuzzy set. Fuzzification leads basic field

such as arithmetic to fuzzy arithmetic, topology to fuzzy topology, graph theory

to fuzzy graph theory, probability theory to fuzzy probability theory. Similarly,
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in application to applied fields such as neural network theory, stability theory,

pattern recognition and mathematical programming, fuzzification leads to fuzzy

neural network theory, fuzzy stability theory, fuzzy pattern recognition and fuzzy

mathematical programming. Fuzzification gives greater generality, higher expres-

sive power, an enhanced ability to model real world problems. Most importantly,

it gives a methodology for exploiting the tolerance for imprecision i.e., a method-

ology which serves to achieve tractability, robustness and lower solution cost.

Zadeh’s work had a profound influence on the thinking about uncertainty

because it challenged not only probability theory as the sole representation for

uncertainty, but the very foundations upon which probability theory was based -

classical binary (two-valued) logic (refer to Klir and Yuan (1995)).

1.2 Basic Concepts and Notions of Fuzzy Set

Theory

An ordinary or crisp set A in a universe of discourse U can be defined by listing

all its members or by defining conditions to identify the elements x ∈ A i.e.,

A = {x|x meets some condition}. The characteristic function, generally called

membership function, associated with A is a mapping µA : U → {0, 1} such

that for any element x of the universe, µA(x) = 1, if x is a member of A and

µA(x) = 0, if x is not a member of A. Figure 1.1 shows the membership function

characterizing the crisp set A = {x| 20 ≤ x ≤ 26}.
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Fuzzy sets are generalization of crisp sets. A fuzzy set A defined on a universe

of discourse U is characterized by a membership function µA(x) which takes values

in the interval [0, 1] (i.e., µA : U → [0, 1]). The value µA(x) represents the grade

of membership of x ∈ U in A. This grade corresponds to the degree to which that

element or individual is similar or compatible with the concept represented by the

fuzzy set. Thus, the elements may belong in the fuzzy set to a greater or lesser

degree as indicated by a larger or smaller membership grade. The membership

function may be described as follows:

µA(x) =





0, if x /∈ A and there is no ambiguity,

1, if x ∈ A and there is no ambiguity,

0.5, if there is maximum ambiguity whether x ∈ A or x /∈ A

Semantically, the difference between the notions of probability and grade of

membership lies in the fact - probability statements are about the likelihoods of

outcomes i.e., an event either occurs or does not, and you can bet on it, but with

fuzziness, one cannot say unequivocally whether an event occurred or not, and

instead we try to model the extent to which an event occurred.

It may be noted that the term membership function makes more sense in

the context of fuzzy sets as it stresses the idea that µA(x) denotes the degree to

which x is a member of the set A. The fuzzy set A can be expressed as:

Vector: A =
{

µA(xi)
xi

: xi ∈ U, i = 1, 2, . . . n
}
.

Summation: A = µA(x1)
x1

+ µA(x2)
x2

+ . . . + µA(xn)
xn

=
n∑

i=1

µA(xi)
xi

.

Ordered pairs: A = {(µA(x1), x1) , (µA(x2), x2) , . . . , (µA(xn), xn)}.

When the universe of discourse, U , is continuous and infinite, the fuzzy set is

denoted by A =
{∫ µA(x)

x

}
. Here, in these notations, the horizontal bar is not a

quotient but rather a simple line. The summation is not the algebraic summation,

but a theoretical aggregation operator or collection operator and similarly, the

integral sign.
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Example 1.1:

Let U = {0, 1, 2, 3, . . . , 10} and A = {x| x is close to 5, x ∈ U}. Using a trian-

gular membership function, the set can be described in following forms:

A =
{

0
0
, 0.2

1
, 0.4

2
, 0.6

3
, 0.8

4
, 1

5
, 0.8

6
, 0.6

7
, 0.4

8
, 0.2

9
, 0

10

}
;

A = 0
0

+ 0.2
1

+ 0.4
2

+ 0.6
3

+ 0.8
4

+ 1
5

+ 0.8
6

+ 0.6
7

+ 0.4
8

+ 0.2
9

+ 0
10

;

A = {(0, 0), (0.2, 1), (0.4, 2), (0.6, 3), (0.8, 4), (1, 5), (0.8, 6), (0.6, 7), (0.4, 8),

(0.2, 9), (0, 10)}

The key difference between a crisp set and a fuzzy set is their membership

function. A crisp set has unique membership function, where as a fuzzy set can

have an infinite number of membership functions to represent it. For example,

one can define a possible membership function for the set of real numbers close

to 0 as follows:

µA(x) =
1

1 + 10x2
; x ∈ R.

Here the number 3 is assigned a grade of 0.01, the number 1 is assigned a

grade of 0.09 and the number 0 is assigned a grade 1. For fuzzy sets uniqueness

is sacrificed, but flexibility is gained because the membership function can be

adjusted to maximize the utility/sensitivity for a particular application. It may

be noted that elements in a fuzzy set, because the membership need not be

complete, can also be member of other fuzzy sets on the same universe.

The operation that assigns a membership value µ(x) to a given value x ∈ U is

called fuzzification, e.g., Figure 1.2 shows the membership function of the fuzzy

set A = {x|x is almost between 20 and 26} i.e., the fuzzy set representing ap-

proximately the same concept as that of the crisp set of Figure 1.1.
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Membership functions might formally take any arbitrary form as they express

only an element-wise membership condition. However, they usually exhibit smooth

and monotonic shapes. This is due to the fact that membership functions are

generally used to represent linguistic units described in the context of a coherent

universe of discourse i.e., the closer the elements, the more similar the characteris-

tics they represent, as in the case for variables with physical meaning. The most

commonly used membership functions are triangular, trapezoidal, bell-shaped

and Gaussian, which are explained below:

(a) Triangular membership function is specified by three parameters, defined by

trim f(x; a, b, c) = max
(
min

(
x−a
b−a

, c−x
c−b

)
, 0

)
and is shown in Figure 1.3(a).

(b) Trapezoidal membership function is specified by four parameters, defined

by trapm f(x; a, b, c, d) = max
(
min

(
x−a
b−a

, 1, d−x
d−c

)
, 0

)
and is shown in Figure

1.3(b).

(c) A general bell-shaped membership function is defined by gbellm f(x; a, b, c) =

1

1+|x−c
b |2b and is shown in Figure 1.3(c).

(d) A Gaussian membership function is specified by two parameters (m, δ) as

Gaussian(x : m, δ) = exp

(
−(x−m)2

δ2

)

where m and δ denote the center and width of the function respectively. We

control the shape of the function by adjusting the parameter δ. A small δ

6



will generate a “thin” membership function, while a big δ will lead to a “flat”

membership function.

A membership function can be designed in three ways:

• Interview those who are familiar with the underlying concepts and later

adjust it based on a tuning strategy,

• Construct it automatically from data,

• Learn it based on feedback from the system performance.

The guidelines for designing membership function:

• Use parameterizable functions that can be defined by a small number of pa-

rameters. Parameterizable membership functions reduce the system design

time and facilitate the automated tuning of the system.

• The parameterizable membership functions most commonly used in practice

are the triangular and trapezoidal membership functions because of their

simplicity.

7



• To learn the membership function using neural network learning techniques,

we choose a differentiable (or even continuous differentiable) membership

function, e.g., Gaussian.

However, constructing meaningful membership function in various contexts is a

difficult task.

Fuzzy Logic is motivated by two objectives:

• First, it aims to alleviate difficulties in developing and analyzing complex

systems encountered by conventional mathematical tools. This motivation

requires fuzzy logic to work in quantitative and numeric domains.

• Second, it is motivated by observing that human reasoning can utilize con-

cepts and knowledge that do not have well defined vague concepts. This

motivation enables fuzzy logic to have a descriptive and qualitative form.

Components of Fuzzy Logic

• Fuzzy Predicates : tall, small, kind, expensive,. . .

• Predicates modifiers (hedges): very, quite, more or less, extremely, . . .

• Fuzzy truth values : true, very true, fairly false, . . .

• Fuzzy quantifiers : most, few, almost, usually, . . .

• Fuzzy probabilities : likely, very likely, highly likely, . . .

The discussion about fuzzy sets can be related according to need for a formal ba-

sis of fuzzy logic by taking advantage of the fact that “it is well established that

propositional logic is isomorphic to set theory under the appropriate correspon-

dence between components of these two mathematical systems”. Furthermore,

both of these systems are isomorphic to a Boolean algebra. Some of the most

important equivalences between these isomorphic domains are:

8



Sets Logic Algebra

Membership Truth Value

Member (∈) True (T) 1

Non-member (/∈) False (F) 0

Intersection (∩) AND (∧) Product (×)

Union (∪) OR (∨) Sum (+)

Complement ( ) NOT (∼) Complement (′ )

1.3 Operations and properties of Fuzzy Sets

The operations on fuzzy sets are extension of the most commonly used crisp

operations. This extension imposes a prime condition that all the fuzzy operations

which are extensions of crisp concepts must reduce to their usual meaning when

the fuzzy sets reduce themselves to crisp sets i.e., when they have only 1 and 0

as membership values. For the definitions of the following operations, we assume

A and B are two fuzzy subsets of U ; x denotes an arbitrary element of U :

Intersection/AND operation is defined as µA∩B(x) = µA(x)∧ µB(x). The

most common operators (also known as t-norm operators), illustrated in Figure

1.4 and are defined as follows:

minimum : min {µA(x), µB(x)}
product : µA(x).µB(x)

bounded product : max {0, µA(x) + µB(x)− 1}

9



Union/OR operation is defined as µA∪B(x) = µA(x) ∨ µB(x). The most

common operators of this type (also known as t-conorm operators), illustrated in

Figure 1.5 and are defined as follows:

maximum : max {µA(x), µB(x)}
probabilistic sum : µA(x) + µB(x)− µA(x).µB(x)

bounded sum : min {1, µA(x) + µB(x)}

Complement/NOT operation is defined as µĀ(x) = µ∼A(x). This opera-

tor is also called fuzzy complement operator which is almost universally used in

fuzzy inference systems. It is illustrated in Figure 1.6 and defined as follows:

fuzzy complement : 1− µA(x)

Example 1.2: Consider a fuzzy set of tall men described by

tall men =
{

0
165 , 0

175 , 0
180 , 0.25

182.5 , 0.5
185 , 0.75

187.5 , 1
190

}
= A (say);

average men =
{

0
165 , 1

175 , 0.5
180 , 0.25

182.5 , 0
185 , 0

187.5 , 0
190

}
= B (say); then

A ∩B =
{

0
165 , 0

175 , 0
180 , 0.25

182.5 , 0
185 , 0

187.5 , 0
190

}
=

{
0

180 , 0.25
182.5 , 0

185

}
.

A ∪B =
{

0
165 , 1

175 , 0.5
180 , 0.25

182.5 , 0.5
185 , 0.75

187.5 , 1
190

}
.

complement of tall men = Ā =
{

1
165 , 1

175 , 1
180 , 0.75

182.5 , 0.5
185 , 0

190

}
.
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Properties of Fuzzy sets:

(i) A ∩ A = A, A ∪ A = A, ¯̄A = A.

(ii) Commutativity: A ∩B = B ∩ A, A ∪B = B ∪ A.

(iii) Associativity: (A ∪B) ∪ C = A ∪ (B ∪ C), (A ∩B) ∩ C = A ∩ (B ∩ C).

(iv) Distributivity: A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C),

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).

(v) DeMorgan’s Laws: (A ∩B) = Ā ∪ B̄, (A ∪B) = Ā ∩ B̄.

(vi) Absorption: A ∪ (A ∩B) = A, A ∩ (A ∪B) = A.

(vii) Zero Law: A ∪ U = U, A ∩ φ = φ.

(viii) Identity Law: A ∩ U = A, A ∪ φ = A.

Some important definitions related fuzzy set theory are given below:

Sigma Count of a Fuzzy set

For any fuzzy set A defined on a finite universal set U , we define scalar cardinality,

called sigma count of A, denoted and defined by |A| := ∑
x∈U

µA(x) =
∑

count (A).

It may be noted that |A| ≥ 0.

Example 1.3: For A = {0.4/a, 0.6/b, 0.9/c, 0.2/d} and B = {0.5/a, 0.6/b,

0.8/c}, we compute the cardinalities or sigma count of A and B to be |A| = 2.1

and |B| = 1.9.

Subsethood

For any pair of fuzzy subsets defined on a finite universal set U , the degree of

subsethood of A in B, denoted by S(A,B) and is defined by

S(A, B) = 1
|A|

(
|A| − ∑

x∈U

max{0, µA(x)− µB(x)}
)

= 1−
∑

x∈U
max{0, µA(x)−µB(x)}

∑
count (A)
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Kosko (1986) viewed a fuzzy set as a fuzzy message. He generalized the bit

value representation of an ordinary set to fuzzy set. If U = {a, b, c, d}, then the

subset A = {a, c} can be represented by a bit vector A = {1, 0, 1, 0}. Similarly,

a fuzzy subset of U can be represented as a fuzzy vector or fuzzy message, e.g.,

A = {0.2, 0.5, 0.3, 0.1}. The containment of a fuzzy message in another one has

been expressed through a fuzzy message conditioning measure called subsethood

(Kosko (1986),(1991)) of a fuzzy set in another one.

The
∑

term in the formula describes the sum of the degrees to which the

subset inequality µA(x) ≤ µB(x) is violated. |A| in the denominator is a normal-

izing factor for getting the range 0 ≤ S(A,B) ≤ 1.

Also, S(A,B) = |A∩B|
|A| =

∑
count (A∩B)∑

count (A)
; where the intersection is fuzzy inter-

section. Thus it can be concluded that

• Two fuzzy sets A and B are equal if and only if S(A,B) = 1.

• S(A,B) = 0 if and only if A and B have no points in common i.e., have no

common points with fuzzy membership greater than 0.

For example, A = (0.2, 0.7, 0.5, 0.4, 0.3) is a subset (submessage) of B = (0.4, 0.8,

0.7, 0.5, 0.4) , but A′ = (0.5, 0.7, 0.5, 0.4, 0.3) is not a subset of B because it vi-

olates µA′ ≤ µB for the first support. However, it is clear that A′ has a high

degree of containment in B.

Standard Fuzzy Sets

Fuzzy sets A and B are said to be fuzzy-equivalent if µB(xi) = either µA(xi) or

1 − µA(xi); ∀xi ∈ U . From the fuzziness point of view there is no essential

difference between fuzzy equivalent sets. A standard fuzzy set is that member of

the class of fuzzy equivalent sets whose all membership values are less than or

equal to 0.5.
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Equality of Fuzzy Sets

Two fuzzy sets are said to be equal if and only if µA(xi) = µB(xi); ∀xi ∈ U.

Support of a Fuzzy Set

Given a fuzzy set A which is a subset of the universal set U , the support of A

denoted by supp(A), is an ordinary set defined as the set of elements whose degree

of membership in A is greater than 0 i.e.,supp(A) = {xi ∈ U |µA(xi) > 0}.

Fuzzy Number and Fuzzy Interval

A fuzzy number is a quantity whose value is imprecise rather than exact as is the

case with “ordinary” (single-valued) numbers. Mathematically, a fuzzy number

is a convex and normalized fuzzy set whose membership function is at least

segmentally continuous having bounded support and has the functional value

µA(x) = 1 at precisely one element which is called modal value of fuzzy number.

A symmetric triangular fuzzy number (STFN) is defined by the membership

function

µÃj(c)
=





1− |c−cj |
rj

when cj − rj ≤ c ≤ cj + rj

0 otherwise,

where cj is known as the middle value for which Ãj(cj) = 1 and rj > 0 is the

spread of Ãj. The fuzzy number Ãj expresses the linguistic terms approximately

cj or around cj and it is denoted by Ãj = (cj, rj); ∀j ∈ {1, 2, . . . , n}. The spread

denotes the fuzziness of the function. This fuzzy number is shown by the Figure

(1.7):
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However, some fuzzy numbers have concave, irregular or even chaotic member-

ship functions. There is no restriction on the shape of the membership curve as

long as each value in the domain corresponds to one and only one grade in the

range

A fuzzy interval is an uncertain set with a mean interval whose elements

possess the membership function value µA(x) = 1. As in fuzzy numbers, the

membership function must be convex, normalized and at least segmentally con-

tinuous. Fuzzy numbers and fuzzy intervals (sometimes called trapezoidal fuzzy

number) in contrast with crisp numbers and crisp intervals can be better viewed

in Figure 1.8.
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1.4 Fuzzy Uncertainty

In the real world the amount of information that is available is infinite (facts

collected from observations or measurements) and at the same time there is lack

of information (meaningful interpretation and correlation of data that allows one

to make decisions). Infinite things change because one can go into greater and

greater detail of description. The number of preconditions to the execution of any

action is also infinite, as the number of things that can go wrong is infinite. Com-

plexity in the world generally arises from uncertainty in the form of ambiguity.

Uncertainty is produced when a lack of information exists i.e., the complexity also

involves the degree of uncertainty. It may be noted that knowledge is information

at a higher level of abstraction.

For example,

Amit is 10 years old. (fact)

Amit is not old. (knowledge)

According to Klir and Yuan (1995) “ Uncertainty can be thought of in an

epistemological sense as being the inverse of information. Information about a

particular engineering or scientific problem may be incomplete, imprecise, frag-

mentary, vague, contradictory or deficient in some other way.”

When we acquire more and more information about a problem, we become

less and less uncertain about its formulation and solution. Problems that are

characterized by very little information are said to be ill-posed, complex or not

sufficiently known. These problems are charged with a high degree of uncertainty.

Uncertainty can be manifested in many forms - it can be fuzzy (not sharp, unclear,

imprecise, approximate), it can be vague (not specific, amorphous), it can be

ambiguous (too many choices, contradictory), it can be of the form of ignorance

(dissonant, not knowing something) or it can be a form due to natural variability
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(conflicting, random, chaotic, unpredictable). Many other linguistic labels have

been applied to these various forms, but for now these shall suffice. Zadeh (2002)

posed some simple examples of these forms in terms of a person’s statements

about when they shall return to a current place in time. The statement “ I shall

return soon” is vague, whereas the statement “ I shall return in few minutes” is

fuzzy; the former is not known to be associated with any unit of time (seconds,

hours, days) and the latter is associated with an uncertainty that is at least known

to be on the order of minutes. The phrase, “I shall return within 2 minutes of

6 PM.” involves an uncertainty which has a quantifiable imprecision; probability

theory could address this form.

Vagueness can be used to describe certain kinds of uncertainty associated

with linguistic information or intuitive information. Examples of vague informa-

tion are that the data quality is “good” or that the transparency of an optical

element is “acceptable”. Moreover, in terms of semantics, even the terms vague

and fuzzy cannot be generally considered synonyms as explained by Zadeh (1995).

Usually a vague proposition is fuzzy, but converse is not generally true (refer to

Ross (2005)).

Since fuzzy set theory makes statements about one concrete object, therefore,

it helps in modeling local vagueness. On the other hand, probability theory makes

statements about a collection of objects from which one is selected, therefore, it

helps in modeling global uncertainty.

The behavior of a fuzzy system is completely deterministic. Fuzzy logic

differs from multivalued logic by introducing concepts such as linguistic variables

and hedges to capture human linguistic reasoning. It can also be noticed that

awareness of knowledge (what we know and what we do not know) and complexity

goes together. The following are different types of information:

• Uncertain information: Information for which it is not possible to determine
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whether it is true or false, e.g., a person is “possibly 30 years old.”

• Imprecise information: Information which is not available as precise as it

should be, e.g., a person is “around 30 years old.”

• Vague information: Information which is inherently vague, e.g., a person is

“young.”

• Inconsistent information: Information which contains two or more asser-

tions that cannot be true at the same time, e.g., two assertions are given:

“Amit is 10.” and “Amit is older than 20.”

• Incomplete information: information for which data is missing or data is

partially available, e.g., a person’s age is “not known” or a person is “be-

tween 25 and 32 years old.”

• Combination of the various types of such information may also exist, e.g.,

“possibly young”, “possibly around 30”, etc.

In order to explain the concept of fuzzy uncertainty in a more comprehensive

way, we illustrate consider the following example:

• Suppose an editor of a magazine sends an article to n reviewers for their

opinions.

• Each reviewer is asked to grade the article at some point in the scale 0, 0.1,

0.2, . . . ,0.9, 1.0.

• The grade 0 means that the article is completely useless i.e., there is no

uncertainty in the mind of the reviewer about it.

• The grade 1 means that the article is completely useful and important and

there is again no uncertainty in the mind of reviewer about it.
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• Grade 0.1 means that the article is almost useless, but there is little content

in the article which create some uncertainty in the mind of the reviewer.

• Similarly, grade 0.9 means that the article is almost useful and important,

but there are some undesirable content which create uncertainty in the mind

of reviewer about its utility.

As far as the editor of the magazine is concerned grades 0 and 1 give him clear

indication, but grades 0.1 and 0.9 create a certain degree of uncertainty in his

mind which is the same in both cases. Similarly, grades 0.2 and 0.8, grades

0.3 and 0.7, grades 0.4 and 0.6 represent the same degree of uncertainty for the

editor. This type of uncertainty is called as fuzzy uncertainty which is different

from probabilistic uncertainty. The fuzzy uncertainty is maximum when reviewer

gives the grade 0.5 because the editor is completely uncertain whether to publish

the article or reject it.

It is important to notice that if the grade x is 0 or 1, the fuzzy uncertainty is

0 and if the grade x is 0.5, the fuzzy uncertainty is maximum i.e., as x increases

from 0 to 0.5, the fuzzy uncertainty increases from 0 to a certain maximum value

and as x increases further from 0.5 to 1, the fuzzy uncertainty decreases from

this maximum value to zero. Thus the fuzzy uncertainty is a function of x with

following properties:

(i) f(x) = 0 when x = 0 or 1.

(ii) f(x) increases as x goes from 0 to 0.5.

(iii) f(x) decreases as x goes from 0.5 to 1.0.

(iv) f(x) = f(1− x).

It is desirable that f(x) is a continuous and differentiable function, but it is not

necessary. Now if the n reviewers give independent grades x1, x2, ..., xn giving rise
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to fuzzy uncertainties f(x1), f(x2), ..., f(xn), then the total fuzzy uncertainty is

f(x1) + f(x2) + ... + f(xn).

Now suppose a die is thrown and it is asked to guess the top face. The

uncertainty about the outcome is attributed to randomness. The best way to

approach this question might be to describe the status of the die in terms of a

probability distribution on the six faces. Uncertainty that arises due to chance is

called Probabilistic Uncertainty (PU). Next, suppose it is asked to interpret the

top face of the die say, HIGH (or LOW). In this case, we have other type of uncer-

tainty which appears due to linguistic imprecision or vagueness, which is called

Fuzzy Uncertainty (FU). Fuzzy uncertainty differs from probabilistic uncertainty

because it deals with situations where set boundaries are not sharply defined.

Probabilistic uncertainties are not due to ambiguity about set-boundaries, but

rather about the belongingness of elements or events to crisp sets.

1.5 Probabilistic and Fuzzy Entropies

Let X = (x1, x2, . . . , xn) is a discrete random variable with probability distri-

bution P = (p1, p2, . . . , pn) in an experiment. Shannon (1948) argued that the

uncertainty associated with the probability distribution P should be a continu-

ous function of p1, p2, . . . , pn and permutationally symmetric. Shannon gave the

mathematical formulation of information contained in the experiment as given

below:

H(P ) = −
n∑

i=1

pi log pi. (1.5.1)

The expression (1.5.1) measures the uncertainty due to probabilistic nature of the

phenomenon concerned. On the advice of the famous mathematician-physicist

John Von Neumann, Shannon called the expression (1.5.1) as measure of entropy

because it resembled the expression of entropy in thermodynamics. However,

there was no real connection between the two entropies – thermodynamic en-
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tropy and information-theoretic entropy, but later some links were discovered and

information-theoretic entropy was found useful in the study of thermodynamics.

If x1, x2, ..., xn are members of the universe of discourse U , then the vector

(µA(x1), µA(x2),. . . ,µA(xn)) is called fuzzy vector corresponding to the fuzzy set

A; where µA(xi) gives the grade of membership of xi ∈ U in A . Though all the

membership values lie between 0 and 1, but these are not probabilities because

their sum is not unity. However,

ΦA(xi) =
µA(xi)

n∑
i=1

µA(xi)
, i = 1, 2, . . . , n (1.5.2)

is a probability distribution. Analogous to entropy (1.5.1) due to Shannon, De

Luca and Termini (1972) suggested the following measure of fuzzy entropy:

H(A) = −
n∑

i=1

[µA(xi) log µA(xi) + (1− µA(xi)) log (1− µA(xi))]. (1.5.3)

The fuzzy entropy given by expression (1.5.3) measures uncertainty due to

vagueness and ambiguity, while probabilistic entropy measures uncertainty due

to the information being available in terms of a probability distribution. It may

be noted that fuzzy-equivalent sets have the same fuzzy entropy but two sets may

have the same fuzzy entropy without being fuzzy equivalent.

On the other hand, Loo (1977) proposed a general mathematical form for

measuring fuzziness as

HL(A) = F

[
n∑

i=1

cifi(µA(xi))

]
, (1.5.4)

where ci ∈ R+, fi is a real valued function such that, fi(0) = fi(1) = 0 and

fi(u) = fi(1 − u) for u ∈ [0, 1]. Here fi(.) is a strictly increasing function on

[0,0.5].

It may be seen that the meaning of fuzzy entropy is different from the classical

Shannon entropy because no probabilistic concept is needed in order to define
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it. This is due to the fact that fuzzy entropy contains vague and ambiguous

uncertainties, while Shannon entropy contains the probabilistic uncertainties.

However, the measures of fuzzy entropy and probabilistic entropy have a

great deal in common and the knowledge of probabilistic entropies is being used

to enrich the literature on fuzzy measures. Fuzzy entropy has been studied and

applied by many researchers in various fields like image processing, communica-

tion theory, pattern recognition, etc.

1.6 Fuzzy Directed Divergence Measure

Let P = (p1, p2, . . . , pn) and Q = (q1, q2, . . . , qn) be two probability distributions

of a discrete random variable. The measure of directed divergence of P from Q

is defined as a function D(P : Q) satisfying the following conditions:

(i) D(P : Q) ≥ 0

(ii) D(P : Q) = 0 if and only if P = Q

(iii) D(P : U) = H(U)−H(P ); where U is the uniform probability distribution

and H(P ) is the measure of probabilistic entropy.

Kullback and Leibler (1951) defined the measure of directed divergence of

probability distribution P from the probability distribution Q as

D(P : Q) =
n∑

i=1

pi ln
pi

qi

. (1.6.1)

(1.6.1) is also called distance measure as it measures how far the probability

distribution P is from the probability distribution Q. Further, Kullback (1959)

suggested the measure of symmetric divergence in the following manner:

J(P : Q) = D(P : Q) + D(Q : P ) =
n∑

i=1

(pi − qi) ln
pi

qi

. (1.6.2)
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The measures (1.6.1) and (1.6.2) have been generalized and studied by Taneja

(1989, 1995).

Analogously, the measure of fuzzy directed divergence of fuzzy set A from

fuzzy set B is defined as a function I(A, B) which satisfies the following condi-

tions:

(i) I(A,B) ≥ 0

(ii) I(A,B) = 0, if and only if A = B

(iii) I(A,AF ) = H(AF ) − H(A); where AF is the most fuzzy set i.e., all of its

membership values are 1
2

and H(A) is the fuzzy entropy of the set A.

Let (µA(x1), µA(x2), . . . , µA(xn)) and (µB(x1), µB(x2), . . . , µB(xn)) are fuzzy

vectors corresponding to fuzzy sets A and B respectively with same supporting

points x1, x2, . . . , xn. The simplest measures of fuzzy directed divergence and

symmetric divergence as suggested Bhandari and Pal (1993), are

I(A,B) =
n∑

i=1

[
µA(xi) log

µA(xi)

µB(xi)
+ (1− µA(xi)) log

(1− µA(xi))

(1− µB(xi))

]
(1.6.3)

and

J(A, B) = I(A,B) + I(B,A) =
n∑

i=1

[(µA(xi)− µB(xi)] log
µA(xi)(1− µA(xi))

µB(xi)(1− µB(xi))
.

(1.6.4)

This measure of fuzzy symmetric divergence can discriminate between two

fuzzy sets. It may be noted that J(A,B) is symmetric with respect to µA and

µB. It also satisfies the following properties:

(i) J(A,B) ≥ 0, J(A,B) = 0 if and only if A = B,

(ii) J(A,B) = J(B,A),
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and J(A,B) does not satisfy the triangle inequality property of a metric. There-

fore, J(A,B) can be called pseudometric. It may be noticed that if we take

B = AF (the most fuzzy set) i.e., µB(xi) = 1
2
; ∀ i, then from (1.6.3) and (1.5.3)

we have

I(A,AF ) = n ln 2−
[
−

n∑
i=1

µA(xi) log µA(xi) + (1− µA(xi)) log(1− µA(xi))

]

i.e., I(A,AF ) = H(AF )−H(A).

This informative distance between A and AF gives a measure of nonfuzziness

in the set A.

1.7 Fuzzy Information Improvement Measure

The probabilistic measure of information improvement, suggested by Theil (1967),

is given by

D(P : Q)−D(P : R) =
n∑

i=1

pi log
ri

qi

(1.7.1)

where P and Q are observed and predicted probability distributions respectively

of a random variable, and R = (r1, r2, . . . , rn) is the revised probability distribu-

tion of Q.

Similarly, suppose the correct fuzzy set is A and originally our estimate for it

was the fuzzy set B that was revised to set C, the original ambiguity was I(A,B)

and finally ambiguity is I(A,C). Analogously, the reduction in ambiguity is given

by

I(A,B)− I(A,C) =
n∑

i=1

[
µA(xi) log

µC(xi)

µB(xi)
+ (1− µA(xi)) log

(1− µC(xi))

(1− µB(xi))

]
,

(1.7.2)

which may be called fuzzy information improvement measure.
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1.8 Comparison of Probabilistic and Fuzzy In-

formation Measures

Fuzziness is often confused with probability. A statement is probabilistic if it

expresses a likelihood or degree of certainty or if it is the outcome of clearly defined

but randomly occurring events i.e., probability measures the likelihood of a future

event based on something known now. On the other hand, fuzziness describes

the lack of distinction of an event, whereas chance describes the uncertainty in

the occurrence of the event. In other words, probability is the theory of random

events and is not capable of capturing uncertainty resulting from vagueness of

linguistic terms.

Next, we enumerate the similarities and dissimilarities between the two types

of measures - fuzzy entropy and probabilistic entropy.

1.8.1 Similarities

(i) For all probability distributions 0 ≤ pi ≤ 1 for each i and for every fuzzy

set 0 ≤ µA(xi) ≤ 1; for each i.

(ii) The probabilistic entropy measures the closeness of the probability distri-

bution P (p1, p2, . . . , pn) with uniform distribution
(

1
n
, 1

n
, . . . , 1

n

)
and fuzzy

entropy measures the closeness of fuzzy distribution with the most fuzzy

vector distribution
(

1
2
, 1

2
, . . . , 1

2

)
.

(iii) Probabilistic and fuzzy entropies are concave functions of p1, p2, . . . , pn and

µA(x1), µA(x2), . . .,µA(xn) respectively. Starting with any values of µA(x1),

µA(x2), . . .,µA(xn) and approaching the vector 1
2
, 1

2
, . . . , 1

2
, the fuzzy entropy

will increase. Also, starting with any probability vector p1, p2, . . . , pn and

approaching the vector 1
n
, 1

n
, . . . , 1

n
, the probabilistic entropy will increase.
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(iv) Probabilistic directed divergence measures and fuzzy directed divergence

measures are convex functions with minimum value zero. Further, analogous

to each measure of probabilistic entropy and directed divergence, we have

measure of fuzzy entropy and fuzzy directed divergence.

1.8.2 Dissimilarities

(i) While
n∑

i=1

pi = 1 for all probability distributions,
n∑

i=1

µA(xi) need not be equal

to unity and it need not even be the same for all fuzzy sets i.e., the proba-

bilities of n−1 outcomes will determine the probability of the nth outcome,

but the knowledge of fuzziness of n−1 elements gives no information about

the fuzziness of the nth element.

(ii) The probabilities pi and 1− pi make different contributions to probabilistic

entropy. However, µA(xi) gives the same degree of fuzziness as 1 − µA(xi)

because both are equidistant from 1
2

and the crisp set values 0 and 1.

(iii) Most of the measures of probabilistic entropy are of the form
n∑

i=1

f(pi) while

most measures of fuzzy entropy are of the form
n∑

i=1

f(µA(xi))+
n∑

i=1

f(1− µA(xi)).

(iv) Similarly, for probability distributions P = (p1, p2, . . . , pn) and Q = (q1, q2

, . . . , qn), most of the probabilistic directed divergence measures are of the

form
n∑

i=1

f(pi, qi) while for fuzzy sets A and B, the fuzzy directed divergence

measures are of the form
n∑

i=1

f(µA(xi), µB(xi))+
n∑

i=1

f(1− µA(xi), 1− µB(xi)).
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1.9 Measures of ‘Useful’ Fuzzy Information and

‘Useful’ Fuzzy Directed Divergence

Though in many practical situations of probabilistic nature, subjective considera-

tions play its own role, Shannon entropy does not take into account the effective-

ness or importance of the events. Belis and Guisau (1968) considered qualitative

aspect of information and attached a utility distribution U = (u1, u2, ..., un),

where ui > 0 for each and is utility or importance of an event xi whose probabil-

ity of occurrence is pi. In general, ui is independent of pi. They suggested that

the occurrence of an event removes two types of uncertainty - the quantitative

type related to its probability of occurrence and the qualitative type related to

its utility (importance) for the fulfillment of some goal set by the experimenter.

Bhaker and Hooda (1993) obtained the generalized mean value characteriza-

tion of the useful information measures for incomplete probability distributions:

H(P ; U) = −

n∑
i=1

uipi log pi

n∑
i=1

uipi

, (1.9.1)

and

Hα(P ; U) =
1

1− α
log

n∑
i=1

uip
α
i

n∑
i=1

uipi

; α 6= 1, α > 0. (1.9.2)

Zadeh (1968) was the first to quantify the uncertainty associated with a fuzzy

event in the context of a discrete probabilistic framework, who defined the (weighted)

entropy of A with respect to (X, P ) as

H(A,P ) = −
n∑

i=1

µA(xi)pi log pi, (1.9.3)

where µA is the membership function of A and pi is the probability of occurrence of

xi. It may be noted that the situation contains the different types of uncertainties,
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e.g., randomness, ambiguity and vagueness. H(A,P ) of a fuzzy event with respect

to P is less than Shannon’s entropy which is of P alone.

Let P and Q be two probability distributions of a random variable X having

utility distribution U . Bhaker and Hooda (1993) characterized the following

measure of ’useful’ directed divergence:

D(P : Q : U) =

n∑
i=1

uipi log pi

qi

n∑
i=1

uipi

(1.9.4)

This measure (1.9.4) has been generalized by Hooda and Ram (2002).
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Chapter 2

Restricted Fuzzy Linear

Regression Model

2.1 Introduction

Regression analysis is an area of statistics that consists of finding a suitable

relationship explaining the statistical dependence of a response variable, say Y ,

on a set of explanatory variables, say X1, X2, . . . , Xn. The dependence is usually

assumed to have a particular mathematical form with one or more parameters.

The aim of regression analysis is to estimate the parameters on the basis of

empirical data. In the crisp linear regression model, the parameters (regression

coefficients are crisp) appear in a linear form i.e.,

Y = A0 + A1X1 + A2X2 + . . . + AnXn + random error. (2.1.1)

Once the coefficients A0, A1, . . . , An are evaluated from the observed data, the

response variables can be estimated from any given set of X1, X2, . . . , Xn values.

Classical linear regression has many applications in problems which can occur

in the following situations:
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• Numbers of observations is inadequate (Small data set)

• Vagueness in the relationship between input and output variables

• Ambiguity of events or degree to which they occur

• Inaccuracy and distortion introduced by linearization

The motivation for developing fuzzy regression analysis results from the re-

alization that sometimes the observations cannot be known or quantified exactly

and we can only provide an approximate description of them or intervals to en-

close them. For instance, “in measuring the influence of character size on the

reading ability from a video display terminal, the reading ability of the subject

depends on his/her eyesight, age, the environment, individual responses and even

how tired is the individual. Some of these factors cannot be described accurately

and these kinds of variables are described as fuzzy variables” (refer to Chang et

al. (1996)). Since ambiguity and vagueness are found in human subjective ap-

praisal or judgment, all response variable values or explanatory variables cannot

be precisely measured in the actual state of things. Therefore, it may be some-

times inappropriate to use crisp values to represent different situations. Fuzzy

set theory, developed by Zadeh (1965) has capability to describe the uncertain

situations, containing ambiguity and vagueness. The concept of fuzzy regression

was first introduced by Tanaka, Uejima and Asai (1980, 1982) and its general

form is given by

Ỹ = Ã0 + Ã1X1 + . . . + ÃnXn, (2.1.2)

where the value of the output variable defined by (2.1.2) is a fuzzy number Ỹ ,

Ã0, Ã1, . . . , Ãn are fuzzy regression coefficients and X1, X2, . . . , Xn are real val-

ued input (explanatory) variables. We assume the regression coefficients to be

symmetric triangular fuzzy numbers (refer to Dubois and Prade (1980) and Zim-
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merman (1985)) defined by the membership function

µÃj(c)
=





1− |c−cj |
rj

when cj − rj ≤ c ≤ cj + rj

0 otherwise,
(2.1.3)

where cj is known as the middle value for which Ãj(cj) = 1 and rj > 0 is the

spread of Ãj. The fuzzy number Ãj expresses cj or around cj in the linguistic

terms and it is denoted by Ãj = (cj, rj); ∀j ∈ {1, 2, . . . , n}. The spread denotes

the fuzziness of the membership function.

The aim of fuzzy regression model is to find the regression coefficients Ã0, Ã1,

. . . , Ãn such that the fuzzy linear function (2.1.2) fits the given fuzzy data as best

as possible. Tanaka et al. (1980, 1982) initiated the study of fuzzy linear regres-

sion and used linear programming technique to find fuzzy regression coefficients

for the case of fuzzy dependent variable and crisp independent variables. Subse-

quently, several developments have been carried out by Chang and Lee (1994a-c,

1996), Diamond (1988, 1990), Kim et al. (1996), Peters (1994), Tanaka and

Watada (1988). Based on various studies fuzzy regression may be roughly di-

vided into two approaches - linear programming based methods and fuzzy least

square methods. The fuzzy regression models have following categories depending

on the nature of the variables:

(i) Both input and output variables are crisp.

(ii) Input variable is crisp but output variable is fuzzy .

(iii) Both input and output variables are fuzzy.

It may be noted that in classical linear regression, the difference between

the observed values and the values estimated from the model is because of the

random errors. Upper and lower bounds for the estimated values are established

and the probability that the estimated values will be with in these two bounds

represents the confidence of the estimate. In other words, classical regression
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analysis is probabilistic. However, in fuzzy regression, the difference between

the observed and the estimated values is because of ambiguity inherently present

in the system. The output for a specified input is assumed to be a range of

possible values i.e., the output can take any of these possible values. Therefore,

the fuzzy regression is possibilistic in nature. In a fuzzy regression there is a

tendency that the greater the values of independent variables, the wider is the

spread of dependent variables. The value of the center point of estimated fuzzy

output may be either greater than the value of the right endpoint or smaller

than the value of the left endpoint. A fuzzy least square approach directly uses

information included in the input-output data set and considers the measure of

best fitting based on distance under fuzzy consideration. Fuzzy least squares

are fuzzy extensions of ordinary least squares. Here, we have used least square

approach for estimators or parameters estimation for the doubly adaptive linear

regression model (refer to D’Urso, P. and T. Gastaldi, (2000)).

In many situations, some prior information is available about unknown re-

gression coefficients. Such information can arise from past experience of the

experimenter or other sources. Incorporation of such information results more

efficient estimators in probabilistic linear regression models. Such prior informa-

tion can be expressed in different forms. We assume that such prior information

can be expressed in the form of exact linear restrictions on regression coefficients.

How to incorporate such prior information in the consistent estimation of regres-

sion coefficients in a doubly fuzzy linear regression model is the subject matter

of present chapter.

In Section 2.2, we introduce the fuzzy linear regression model. In Section 2.3,

the restricted estimators of regression coefficients are obtained. In order to com-

pare the properties of restricted estimator with the usual unrestricted estimator,

we conduct a simulation study. The conclusions of simulation study are presented

in Section 2.4 followed by some concluding remarks in Section 2.5.
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2.2 The model

We consider symmetrical triangular fuzzy number (STFN) in particular, and as-

sume the membership function to be triangular in shape and completely identified

by the two parameters c (center) and r (left and right spread). Suppose that the

observed fuzzy number is Yi = (ci, ri), i ∈ {1, 2, . . . , n}, which is inherited by

the corresponding theoretical observation Y ∗
i = (c∗i , r

∗
i ).

The proposed fuzzy regression model, also referred as doubly linear adaptive

fuzzy regression model, is defined as follows:

c = c∗ + εc where c∗ = Xβ,

r = r∗ + εr where r∗ = c∗b + 1d,
(2.2.1)

where X is a n × p matrix containing the input variables (data matrix), β is a

column p-vector containing the regression parameters of the first model (called

as core regression model), c and c∗ are the n-vector of observed centers and the

vector of the interpolated centers respectively, r and r∗ are the (n-vector of the

assigned spreads and the vector of the interpolated spreads respectively, εc and εr

are the interpolation error vectors, 1 is a n-vector of all 1’s, b and d are regression

parameters for the second regression model (called as spread regression model).

The model postulated above comprise of two linear models: one interpolates

the centers of the fuzzy observations, second one yields the spreads by building

another linear model over the first one. Observe that the explanatory variables X,

through the observed centers, can explicitly be written as r = Xβb+1d+εr. The

model has the capability to take into account possible linear relations between

the size of the spreads and the magnitude of the estimated centers.

Moreover, we assume that the regression coefficients β are subjected to j

(j < p) exact linear restrictions, which are given by

v = V β, (2.2.2)
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where v and V are known and the matrix V is of full row rank.

2.3 Estimation of Regression Coefficients

Let us define the Euclidean distance between two symmetrical fuzzy numbers

Yi = (ci, ri) and Y ∗
i = (c∗i , r

∗
i ) as follows:

δi ≡ δ(Yi, Y
∗
i ) =

√
(ci − c∗i )2 + (ri − r∗i )2 (2.3.1)

In order to obtain the estimator of regression coefficient β under the model (2.2.1),

we minimize the score function i.e., the following sum of square errors (using

notation in matrix form):

φ(β, b, d) =
n∑

i=1

δ2
i =

n∑
i=1

(ci − c∗i )
2 +

n∑
i=1

(ri − r∗i )
2

= (c − c∗)′(c − c∗) + (r − r∗)′(r − r∗)

= c′c− 2c′c∗ + c∗′c∗ + r′r − 2r′r∗ + r∗′r∗

= c′c− 2c′Xβ + β′X ′Xβ + r′r − 2r′(Xβb + 1d)

+ (Xβb + 1d)′(Xβb + 1d)

= c′c− 2c′Xβ + β′X ′Xβ + r′r − 2r′Xβb− 2r′1d

+β′X ′Xβb2 + 2β′X ′1bd + nd2

⇒ φ(β, b, d) = c′c− 2c′Xβ + β′X ′Xβ(1 + b2) + r′r − 2r′Xβb

−2r′1d + 2β′X ′1bd + nd2 (2.3.2)

Differentiating φ(β, b, d) partially with respect to β and equating it to zero, we

get

∂φ(β, b, d)

∂β
= 0

⇒ −2X ′c + 2(1 + b2)X ′Xβ − 2bX ′r + 2bdX ′1 = 0

⇒ (1 + b2)X ′Xβ = X ′c + bX ′r − 2bdX ′1

⇒ β̂ =
1

(1 + b2)
(X ′X)

−1
X ′(c + rb− 1bd) (2.3.3)
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Similarly, differentiating (2.3.2) partially with respect to b and d, we get

∂φ(β, b, d)

∂b
= 0

⇒ 2bβ′X ′Xβ − 2r′Xβ + 2dβ′X ′1 = 0

⇒ b̂ = (β′X ′Xβ)
−1

[r′Xβ − β′X ′1d] (2.3.4)

and

∂φ(β, b, d)

∂d
= 0

⇒ −2r′1 + 2β′X ′1b + 2nd = 0

⇒ d̂ = n−1 (r′1− β′X ′1b) (2.3.5)

respectively (refer to D’Urso, P. and T. Gastaldi (2000)).

Next, we assume that the regression coefficients β are subject to the linear

restrictions which are given by (2.2.2). It may be noted that the estimator β̂

obtained above in (2.3.3) does not satisfy the given restrictions (2.2.2). We aim

to obtain the restricted estimator of β which satisfies the given restriction under

the doubly linear adaptive fuzzy regression model (2.2.1). For this, we propose

to minimize the following score function

S(λ, β, b, d) = φ(β, b, d)− 2λ(V β − v)

= c′c− 2c′Xβ + β′X ′Xβ(1 + b2) + r′r − 2r′Xβb− 2r′1d

+ 2β′X ′1bd + nd2 − 2λ(V β − v),

(2.3.6)

where 2λ is the vector of Lagrangian multiplier.

Differentiating S(λ, β, b, d) partially with respect to β and equating it to

zero, we get

∂S(λ, β, b, d)

∂β
= 0

⇒ −2X ′c + 2(1 + b2)X ′Xβ − 2bX ′r + 2bdX ′1− 2λV = 0

⇒ β̃ =
1

(1 + b2)
(X ′X)

−1
X ′(c + rb− 1bd) +

1

(1 + b2)
(X ′X)

−1
V ′λ

⇒ β̃ = β̂ +
1

(1 + b2)
(X ′X)

−1
V ′λ. (2.3.7)
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Similarly, differentiating S(λ, β, b, d) partially with respect to λ, we get

∂S(λ, β, b, d)

∂λ
= 0

⇒ V β̂ +
1

1 + b2
V (X ′X)

−1
V ′λ = v

⇒ λ̂ = (1 + b2)
[
V (X ′X)

−1
V ′

]−1 (
v − V β̂

)
. (2.3.8)

From equation (2.3.7) and (2.3.8), we have

β̃ = β̂ + (X ′X)
−1

V ′
[
V (X ′X)

−1
V ′

]−1 (
v − V β̂

)
. (2.3.9)

Also, differentiating (2.3.6) partially with respect to b and d, we get

∂S(λ, β, b, d)

∂b
= 0

⇒ b̂ = (β′X ′Xβ)
−1

[r′Xβ − β′X ′1d] (2.3.10)

and

∂S(λ, β, b, d)

∂d
= 0

⇒ d̂ = n−1 (r′1− β′X ′1b) (2.3.11)

respectively.

We have

V β̃ = V β̂ + V (X ′X)
−1

V ′
[
V (X ′X)

−1
V ′

]−1 (
v − V β̂

)

⇒ V β̃ = V β̂ +
(
v − V β̂

)
= v.

Therefore, the estimator β̃ satisfies the given restrictions (2.2.2).
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2.4 Simulation Study

In the previous section, we obtained the restricted estimator β̃ which satisfies the

given linear restrictions (2.2.2). Since some additional information is being used

in obtaining this estimator, it is expected that the performance of this estimator is

better than the unrestricted estimator β̂ in “some” sense of dominance. In order

to study these dominance properties, we conducted simulation study. For this,

we adopted various values of β and generated the sample Y ∗
i , Yi and X of sizes

22 and 48. Using these samples, we obtain the estimators β̂ and β̃ empirically.

To study the properties of these estimators, we obtained mean squared error

matrices (MSEM) and absolute bias (AB) of these estimators empirically for

50,000 repetitions. The absolute bias is defined as the positive square root of the

some of squares of the elements of bias vector. In order to save space, we below

present a few outcomes of simulation study.

(i) When β =




0.5

15.0

−3.2

1.0




• For n = 22

MSEM(β̂) =




0.1477 4.2766 −0.9060 0.2900

4.2766 123.9044 −26.2498 8.4013

−0.9060 −26.2498 5.5612 −1.7799

0.2900 8.4013 −1.7799 0.5697




,

MSEM(β̃) =




5.0486 −5.1027 7.3056 −1.8279

−5.1027 5.1574 −7.3839 1.8475

7.3056 −7.3839 10.5718 −2.6450

−1.8279 1.8475 −2.6450 0.6618




,
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AB(β̂) = 11.4097 and AB(β̃) = 3.8634.

• For n = 48

MSEM(β̂) =




0.1475 4.2742 −0.9056 0.2898

4.2742 123.9007 −26.2508 8.3995

−0.9056 −26.2508 5.5618 −1.7796

0.2898 8.3995 −1.7796 0.5694




,

MSEM(β̃) =




4.1725 −4.2172 6.0379 −1.5107

−4.2172 4.2624 −6.1026 1.5269

6.0379 −6.1026 8.7373 −2.1861

−1.5107 1.5269 −2.1861 0.5469




,

AB(β̂) = 11.4096 and AB(β̃) = 3.8652.

(ii) When β =




3.0

3.5

4.0

4.5




• For n = 22

MSEM(β̂) =




5.0047 5.8338 6.6626 7.4918

5.8338 6.8004 7.7665 8.7331

6.6626 7.7665 8.8699 9.9738

7.4918 8.7331 9.9738 11.2151




,

MSEM(β̃) =




4.0907 −4.1346 5.9196 −1.4811

−4.1346 4.1789 −5.9830 1.4969

5.9196 −5.9830 8.5660 −2.1432

−1.4811 1.4969 −2.1432 0.5362




,
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AB(β̂) = 5.6471 and AB(β̃) = 3.7744.

• For n = 48

MSEM(β̂) =




5.0041 5.8330 6.6619 7.4910

5.8330 6.7994 7.7655 8.7319

6.6619 7.7655 8.8690 9.9727

7.4910 8.7319 9.9727 11.2138




,

MSEM(β̃) =




3.6623 −3.7016 5.2997 −1.3260

−3.7016 3.7413 −5.3565 1.3402

5.2997 −5.3565 7.6690 −1.9188

−1.3260 1.3402 −1.9188 0.4801




,

AB(β̂) = 5.6467 and AB(β̃) = 3.7723.

(iii) When β =




−0.5

−23.0

−2.0

−4.5




• For n = 22

MSEM(β̂) =




0.1275 6.0813 0.5244 1.1859

6.0813 290.1406 25.0177 56.5803

0.5244 25.0177 2.1572 4.8787

1.1859 56.5803 4.8787 11.0338




,

MSEM(β̃) =




5.7660 −5.8278 8.3438 −2.0876

−5.8278 5.8903 −8.4332 2.1100

8.3438 −8.4332 12.0741 −3.0209

−2.0876 2.1100 −3.0209 0.7558




,
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AB(β̂) = 17.4200 and AB(β̃) = 1.5484.

• For n = 48

MSEM(β̂) =




0.1276 6.0839 0.5247 1.1865

6.0839 290.1452 25.0214 56.5832

0.5247 25.0214 2.1578 4.8796

1.1865 56.5832 4.8796 11.0347




,

MSEM(β̃) =




2.8180 −2.8482 4.0779 −1.0203

−2.8482 2.8788 −4.1216 1.0312

4.0779 −4.1216 5.9010 −1.4764

−1.0203 1.0312 −1.4764 0.3694




,

AB(β̂) = 17.4202 and AB(β̃) = 1.5954.

On the basis of simulation outcomes, we make following conclusions:

(i) The absolute bias of unrestricted estimator β̂ and restricted estimator β̃

are almost the same for the sample sizes 22 and 48. It seems that the bias

of these estimators establish for the small sample size of 22.

(ii) The absolute bias of the restricted estimator β̃ is much less than that of

unrestricted estimator β̂.

(iii) Looking at the MSEMs of these estimators, it is clear that the mean squared

errors (MSEs) (defined as the trace of MSEM) decrease as sample size in-

creases. However, this decrement is very small.

(iv) The MSE of restricted estimator β̃ is much less than that of unrestricted

estimator β̂.
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Thus, we conclude that the restricted estimator β̃ is better than the un-

restricted estimator β̂ with regard to absolute bias and mean squared error.

Therefore, when some linear restrictions are available a priori on β, the use of

the β̃ is advisable over β̂ as an estimator of β.

2.5 Conclusion

It is worth mentioning that under a doubly adaptive linear fuzzy regression model,

where the regression coefficients are subjected to some exact linear restrictions,

the obtained restricted estimator of regression coefficients are better than the

usual unrestricted estimator with regard to mean squared error and absolute

bias.
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Chapter 3

Fuzzy Clustering Algorithm and

its Application in Economics

3.1 Introduction

According to Goldman Sachs Report (2003), by the end of 2050, the BRIC (Brazil,

Russia, India and China) countries will emerge as a very strong economy of the

world and together they will be greater in absolute size than that of G6 (US,

Japan, UK, Germany, France and Italy) countries. The report highlights key

features of these economies and their growing contribution to world output and

trade. It is also mentioned that, in absolute sense China will be number one

economy, US will be number two and India number three, however, US will

remain at the top on per capita basis. In this context, the projected convergence

of per capita GDP of the G6 and BRIC countries is being studied using clustering

analysis.

Clustering analysis is an important human activity. Clustering is basically

a process of grouping a set of physical or abstract objects into classes of similar

objects. The objective of such a cluster analysis is to partition the data set
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into a number of natural and homogeneous subsets, where the elements of each

subset are as similar to each other as possible, and at the same time as different

from those of the other sets as possible. A cluster of data objects can be treated

collectively as one group in many applications. In other words, clustering involves

the task of dividing data points into homogeneous classes or clusters so that

items in the same class are as similar as possible and items in different classes

are as dissimilar as possible. Clustering can also be thought of a form of data

compression, when a large number of samples are converted into a small number

of representative prototypes or clusters.

Let X ∈ Rm×n a set of data items representing a set of m points xi in Rn.

The goal is to partition X into K groups Ck such that every data that belong

to the same cluster are more “alike” than data in different groups. Each of K

groups is called a cluster. The clustering problem has been addressed in many

contexts and by researchers in many disciplines; this reflects its broad appeal and

usefulness as one of the steps in exploratory data analysis.

It is interesting to have the comparative study of projected per capita GDP

convergence analysis of G6 and BRIC countries, based on the projected GDP and

per capita GDP by Goldman Sachs Report (2003). To test the convergence, a

comparatively new (clustering) technique which is becoming popular day by day

among economists fraternity is used. This is called as fuzzy c-means algorithm.

The algorithm is a least square function, when we have the number of data sets

and the number of classes (partitions) into which the data sets are classified.

Fuzzy Clustering algorithms provide a fuzzy description of the discovered

structure. The main advantage of this description is that it captures the impreci-

sion encountered when describing real-life data. Thus, the user is provided with

more information about the structure in the data compared to a crisp, non-fuzzy

scheme. In fuzzy clustering, the objects of the universe of discourse are not clas-

sified as belonging to one and only one cluster, but instead, they all possess a
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degree of membership with each of the clusters. The most widely used fuzzy clus-

tering algorithm is fuzzy c-means (FCM). The concept of fuzzy set was initiated

by Lotfi A. Zadeh (1965) who was professor of computer science at the Univer-

sity of California in Berkeley. The idea of using fuzzy set theory for clustering

is credited to Ruspini (1969, 1970). The first specific formulation of FCM is due

to Dunn (1973), but its generalization and current framing is credited to Bezdek

(1981).

3.2 Formation of Economies and Their Contri-

bution

The historical review reveals that World War II hampered the world economy

and its immediate consequences to the world were disturbed economic system,

abated economic growth and poor international relations. That compelled the

then economic powers to think constructively and to help the world to grow peace-

fully. This resulted in the formation of General Agreement On Tariffs And Trade

(GATT) in 1948 and that showed their commitment towards the development

of world economy. India was also one of the founder members of GATT having

the same objective. United States emerged as one of the strongest economy and

considered itself responsible for the economic growth of the entire world. During

the oil crisis US initiated to form a group of six industrialized nations in 1973 and

became successful to do so in 1975. The group formed was called as Group6, or

simply G6 and member countries were – United States, United Kingdom, Japan,

Germany, Italy and France. The group was economically very strong and to-

gether they constituted about 53 percent of world’s GDP, at the time of creation.

The economy grew continuously for more than two decades and its share in the

world’s GDP increased upto 65 percent in the year 1999. From the advent of

new millennium, it has been found that their contribution is decreasing due to
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emergence of few other economies of the world considerably. In 2005 their share

in world’s GDP was 59 percent, which can be verified from the data compiled in

Table 3.1.

At the time of formation of GATT the economic condition of India was not

good and more than 50 percent of the population were living below poverty line.

It was one of the least developing economies. After independence India adopted

globalization and liberalization. Consequently its economy transformed entirely

and is the third largest economy, after US and China on PPP (Purchasing Power

Parity) basis. It is going to play a vital role in the world economy in the coming

future.

The other economies, which showed phenomenal growth in the past few years

and have potential to grow further, are mainly China, Canada, Mexico, Spain,

Russia and Brazil. It has also been mentioned in Goldman Sachs Report (2003)

that by the end of 2050, four countries of the world namely – Brazil, Russia,

India and China, also called as BRIC countries, will grow very fast and emerge

as dominant economies. If we look at the historical developments of the BRIC

nations, we will find that these nations are not much developed. The World Bank

has described India as “Low Income Country” while Brazil, Russia and China

have been classified as “Lower Middle Income Countries”.

The pattern of GDP growth rate of BRIC countries, G6 countries and World

GDP can be analyzed from Table 3.1 and Figure 3.1. Table 3.1 shows the percent-

age contribution of BRIC and G6 economies into World GDP. It clearly shows

that the contribution of BRIC economies decreased continuously from 1980 to

1999, but there is change in the pattern from 2000 onwards. This shows the

gradual increase in the share of World GDP by BRIC economies. On the other

hand, the contribution of G6 countries is appreciable from 1980 to 2000, but there

is a significant change in the pattern from 2001 onwards. This shows the gradual

decrease in the share of World GDP by G6 economies.
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It may be noted that the sharp decline in contribution of BRIC economies

in world’s GDP in the year 1990 was due to the disintegration of erstwhile USSR

into Russia.

Figure 3.1 clearly shows that from 2000 onwards the GDP growth rate of

BRIC economies has surpassed the World’s GDP growth rate and that fascinated

the economists of the World to realize the potential of BRIC economies. This

probably might be one of the reasons which inspired the Goldman Sachs to work

upon BRIC economies.

Goldman Sachs Report (2003) is mainly based upon the model of capital

accumulation and productivity growth. It has projected the figures of GDP

growth, per capita income and currency movements in the BRIC economies until

2050. It has also predicted that by the end of 2050, the GDP of BRICs economies

will be $84,201 billion as compared to the GDP of G6 economies which will be

$54,433 billion. It further says that, in less than 40 years, the BRIC economies

together could be larger than G6 in US dollar terms. From Table 3.1, we can

see that in 2005 the total GDP of BRIC countries was about 16.7 percent of the

GDP of G6. If we go by the report, the BRIC economies will be half of the size

of G6 by 2025 and it will overtake G6 by 2040.

According to the above mentioned report, Brazil and Russia would dominate

the world market in the supply of raw materials, while India and China would

dominate in services and manufacturing. However, inspite of such a phenomenal

growth, the BRIC countries would not be able to translate it into proportionate

improvement in living standards, and per capita income of most of the BRIC

countries (except Russia), would be below than that of G6 countries. After 1990,

there is a very hot issue among the economists from all over the world whether

or not per capita income across countries is converging. The neo-classical growth

model tells “economies will converge towards their balanced growth paths where

per capita growth is inversely related to the starting level of per capita income”.
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Early studies by Baumaol (1986), Barro (1991, 1992), Sala-i-Martin (1996), etc.

gave their opinion in favor of convergence. They believed that convergence across

countries will occur in the coming future with an average rate of 2 percent per

year. However, Quah (1993, 1996) had doubt about the figure of 2 percent

for convergence and said that convergence will occur in relatively homogenous

convergence clubs i.e., relatively homogenous economies. McCoskey (2002) sug-

gests that convergence clubs and relative homogeneity is probably unresolved

with respect to less developed countries (LDCs) where geographic proximity and

cross-national economic interdependence will cause group of LDCs to grow or

falter as one. But according to Dobson and Ramlogan (2002), little is known

about the convergence process among LDCs and a limited range of studies that

have considered LDCs have proceeded at a highly aggregated level (Khan and

Kumar 1993) or have focused on convergence within a particular country (Fer-

reira (2000), Nagraj et al. (2000), Choi and Li (2000)). Economic convergence

among countries has also been studied by Giles (2001) and Holmes (2004).

In spite of so much development, the relation between trade openness and

convergence is still not established as no theory has been proposed to get a

clear relationship between them. Moreover, the objective of our work is not to

link the trade openness and convergence among BRIC countries or G6 because

inter-regional trades among these countries are very less. Next, we will have a

comparative analysis in terms of the projected convergence of per capita GDP of

BRIC countries and G6 till year 2050, based on the GDP and per capita GDP

projections, by Goldman Sachs Report (2003).

3.3 Fuzzy Clustering - The Algorithm

The goal of traditional clustering is to assign each data point to one and only

one cluster. In contrast, fuzzy clustering assigns different degrees of membership
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to each point. The membership of a point is thus shared among various clusters.

This creates the concept of fuzzy boundaries which differs from the traditional

concept of well-defined boundaries. Bezdek (1981) asserts that the well-defined

boundary model usually does not reflect the description of real data. This asser-

tion led him to develop a new family of clustering algorithms based on a fuzzy

extension of the least-square error criterion.

Using Fuzzy c-means algorithm we determine the partitioning of the per

capita GDP of BRIC and G6 countries into a number of clusters, year by year, as

projected in Goldman Sachs Report (2003). These clusters have “fuzzy” bound-

aries, in the sense that each data value belongs to each cluster to some degree

or other specified by a membership grade, and thus each point may belong to

several clusters.

The FCM algorithm partitions a collection of “n” data points into c fuzzy

clusters (where c < n), and simultaneously seeking the best possible locations

of these clusters. This method uses distance concept in n-dimensional Euclidean

space to determine the geometric closeness of data points by assigning them to

various clusters or classes.

The mathematical notations used in developing FCM algorithm:

xk = kth data point (possibly m-dimensional vector and k = 1, 2, . . . , n).

vi = the center of the ith fuzzy cluster (i = 1, 2, . . . , c).

dik = ‖xk − vi‖2 =

[
m∑

j=1

(xkj − vij)
2

]1/2

is the distance between xk and vi.

The partitioned clusters are typically defined by a c × n matrix M , called

the membership matrix, where each element µik (the degree of membership of

the kthdata point in the ith cluster) in the range of [0, 1] i.e.,
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M =




µ11 µ12 .... µ1n

µ21 µ22 .... µ2n

... ... ... ...

µc1 µc2 .... µcn




, where
c∑

i=1

µik = 1. (3.3.1)

Our objective is to minimize the functional

J(M, v1, v2, ..., vc) =
c∑

i=1

n∑

k=1

(µik)
q(dik)

2, (3.3.2)

where q ∈ [ 1, ∞) is a weighting exponent parameter and it controls the extent of

membership sharing between fuzzy clusters. For the case q = 1, FCM algorithm

approaches to a hard c-means algorithm. In general, the larger q is, the fuzzier

are the membership assignments of the clustering convergence of the algorithm

which tends to be slower as the value of q increases. In practice, q = 2 is a

preferred choice.

The following are two necessary conditions for J to reach a minimum:

vi =

n∑
k=1

(µik)
q.xk

n∑
k=1

(µik)q

(3.3.3)

and

µik =

[
c∑

j=1

(
dik

djk

) 2
q−1

]−1

(3.3.4)
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The fuzzy c-means algorithm due to Bezdek (1981) is simply iteration through

the preceding two conditions and it determines the cluster centers vi and the

membership matrix M using the following steps:

Input: dataset D, number of clusters

Output: set of c clusters

Algorithm:

Initialize: initialize the membership matrix M with random values between 0

and 1 with in the constraints of equation (3.3.1).

Iteration: at each step k,

compute the c cluster centers using equation (3.3.3) and

compute the objective function according to equation (3.3.2).

Termination: the algorithm will terminate if objective function according to

equation (3.3.2) is below a certain threshold level ε = 0.01.

Once the centers of the fuzzy clusters have been determined, each of the

“n” data points can be allocated to the cluster with the closest center. In our

application, we have two groups of countries – BRIC and G6, the former comprises

of four countries while later of six countries. We have applied the algorithm (using

computer programming in C) for both the groups individually by taking number

of clusters as c = 2 and c = 3.

3.4 Results of Cluster Convergence Analysis

Table 3.1 shows GDP (at market price, current price) of World, G6 and BRIC

countries from 1976 to 2005 illustrating world’s GDP, absolute GDP of G6 and

BRIC countries as well as their share in world GDP. The figures clearly show that,

initially the contribution of G6 countries in world GDP has increased, but in the

later years, specially after 2002, it started decreasing; whereas the contribution
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of BRIC countries in world GDP shows just opposite pattern, it has decreased

in the initial years but started increasing after 2002. Here, it may be noted that

there is sudden decrease in GDP contribution of BRIC countries in 1990 due to

the disintegration of erstwhile USSR.

The results of our projected convergence analysis are based on the fuzzy

clustering algorithm and summarized in the form of figures and tables. Figure

3.2 and 3.3 shows the relative rise of per capita GDP of BRIC and G6 countries

respectively. These figures have been plotted from Table 3.2. Figure 3.2 shows

that per capita GDP of all the BRIC countries are increasing with respect to time,

while for Brazil it shows the relative fall in initial period (2000 to 2004) and then

rise in subsequent years. On the other hand, Figure 3.3 shows the per capita

GDP of the G6 countries are increasing with respect to time, except for Japan,

where the growth was slow in initial years and then increased subsequently.

Figures 3.4 and 3.5 show the ratio of the centers of the two fuzzy clusters

(c = 2), year by year, for BRIC and G6 countries respectively. From Figure 3.4,

we find that in the beginning, the ratio is high and fluctuating while it becomes

smooth and tending towards one for later years. While for G6 countries, Figure

3.5, the ratio fluctuates in a very small range of 1.46 to 1.58, and in the later

years it becomes almost constant. These unitless ratios are used because it helps

in facilitating inter-year comparisons.

Figures 3.6 and 3.7 show ratio of the center of the highest cluster to that of

the lowest (c = 3), year by year, for BRIC and G6 countries respectively, which

confirms the results of Figures 3.4 and 3.5 and show the same pattern of conver-

gence.
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The case of classification into two clusters i.e., c = 2 is not shown by tables,

while for c = 3, the classification is shown by Table 3.3 and Table 3.4. This is

because, in the earlier case, there is not much variation in the membership of the

countries in the clusters. In our analysis, we find that, for BRIC countries, from

2000 to 2025, India and China are in one cluster and Brazil and Russia in the

other. Whereas from 2026 to 2050, Brazil, India and China are in one cluster and

Russia remains isolated in the other cluster. On the other hand, for G6 countries,

USA and Japan are in one cluster, and France, Germany, Italy and UK are in

the other, throughout the years.

Tables 3.3 and 3.4 show the classification of BRIC and G6 countries into

three clusters (c = 3) respectively. From Table 3.3, variation in the membership

of countries in different clusters can be observed for initial years upto 2008 for

BRIC countries; and after that Brazil and China are in one cluster, whereas

Russia and India are isolated and remain in two different clusters. From Table

3.4, significant variation can be observed upto 2032 for G6 countries, and after

that Japan and UK are in one cluster; France, Germany and Italy are in second;

while USA remains isolated in the third cluster.

From our analysis and algorithm, in 2008, 2021 and 2032 Japan shows maxi-

mum ambiguity for its membership (µA(x) ≈ 0.5) which leads to shift its cluster

from one to another.
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Table 3.3: Composition of Fuzzy Clusters for BRIC Countries (c = 3)
Year C1 C2 C3 Year C1 C2 C3 Year C1 C2 C3

2000 B, R CH I 2017 R I B,CH 2034 R I B,CH

2001 B, R CH I 2018 R I B,CH 2035 R I B,CH

2002 B, R CH I 2019 R I B,CH 2036 R I B,CH

2003 R I, CH B 2020 R I B,CH 2037 R I B,CH

2004 R I, CH B 2021 R I B,CH 2038 R I B,CH

2005 R I, CH B 2022 R I B,CH 2039 R I B,CH

2006 R I, CH B 2023 R I B,CH 2040 R I B,CH

2007 R I, CH B 2024 R I B,CH 2041 R I B,CH

2008 R I, CH B 2025 R I B,CH 2042 R I B,CH

2009 R I B,CH 2026 R I B,CH 2043 R I B,CH

2010 R I B,CH 2027 R I B,CH 2044 R I B,CH

2011 R I B,CH 2028 R I B,CH 2045 R I B,CH

2012 R I B,CH 2029 R I B,CH 2046 R I B,CH

2013 R I B,CH 2030 R I B,CH 2047 R I B,CH

2014 R I B,CH 2031 R I B,CH 2048 R I B,CH

2015 R I B,CH 2032 R I B,CH 2049 R I B,CH

2016 R I B,CH 2033 R I BCH 2050 R I BCH

Note: Ci denotes cluster “i” ; B = Brazil; R = Russia; I = India; CH = China.

Table 3.4: Composition of Fuzzy Clusters for G6 Countries (c = 3)
Year C1 C2 C3 Year C1 C2 C3 Year C1 C2 C3

2000 J, U F, G, K I 2017 U F, G, I J, K 2034 U J, K F, G, I

2001 J, U F, G, K I 2018 U F, G, I J, K 2035 U J, K F, G, I

2002 J, U F, G, K I 2019 U F, G, I J, K 2036 U J, K F, G, I

2003 J, U K F, G, I 2020 U F, G, I J, K 2037 U J, K F, G, I

2004 J, U K F, G, I 2021 J, U F, G, I K 2038 U J, K F, G, I

2005 J, U K F, G, I 2022 J, U F, G, I K 2039 U J, K F, G, I

2006 J, U F, G, I K 2023 J, U F, G, I K 2040 U J, K F, G, I

2007 J, U F, G, I K 2024 J, U K F, G, I 2041 U J, K F, G, I

2008 J, U F, G, I K 2025 J, U K F, G, I 2042 U J, K F, G, I

2009 U F, G, I J, K 2026 J, U K F, G, I 2043 U J, K F, G, I

2010 U F, G, I J, K 2027 J, U K F, G, I 2044 U J, K F, G, I

2011 U F, G, I J, K 2028 J, U K F, G, I 2045 U J, K F, G, I

2012 U F, G, I J, K 2029 J, U K F, G, I 2046 U J, K F, G, I

2013 U F, G, I J, K 2030 J, U K F, G, I 2047 U J, K F, G, I

2014 U F, G, I J, K 2031 J, U K F, G, I 2048 U J, K F, G, I

2015 U F, G, I J, K 2032 J, U K F, G, I 2049 U J, K F, G, I

2016 U F, G, I J, K 2033 U J, K F, G, I 2050 U J, K F, G, I

Note: Ci denotes cluster “i” ; F = France; G = Germany; I = Italy; J = Japan; U = U.S.A; K = U.K.
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3.5 Conclusion

The issue of projected convergence of per capita GDP among the G6 and BRIC

countries using the Fuzzy c-means clustering algorithm is discussed. We find

that by 2050, per capita GDP of all the four countries of BRIC will tend towards

convergence. On the other hand, the degree of convergence is less among G6

countries but they show stable growth pattern. We have tested the convergence

only by FCM algorithm, while the same can be tested by different classification

techniques and the results may be compared. Moreover, the accuracy of this

work depends on the accuracy of the data projected by Goldman Sachs Report

(2003).
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Chapter 4

Fuzzy Information Measures

4.1 Introduction

Uncertainty and fuzziness are the basic nature of human thinking and of many

real world objectives. Fuzziness is found in our decision, in our language and in

the way we process information. The main use of information is to remove un-

certainty and fuzziness. In fact, we measure information supplied by the amount

of probabilistic uncertainty removed in an experiment and the measure of un-

certainty removed is also called as a measure of information while measure of

fuzziness is the measure of vagueness and ambiguity of uncertainties.

Shannon (1948) used “entropy” to measure uncertain degree of the random-

ness in a probability distribution. Let X is a discrete random variable with

probability distribution P = (p1, p2, ..., pn) in an experiment. The information

contained in this experiment is given by

H(P ) = −
n∑

i=1

pi log pi, (4.1.1)

which is well known Shannon entropy.

The concept of entropy has been widely used in different areas, e.g., commu-
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nication theory, statistical mechanics, finance, pattern recognition, and neural

network etc. Fuzzy set theory developed by Lofti A. Zadeh (1965) has found

wide applications in many areas of science and technology, e.g., clustering, image

processing, decision making etc. because of its capability to model non-statistical

imprecision or vague concepts.

Zadeh developed the concept of fuzzy set and defined the entropy of a fuzzy

set, which is different from the classical Shannon entropy as no probabilistic

concept is needed in order to define it. It may be noted that fuzzy entropy

deals with vagueness and ambiguous uncertainties, while Shannon entropy deals

with randomness (probabilistic) of uncertainties. Fuzzy entropy is a measure of

fuzziness of a set which arises from the intrinsic ambiguity or vagueness carried

by the fuzzy set.

It may be recalled that a fuzzy subset A in U (universe of discourse) is

characterized by a membership function µA : U → [0, 1] which represents the

grade of membership of x ∈ U in A as follows:

µA(x) =





0, if x /∈ A and there is no ambiguity,

1, if x ∈ A and there is no ambiguity,

0.5, if there is maximum ambiguity whether x ∈ A or x /∈ A

In fact µA(x) associates with each x ∈ U , a grade of membership in the set

A. When µA(x) is valued in {0, 1}, it is the characteristic function of a crisp

(nonfuzzy) set.

Two fuzzy sets A and B are said to be fuzzy-equivalent if µB(xi) = either

µA(xi) or 1−µA(xi) for each value of i. It is clear that fuzzy-equivalent sets have

the same entropy, but two sets may have the same fuzzy entropy without being

fuzzy equivalent. From the fuzziness point of view there is no essential difference

between fuzzy equivalent sets. A standard fuzzy set is that member of the class

of fuzzy equivalent sets all of whose membership value are less than or equal to

0.5.
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A fuzzy set A∗ is called a sharpened version of A if the following conditions

are satisfied:

µA∗(xi) ≤ µA(xi), if µA(xi) ≤ 0.5; ∀i

and

µA∗(xi) ≥ µA(xi), if µA(xi) ≥ 0.5; ∀i.

It may be noted that if x1, x2, ..., xn are members of the universe of discourse,

then all µA(x1), µA(x2),. . . ,µA(xn) lie between 0 and 1, but these are not proba-

bilities because their sum is not unity. However,

ΦA(xi) =
µA(xi)

n∑
i=1

µA(xi)
; i = 1, 2, . . . , n, (4.1.2)

is a probability distribution.

Kaufman (1980) defined entropy of a fuzzy set A having n support points by

H(A) = − 1

log n

n∑
i=1

ΦA(xi) log ΦA(xi). (4.1.3)

Since µA(x) and 1 − µA(x) gives the same degree of fuzziness, therefore,

analogous to the entropy due to Shannon (1948), De Luca and Termini (1972)

suggested the following measure of fuzzy entropy:

H(A) = −
n∑

i=1

[µA(xi) log µA(xi) + (1− µA(xi)) log (1− µA(xi))]. (4.1.4)

De Luca and Termini introduced a set of four properties and these properties

are widely accepted as a criterion for defining any new fuzzy entropy. In fuzzy

set theory, the entropy is a measure of fuzziness which expresses the amount of

average ambiguity/difficulty in making a decision whether an element belongs to

a set or not. So, a measure of average fuzziness H(A) in a fuzzy set should have

at least the following properties to be valid fuzzy entropy:
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• P1 (Sharpness): H(A) is minimum if and only if A is a crisp set i.e.,

µA(x) = 0 or 1; ∀x.

• P2 (Maximality): H(A) is maximum if and only if A is most fuzzy set i.e.,

µA(x) = 0.5; ∀x.

• P3 (Resolution): H(A) ≥ H(A∗), where A∗ is sharpened version of A.

• P4 (Symmetry): H(A) = H(Ā), where Ā is the complement of A i.e.,

µĀ(xi) = 1− µA(xi).

Later on Bhandari and Pal (1993) made a survey on information measures on

fuzzy sets and gave some new measures of fuzzy entropy. Analogous to Rényi’s

(1961) entropy they have suggested the following measure:

Hα(A) =
1

1− α

n∑
i=1

log [µα
A(xi) + (1− µA(xi))

α]; α 6= 1, α > 0 (4.1.5)

and analogous to Pal and Pal’s (1989) exponential entropy they introduced

He(A) =
1

n
√

e− 1

n∑
i=1

log
[
µA(xi)e

1−µA(xi) + (1− µA(xi)) eµA(xi) − 1
]
. (4.1.6)

Kapur (1997) has given measure of fuzzy entropy analogous to Havrda and

Charvát’s (1967) entropy as

Hα(A) =
1

1− α

n∑
i=1

[µα
A(xi) + (1− µA(xi))

α − 1]. (4.1.7)

Further, Parkash (1998) proposed a measure of fuzzy entropy containing two real

parameters α and β as

Hβ
α(A) =

1

[(1− α) β]

n∑
i=1

[
{µα

A(xi) + (1− µA(xi))
α}β − 1

]
; (4.1.8)

where α 6= 1, α > 0, β 6= 0. The fuzzy entropy given by (4.1.8) may be called

as (α, β) fuzzy entropy. The fuzzy entropies (4.1.4) and (4.1.5) are limiting cases

whereas (4.1.7) is a particular case of (4.1.8).
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A large number of measures of entropy, directed divergence and symmetric

divergence for probability distributions are known (refer to Aczél and Daróczy

(1975), Taneja (2005)). Analogously, there is a set of variety of measures for

fuzzy sets available. Cross-entropy measure is also known as the information

discrepancy between two probability distributions. Derived from cross-entropy,

fuzzy directed divergence measures the dissimilarity between two fuzzy sets.

Kullback and Leibler (1951) obtained the measure of directed divergence

of probability distribution P = (p1, p2, . . . , pn) from the probability distribution

Q = (q1, q2, . . . , qn) as

D(P : Q) =
n∑

i=1

pi log
pi

qi

. (4.1.9)

Kullback (1959) suggested the measure of symmetric divergence as

J(P : Q) =
n∑

i=1

(pi − qi) log
pi

qi

. (4.1.10)

Let A and B be two standard fuzzy sets with same supporting points x1,

x2, . . . ,xn and with fuzzy vectors µA(x1), µA(x2), . . . , µA(xn) and µB(x1), µB(x2),

. . . , µB(xn). The simplest measure of fuzzy directed divergence as suggested by

Bhandari and Pal (1993), is

I(A,B) =
n∑

i=1

[
µA(xi) log

µA(xi)

µB(xi)
+ (1− µA(xi)) log

(1− µA(xi))

(1− µB(xi))

]
(4.1.11)

and the analogous symmetric divergence measure by

J(A, B) = I(A,B) + I(B,A),

which on simplification gives

J(A,B) =
n∑

i=1

[(µA(xi)− µB(xi)] log
µA(xi)(1− µA(xi))

µB(xi)(1− µB(xi))
. (4.1.12)

It is important to notice that if we take B = AF (the most fuzzy set) i.e.

µB(xi) = 0.5; ∀ i, then from (4.1.11) and (4.1.4) we have
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I(A,AF ) = n log 2−
[
−

n∑
i=1

µA(xi) log µA(xi) + (1− µA(xi)) log(1− µA(xi))

]

or I(A,AF ) = n log 2−H(A). (4.1.13)

Kapur (1997) suggested that (4.1.13) will hold whatever be the measure of di-

rected divergence we use. Thus from every measure of directed divergence for

fuzzy sets we can deduce a corresponding measure of entropy for a fuzzy set.

In literature, a number of measures of fuzzy entropy analogous to the various

information measures have been proposed in order to combine the fuzzy set theory

and its application to the entropy concept as fuzzy information measurements.

The uncertainty is the state of being uncertain (not certain to occur) which

gives rise to fuzziness and ambiguity. Ambiguity can be viewed in non-specificity

(indistinguishable alternatives) and conflict (distinguishable alternatives) while

fuzziness can be viewed as lack of distinction between a set and its complement

and vagueness is non-specific knowledge about lack of distinction. Thus the

measure of total fuzzy ambiguity can be obtained by taking the sum of measure

of fuzzy directed divergence and corresponding measure of fuzzy entropy. From

(4.1.4) and (4.1.11), we have

TA = −
n∑

i=1

µA(xi) log µA(xi)−
n∑

i=1

(1− µA(xi)) log(1− µA(xi))

+
n∑

i=1

[
µA(xi) log

µA(xi)

µB(xi)
+ (1− µA(xi)) log

(1− µA(xi))

(1− µB(xi))

]

or

TA = −
n∑

i=1

µA(xi) log µB(xi)−
n∑

i=1

(1− µA(xi)) log(1− µB(xi)). (4.1.14)

If we subtract directed divergence of fuzzy set A and fuzzy set C from the directed

divergence of fuzzy set A and fuzzy set B, we get the reduction in ambiguity in

revising B to C and obtain a measure, which can be called fuzzy information

improvement measure.
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In the present chapter, two new generalized measures of fuzzy directed diver-

gence are introduced and studied in Section 4.2. Their particular cases have also

been discussed. In Section 4.3, we have obtained the measures of total ambiguity.

In Section 4.4, new generalized measures of fuzzy information improvement are

defined and discussed.

4.2 Generalized Measures of Fuzzy Directed Di-

vergence

Havrda and Charvát (1967) defined the directed divergence measure of a prob-

ability distribution P = (p1, p2, . . . , pn) from another probability distribution

Q = (q1, q2, . . . , qn) as

Dβ(P : Q) =
1

β − 1

n∑
i=1

(pβ
i q1−β

i − 1); β > 0, β 6= 1, (4.2.1)

which is called the generalized directed divergence of degree β.

The following measure of symmetric divergence was proposed by Kullback

(1959):

Jβ(P : Q) = Dβ(P : Q)+Dβ(Q : P ) =
1

β − 1

n∑
i=1

(pβ
i q1−β

i + qβ
i p1−β

i − 2), (4.2.2)

which is also called a distance measure of degree β. The measures (4.2.1) and

(4.2.2) have been further generalized and applied by Taneja (2005) in Markov

chains, comparison of experiments, etc.

Analogous to the measure (4.2.1) and (4.2.2), Hooda (2004) suggested the

following measures of fuzzy directed divergence:

Iβ(A,B) =
1

β − 1

n∑
i=1

[
µβ

A(xi)µ
1−β
B (xi) + (1− µA(xi))

β(1− µB(xi))
1−β − 1

]

(4.2.3)
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and

Jβ(A,B) = Iβ(A,B) + Iβ(B, A) (4.2.4)

respectively.

Further, it is proved that Iβ(A,B) ≥ 0 for all β( 6= 1) > 0 and it vanishes

only when A = B, which shows that (4.2.3) is a valid measure of fuzzy directed

divergence of fuzzy set A and B. Hence, Jβ(A,B) is a valid fuzzy symmetric

divergence measure.

4.2.1 Fuzzy Directed Divergence of order α

Analogous to Rényi’s measure (1961) of directed divergence

Dα(P,Q) =
1

α− 1
log

(
n∑

i=1

pα
i q1−α

i

)
; α 6= 1, α > 0, (4.2.5)

we define the following measure of fuzzy directed divergence of fuzzy set A from

fuzzy set B:

Iα(A,B) =
1

α− 1

n∑
i=1

log
[
µα

A(xi)µ
1−α
B (xi) + (1− µA(xi))

α(1− µB(xi))
1−α

]
;

(4.2.6)

where α 6= 1, α > 0 and measure of fuzzy symmetric divergence

Jα(A,B) = Iα(A,B) + Iα(B, A). (4.2.7)

The measures (4.2.6) and (4.2.7) are called the generalized measures of order α.

Next, we show that Iα(A, B) is a valid fuzzy directed divergence measure.

Iα(A,B) is a valid measure only if it is non-negative. So it is proved that

Iα(A,B) ≥ 0 with equality if µA(xi) = µB(xi) for each i = 1, 2, . . . , n.

Let
n∑

i=1

µA(xi) = s,
n∑

i=1

µB(xi) = t.
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Then
1

α− 1

[
n∑

i=1

(
µA(xi)

s

)α (
µB(xi)

t

)1−α

− 1

]
≥ 0

or
1

α− 1

n∑
i=1

µα
A(xi)µ

1−α
B (xi) ≥ 1

α− 1
sαt1−α . (4.2.8)

Similarly,

1

α− 1

n∑
i=1

(1− µA(xi))
α(1− µB(xi))

1−α ≥ 1

α− 1
(n− s)α(n− t)1−α (4.2.9)

Case 1 : When 0 < α < 1,

i.e. 1
α−1

< 0 then from (4.2.8) and (4.2.9) we have

n∑
i=1

µα
A(xi)µ

1−α
B (xi) + (1− µA(xi))

α(1− µB(xi))
1−α ≤ sαt1−α+(n−s)α(n−t)1−α ,

(4.2.10)

where

µα
A(xi)µ

1−α
B (xi) + (1− µA(xi))

α(1− µB(xi))
1−α < 1 but very close to 1,

∀i = 1, 2, . . . , n

and

sαt1−α + (n− s)α(n− t)1−α < n but very close to n.

It implies

n∑
i=1

log
[
µα

A(xi)µ
1−α
B (xi) + (1− µA(xi))

α(1− µB(xi))
1−α

]
<<

n∑
i=1

µα
A(xi)µ

1−α
B (xi) + (1− µA(xi))

α(1− µB(xi))
1−α.

Or

n∑
i=1

log
[
µα

A(xi)µ
1−α
B (xi) + (1− µA(xi))

α(1− µB(xi))
1−α

] ≤

sαt1−α + (n− s)α(n− t)1−α − n.

(4.2.11)
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Though left hand side and right hand side of (4.2.11) are negative but the

absolute value of right hand side is less than the absolute value of left hand side.

Therefore, multiplying both sides of (4.2.11) by 1
α−1

, we get

Iα(A,B) ≥ 1

α− 1
[sαt1−α + (n− s)α(n− t)1−α − n]. (4.2.12)

For the sake of simplicity and constructing Table 4.1, we denote

a = sαt1−α + (n− s)α(n− t)1−α − n;

bi = µα
A(xi)µ

1−α
B (xi) + (1− µA(xi))

α(1− µB(xi))
1−α, i = 1, 2, . . . , n;

c =
n∑

i=1

log(bi) and

d = Iα(A,B).

Case 2 : When α > 1,

i.e. 1
α−1

> 0, then from (4.2.8) and (4.2.9) we have

n∑
i=1

bi ≥ sαt1−α + (n− s)α(n− t)1−α .

Similarly, it can be verified that

n∑
i=1

log(bi) ≥ [sαt1−α + (n− s)α(n− t)1−α − n]. (4.2.13)

Multiplying both sides of (4.2.11) by 1
α−1

, we get (4.2.12) in Case 2 also.

Further, let

ψ(s) =
1

α− 1
[sαt1−α + (n− s)α(n− t)1−α − n],

then

ψ′(s) =
1

α− 1

[
α

(s

t

)α−1

− α

(
n− s

n− t

)α−1
]

,

and

ψ′′(s) =

[
α

t

(s

t

)α−2

+
α

n− t

(
n− s

n− t

)α−2
]
.
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Clearly, ψ′′(s) > 0 which shows that ψ(s) is a convex function of s whose

minimum value arises when s
t

= n−s
n−t

= n
n

= 1. Now if A = B i.e., s = t, then

ψ(s) = 0. Hence, ψ(s) > 0 and vanishes only when s = t.

Thus for all α > 0, Iα(A,B) ≥ 0 and vanishes only when A = B.

Therefore, Iα(A, B) is a valid measure of directed divergence of fuzzy sets A

and B. Consequently, Jα(A,B) is a valid measure of symmetric divergence.

Particular Cases:

• lim
α→1

Iα(A,B) = I(A,B) and lim
α→1

Jα(A,B) = J(A, B),

where I(A,B) and J(A, B) are the fuzzy directed divergence and symmetric

divergence measures given by (4.1.11) and (4.1.12) respectively.

• Let B = AF , the most fuzzy set, i.e. µB(xi) = 0.5 ∀xi , then

Iα(A,AF ) = 1
α−1

n∑
i=1

log [µα
A(xi)(0.5)1−α + (1− µA(xi))

α(0.5)1−α]

= 1
α−1

[
n∑

i=1

log(0.5)1−α +
n∑

i=1

log [µα
A(xi) + (1− µA(xi))

α]

]

= 1
α−1

[
n∑

i=1

(α− 1) log 2 +
n∑

i=1

log [µα
A(xi) + (1− µA(xi))

α]

]

= n log 2− 1
1−α

log
n∑

i=1

[µα
A(xi) + (1− µA(xi))

α].

Thus Iα(A,AF ) = n log 2− (Entropy of the fuzzy set).

Example 4.1 : Let A = (0.1, 0.3, 0.4, 0.2, 0.1) and B = (0.3, 0.5, 0.3, 0.1, 0.2)

be two arbitrary standard fuzzy sets. Case 1 and Case 2 both can be verified

from the computed Table 4.1 given below:
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Table 4.1

α a b1 b2 b3 b4 b5 c d

0.1 -0.0044 0.9866 0.9922 0.9980 0.9966 0.9961 -0.0440 0.0489

0.2 -0.0078 0.9769 0.9862 0.9965 0.9939 0.9932 -0.0774 0.0967

0.5 -0.0120 0.9669 0.9789 0.9945 0.9899 0.9899 -0.1164 0.2327

0.7 -0.0100 0.9737 0.9825 0.9953 0.9912 0.9919 -0.0952 0.3175

0.9 -0.0042 0.9893 0.9926 0.9980 0.9961 0.9966 -0.0397 0.3976

1.2 0.0111 1.0267 1.0196 1.0055 1.0111 1.0085 0.1020 0.5100

1.5 0.0343 1.0782 1.0606 1.0174 1.0371 1.0253 0.3070 0.6140

2.0 0.0893 1.1905 1.1600 1.0476 1.1111 1.0625 0.7722 0.7722

5.0 0.7909 2.4606 2.7280 1.5881 3.6994 1.4479 5.8353 1.4588

10.0 3.1409 8.6406 14.4658 5.4772 102.6772 2.5981 17.4785 1.9420

4.2.2 Fuzzy Directed Divergence of order α and type β

Sharma and Mittal (1975) characterized non-additive entropy of discrete proba-

bility distribution given by

Hβ
α(P ) =

1

21−β − 1




(
n∑

i=1

pα
i

) β−1
α−1

− 1


; (4.2.14)

where α 6= 1, α > 0, β > 0, β 6= 1.

Hooda (2004) suggested the following fuzzy entropy analogous to (4.2.14):

Hβ
α(A) = 1

21−β−1

n∑
i=1

[
(µα

A(xi) + (1− µA(xi))
α)

β−1
α−1 − 1

]
; (4.2.15)

where α 6= 1, α > 0, β > 0, β 6= 1.

Sharma and Mittal (1977) also studied the following generalized measure of

directed divergence:
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1

1− 21−β




(
n∑

i=1

pα
i q1−α

i

) β−1
α−1

− 1


; α 6= 1, α > 0, β > 0, β 6= 1. (4.2.16)

Analogous to (4.2.16), we define the following measures of fuzzy directed diver-

gence and symmetric fuzzy directed divergence:

Iβ
α(A, B) = 1

2β−1−1

n∑
i=1

[(
µα

A(xi)µ
1−α
B (xi) + (1− µA(xi))

α(1− µB(xi))
1−α

) β−1
α−1 − 1

]
;

(4.2.17)

where α 6= 1, α > 0, β > 0, β 6= 1

and

Jβ
α(A,B) = Iβ

α(A,B) + Iβ
α(B,A) (4.2.18)

respectively. We may call (4.2.17) as fuzzy directed divergence of order α and

type β.

Iβ
α(A,B) is a valid measure only if it is non-negative. We claim that Iβ

α(A,B) ≥
0 with equality if µA(xi) = µB(xi) for each i = 1, 2, . . . , n. From (4.2.17) it is

obvious that Iβ
α(A,B) = 0 if µA(xi) = µB(xi). Next, we prove that Iβ

α(A,B) > 0

for two different fuzzy sets empirically.

For the sake of simplicity and constructing the Tables 4.2 to 4.5, we denote

s =
n∑

i=1

µA(xi) ;

t =
n∑

i=1

µB(xi) ;

a = sαt1−α + (n− s)α(n− t)1−α − n;

ei = (bi)
β−1
α−1 − 1

=
(
µα

A(xi)µ
1−α
B (xi) + (1− µA(xi))

α(1− µB(xi))
1−α

) β−1
α−1−1, ∀i = 1, 2, . . . , n.

e =
n∑

i=1

ei and

f = Iβ
α(A,B).
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Further taking all the possible cases of α and β with two above considered

standard fuzzy sets in Example 4.1 of section 4.2. Next, we tabulate the values

given in Table 4.2 to 4.5.

Case 1: 0 < α < 1 and 0 < β < 1.

In this case 1
2β−1−1

< 0, β−1
α−1

> 0 and the computed values are presnted in

Table 4.2.

Table 4.2

α β e1 e2 e3 e4 e5 e Iβ
α(A,B)

0.2 0.6 -0.0116 -0.0069 -0.0017 -0.0030 -0.0034 -0.0267 0.110357

0.4 0.8 -0.0110 -0.0068 -0.0017 -0.0031 -0.0032 -0.0260 0.201301

0.1 0.5 -0.0074 -0.0043 -0.0010 -0.0018 -0.0021 -0.0169 0.057806

0.3 0.9 -0.0042 -0.0025 -0.0006 -0.0011 -0.0012 -0.0099 0.148134

0.6 0.4 -0.0459 -0.0300 -0.0079 -0.0147 -0.0141 -0.1128 0.331761

0.8 0.1 -0.0849 -0.0584 -0.016 -0.0303 -0.0270 -0.2168 0.467185

0.7 0.2 -0.0686 -0.0460 -0.0124 -0.0232 -0.0215 -0.1719 0.403862

0.5 0.7 -0.0199 -0.0127 -0.0033 -0.0060 -0.0060 -0.0480 0.256106

0.9 0.3 -0.0727 -0.0509 -0.0140 -0.0270 -0.0232 -0.1880 0.48921

Observation: In this case, Iβ
α(A,B) is a monotonic increasing function with

respect to α but not with respect to β.

Case 2: 0 < α < 1 and β > 1.

In this case 1
2β−1−1

> 0, β−1
α−1

< 0 and computed values are presented in Table

4.3.
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Table 4.3

α β e1 e2 e3 e4 e5 e Iβ
α(A,B)

0.2 1.5 0.0147 0.0086 0.0022 0.0038 0.0043 0.0337 0.08135

0.4 2 0.0568 0.0349 0.0088 0.0159 0.0166 0.1332 0.13323

0.1 2.5 0.0227 0.0131 0.0032 0.0056 0.0065 0.0513 0.028058

0.3 3 0.0890 0.0530 0.0132 0.0236 0.0255 0.2044 0.068157

0.6 3.5 0.2166 0.1356 0.0339 0.0637 0.0612 0.5111 0.109754

0.8 4 0.3445 0.2221 0.0552 0.1081 0.0958 0.8259 0.117996

0.7 4.5 0.3650 0.2290 0.0562 0.1083 0.0999 0.8586 0.083249

0.5 5 0.3086 0.1859 0.0452 0.0841 0.0841 0.7082 0.047215

0.9 5.5 0.6244 0.3993 0.0954 0.1930 0.1635 1.4758 0.068238

Observation: In this case, Iβ
α(A,B) is not a monotonic function with respect to

either α or with respect to β.

Case 3: α > 1 and 0 < β < 1.

In this case 1
2β−1−1

< 0, β−1
α−1

< 0 and the computed values are presented in

Table 4.4.

Table 4.4

α β e1 e2 e3 e4 e5 e Iβ
α(A,B)

1.5 0.1 -0.1268 -0.1005 -0.0305 -0.0635 -0.0440 -0.3653 0.787088

2 0.2 -0.1302 -0.1120 -0.0365 -0.0808 -0.0473 -0.4069 0.955849

2.5 0.3 -0.1250 -0.1149 -0.0402 -0.0942 -0.0472 -0.4216 1.096671

3 0.4 -0.1143 -0.1110 -0.0415 -0.1021 -0.0446 -0.4135 1.215378

3.5 0.5 -0.1000 -0.1014 -0.0404 -0.1036 -0.0399 -0.3853 1.315536

4 0.6 -0.0831 -0.0874 -0.0369 -0.0977 -0.0338 -0.3389 1.399456

4.5 0.7 -0.0643 -0.0697 -0.0310 -0.0843 -0.0265 -0.2758 1.468905

5 0.8 -0.0440 -0.0489 -0.0229 -0.0633 -0.0183 -0.1975 1.525482

5.5 0.9 -0.0225 -0.0256 -0.0125 -0.0351 -0.0095 -0.1052 1.570742

Observation: In this case, Iβ
α(A,B) is a monotonic increasing function with
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respect to α and β together. In other words, if we do not take any one parameter

in increasing order, then monotonicity may lost.

Case 4: α > 1 and β > 1.

In this case 1
2β−1−1

> 0, β−1
α−1

> 0 and the computed values are presented in

Table 4.5.

Table 4.5

α β e1 e2 e3 e4 e5 e Iβ
α(A,B)

1.5 2.5 0.2536 0.1931 0.0530 0.1154 0.0779 0.6930 0.37903

2 3.5 0.5463 0.4493 0.1233 0.3013 0.1636 1.5839 0.34013

2.5 2 0.2102 0.1905 0.0604 0.1518 0.0716 0.6845 0.68450

3 4 0.8350 0.8005 0.2363 0.7138 0.2559 2.8416 0.40594

3.5 1.5 0.1111 0.1129 0.0421 0.1155 0.0416 0.4232 1.02168

4 5 1.3806 1.4957 0.4568 1.7954 0.4100 5.5384 0.36923

4.5 4.5 1.1711 1.3229 0.4446 1.7925 0.3680 5.0991 0.49440

5 5.5 1.7537 2.0926 0.6826 3.3566 0.5164 8.4020 0.38849

5.5 3 0.5776 0.6797 0.2855 1.0441 0.2093 2.7962 0.93208

Observation: In this case, Iβ
α(A,B) is not a monotonic function with respect to

either α or with respect to β.

In all the cases including the case of α = β, we observe that Iβ
α(A,B) >

0. Hence, for all α, β > 0, Iβ
α(A,B) ≥ 0 and vanishes only when A = B.

Thus Iβ
α(A,B) is a valid measure of directed divergence of fuzzy sets A and B.

Consequently, Jβ
α(A,B) is a valid measure of symmetric divergence. It may be

noted that similar tables can be constructed for any two standard fuzzy sets and

we shall see the same results obtained above.

Particular Cases:

• lim
β→1

Iβ
α(A,B) = Iα(A,B) and lim

β→1
Jβ

α(A,B) = Jα(A,B).
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• Let B = AF , the most fuzzy set, i.e. µB(xi) = 0.5 ∀xi , then

Iβ
α(A,AF ) = 1

2β−1−1

n∑
i=1

[
(µα

A(xi)(0.5)1−α + (1− µA(xi))
α(0.5)1−α)

β−1
α−1 − 1

]

= 1
2β−1−1

. 1
21−β

n∑
i=1

[
(µα

A(xi) + (1− µA(xi))
α)

β−1
α−1 − 21−β

]

= 1
1−21−β

n∑
i=1

[
(µα

A(xi) + (1− µA(xi))
α)

β−1
α−1 − 21−β

]

= −n.21−β

1−21−β + 1
1−21−β

n∑
i=1

[
(µα

A(xi) + (1− µA(xi))
α)

β−1
α−1 − 1

]
+ n

1−21−β

= n−Hβ
α(A)

Thus Iβ
α(A,AF ) = n−(Entropy of the fuzzy set).

4.3 Measures of Total Ambiguity

Let A and B be two fuzzy sets. The total ambiguity of the fuzzy set A about set

B is the sum of two components:

• Fuzzy entropy present in the fuzzy set A.

• Fuzzy directed divergence of A from B measured by I(A,B).

Using Havrda and Charvát measure, Kapur (1997) estimated the total am-

biguity as

TA =
1

1− α

n∑
i=1

[µα
A(xi) + (1− µA(xi))

α − 1]

+
1

α− 1

[
n∑

i=1

µα
A(xi)µ

1−α
B (xi) +

n∑
i=1

(1− µA(xi))
α(1− µB(xi))

1−α − 1

]

=
1

1− α

[
n∑

i=1

µα
A(xi)(1− µ1−α

B (xi)) +
n∑

i=1

(1− µA(xi))
α
(
1− (1− µB(xi))

1−α
)
]
.

Corresponding to fuzzy entropy (4.1.5) and fuzzy directed divergence (4.2.6),

we have total ambiguity given by
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TA =
1

1− α

n∑
i=1

log [µα
A(xi) + (1− µA(xi))

α]

+
1

α− 1

n∑
i=1

log
[
µα

A(xi)µ
1−α
B (xi) + (1− µA(xi))

α(1− µB(xi))
1−α

]

=
1

α− 1
log

[(
µα

A(xi)µ
1−α
B (xi) + (1− µA(xi))

α(1− µB(xi))
1−α

µα
A(xi) + (1− µA(xi))α

)]
.

Similarly, corresponding to the fuzzy entropy (4.2.15) and fuzzy directed

divergence (4.2.17), we have following measure of total ambiguity:

TA =
1

21−β − 1

n∑
i=1

[
(µα

A(xi) + (1− µA(xi))
α)

β−1
α−1 − 1

]

+
1

2β−1 − 1

n∑
i=1

[(
µα

A(xi)µ
1−α
B (xi) + (1− µA(xi))

α(1− µB(xi))
1−α

) β−1
α−1 − 1

]
.

Total ambiguity is a fuzzy measure of inaccuracy analogous to Kerridge

(1961) inaccuracy and is related to two fuzzy sets. It is not symmetric as we

get something different if we interchange the role of the fuzzy sets A and B.

4.4 Generalized Fuzzy Information Improvement

Measures

Let P and Q be observed and predicted distributions respectively of a random

variable. Let R = (r1, r2, . . . , rn) be the revised probability distribution of Q,

then

D(P : Q)−D(P : R) =
n∑

i=1

pi log
ri

qi

(4.4.1)

which is known as Theil’s (1967) measure of information improvement and has

found wide applications in economics, accounts and financial management.
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Similarly, suppose the correct fuzzy set is A and originally our estimate for it

was the fuzzy set B that was revised to set C, the original ambiguity was I(A,B)

and finally ambiguity is I(A,C), so the reduction in ambiguity is

I(A,B)− I(A,C) =
n∑

i=1

[
µA(xi) log

µC(xi)

µB(xi)
+ (1− µA(xi)) log

(1− µC(xi))

(1− µB(xi))

]
.

(4.4.2)

(4.4.2) can be called fuzzy information improvement measure.

In case of fuzzy directed divergence given by (4.2.6), the reduction in ambi-

guity is given by

Iα(A,B)− Iα(A,C) = Iα(A,B, C)

=
1

α− 1

[
n∑

i=1

log
[
µα

A(xi)µ
1−α
B (xi) + (1− µA(xi))

α(1− µB(xi))
1−α

]

−
n∑

i=1

log
[
µα

A(xi)µ
1−α
C (xi) + (1− µA(xi))

α(1− µC(xi))
1−α

]
]

=
1

α− 1

[
n∑

i=1

log
µα

A(xi)µ
1−α
B (xi) + (1− µA(xi))

α(1− µB(xi))
1−α

µα
A(xi)µ

1−α
C (xi) + (1− µA(xi))α(1− µC(xi))1−α

]
,

(4.4.3)

which can be called the generalized fuzzy information improvement measure of

order α.

Corresponding to the fuzzy directed divergence (4.2.17), the reduction in

ambiguity is given by

Iβ
α(A,B)− Iβ

α(A,C) = Iβ
α(A,B, C)

= 1
2β−1−1

n∑
i=1





(
µα

A(xi)µ
1−α
B (xi) + (1− µA(xi))

α(1− µB(xi))
1−α

) β−1
α−1

− (
µα

A(xi)µ
1−α
C (xi) + (1− µA(xi))

α(1− µC(xi))
1−α

) β−1
α−1





,

which can be called the generalized measure of fuzzy information improvement

of order α and type β.
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Chapter 5

Monotonicity and Maximum

Fuzziness of Generalized Fuzzy

Information Measures

5.1 Introduction

A large number of measures of entropy, directed divergence, symmetric diver-

gence and their properties for probability distribution are known (refer to Taneja

(2005)). Analogously, there are various measures available for fuzzy sets with

their properties.

Sharma and Mittal (1975) characterized the following non-additive entropies

of discrete probability distribution:

Hβ(P ) =
1

21−β − 1

[
2

(β−1)
n∑

i=1
pi log pi − 1

]
; (5.1.1)
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where β > 0, β 6= 1 and

Hβ
α(P ) =

1

21−β − 1




(
n∑

i=1

pα
i

) β−1
α−1

− 1


; (5.1.2)

where α 6= 1, α > 0, β > 0, β 6= 1.

In particular, when α → 1, (5.1.2) tends to (5.1.1).

Analogous to the entropies (5.1.1) and (5.1.2), Hooda (2004) suggested the

following measures of fuzzy entropies respectively:

Hβ(A) =
1

1− β

[
2

(β−1)
n∑

i=1
µA(xi) log µA(xi)+(1−µA(xi)) log(1−µA(xi)) − 1

]
; (5.1.3)

where β > 0, β 6= 1 and

Hβ
α(A) =

1

1− β

n∑
i=1

[
(µα

A(xi) + (1− µA(xi))
α)

β−1
α−1 − 1

]
; (5.1.4)

where α 6= 1, α > 0, β > 0, β 6= 1.

In particular, when α → 1, (5.1.4) tends to (5.1.3).

Sharma and Mittal (1977) also characterized the following generalized mea-

sure of directed divergence:

Dβ
α(P : Q) =

1

1− 21−β




(
n∑

i=1

pα
i q1−α

i

) β−1
α−1

− 1


; (5.1.5)

where α 6= 1, α > 0, β > 0, β 6= 1.

Analogous to (5.1.5), we have defined a measure of fuzzy directed divergence in

Chapter 4, which is given by

Iβ
α(A,B) = 1

2β−1−1

n∑
i=1

[(
µα

A(xi)µ
1−α
B (xi) + (1− µA(xi))

α(1− µB(xi))
1−α

) β−1
α−1 − 1

]
;

(5.1.6)

where α 6= 1, α > 0, β > 0, β 6= 1.
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Kapur (1987) has proved that for any given probability distribution the mea-

sure of entropy is monotonic decreasing function and corresponding directed di-

vergence is monotonic increasing function of the parameter involved. Kapur

(1997) also proved the monotonocity of Havrda and Charvát’s measure of fuzzy

entropy and fuzzy directed divergence.

Although, there is some parallelism between probability measures and fuzzy

measures, the results for fuzzy measures are not very obvious since these are not

identical. Let P and Q be two probability distributions of a discrete random

variable and let A and B be two fuzzy sets. The essential differences between

these two are:

• While
n∑

i=1

pi = 1,
n∑

i=1

qi = 1,
n∑

i=1

µA(xi) and
n∑

i=1

µB(xi) are not necessarily

unity.

• While for probability distributions only p1, p2, . . . , pn and q1, q2, . . . , qn are

involved, here in addition to µA(x1), µA(x2), . . .,µA(xn) and µB(x1), µB(x2),

. . ., µB(xn) the expressions also involve 1−µA(x1), 1−µA(x2),. . . , 1−µA(xn);

1− µB(x1), 1− µB(x2), . . ., 1− µB(xn).

• In (5.1.2) we have power of summation but in (5.1.4) we have summation

of powers.

Parkash (1998) proved that the (α, β) fuzzy entropy given by (4.1.8) is mono-

tonically decreasing function of α i.e., for fixed value of β, (α, β) fuzzy entropy

decreases from n
β
(2β − 1) to 0 as α goes from 0 to ∞. Also, (α, β) fuzzy entropy

is an increasing function of β for 0 < α < 1 and is decreasing function of β for

α > 1.

In this chapter we investigate the monotonic property with respect to the pa-

rameters involved in case of generalized measures of fuzzy information and fuzzy

directed divergence given by (5.1.4) and (5.1.6) in section 5.2 and section 5.3
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respectively. Particular cases and comparison between probabilistic entropy and

fuzzy entropy are also studied. Further, particular cases and comparison be-

tween probabilistic directed divergence and fuzzy directed divergence have also

been discussed. In Section 5.4, the maximum fuzziness of the above mentioned

generalized measures of fuzzy information and fuzzy directed divergence have

been obtained.

5.2 Monotonicity of Generalized Measure of Fuzzy

Information

In this section we show that (5.1.4) is a monotonic decreasing function of α.

Differentiating (5.1.4) with respect to α, we get

d

dα

(
Hβ

α(A)
)

=
1

1− β

n∑
i=1




(µα
A(xi) + (1− µA(xi))

α)
β−1
α−1

.

.


 − β−1

(α−1)2
. log (µα

A(xi) + (1− µA(xi))
α) +

β−1
α−1

µα
A(xi). log µA(xi)+(1−µA(xi))

α log(1−µA(xi))

µα
A(xi)+(1−µA(xi))α





.

⇒ d

dα

(
Hβ

α(A)
)

=
1

(α− 1)2

n∑
i=1

(µα
A(xi) + (1− µA(xi))

α)
β−1
α−1

.[(1− α)f(xi) + g(xi)],

(5.2.1)

where

(1−α)f(xi) = (1−α)
µα

A(xi). log µA(xi) + (1− µA(xi))
α log(1− µA(xi))

µα
A(xi) + (1− µA(xi))α

(5.2.2)

and

g(xi) = log (µα
A(xi) + (1− µA(xi))

α) . (5.2.3)

Further, equation (5.2.1) can be written as

d

dα

(
Hβ

α(A)
)

=
1

(α− 1)2

n∑
i=1

[
(µα

A(xi) + (1− µA(xi))
α)

β−1
α−1

.
Mi

Ni

]
, (5.2.4)
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where

Mi = µα
A(xi). log µ1−α

A (xi) + (1− µA(xi))
α log(1− µA(xi))

1−α

+[µα
A(xi) + (1− µA(xi))

α] log [µα
A(xi) + (1− µA(xi))

α]
(5.2.5)

and

Ni = µα
A(xi) + (1− µA(xi))

α. (5.2.6)

Let

φ(s) = sα log s1−α+(1−s)α log(1−s)1−α+[sα+(1−s)α] log[sα+(1−s)α], (5.2.7)

so that φ(s) = φ(1− s), φ′(s) = −φ′(1− s) and φ(0) = φ(1) = 0.

Now from (5.2.7), we have

φ(s) = (λs1 +(1−λ)s2) log(λs1 +(1−λ)s2)−λs1 log s1− (1−λ)s2 log s2 (5.2.8)

where λ = s, 1− λ = 1− s, s1 = sα−1, s2 = (1− s)α−1.

Since s log s is a convex function of s, therefore

φ(s) ≤ 0, 0 ≤ s < 1 (5.2.9)

and

φ(µA(xi)) ≤ 0. (5.2.10)

From (5.2.5) and (5.2.10), it implies that Mi ≤ 0 and from (5.2.6) it is obvious

that Ni > 0. Therefore, from (5.2.4) we conclude that d
dα

(
Hβ

α(A)
) ≤ 0, which

show that Hβ
α(A) is a monotonic decreasing function of α.

Particular Cases:

• If AF is the most fuzzy set i.e., µAF
(xi) = 1

2
∀xi then from (5.1.4) with

simple calculations, we have Hβ
α(AF ) = n(21−β−1)

1−β
; which is independent of

α and from (5.2.4) we get d
dα

(
Hβ

α(AF )
)

= 0. However, for all other fuzzy

sets, Hβ
α(A) is a strictly monotonic decreasing function of α.
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• For α = 0, (5.1.4) gives Hβ
0 (A) = n(21−β−1)

1−β
≤ n ∀β (β 6= 1). In particular,

equality holds if β = 0, i.e., H0
0 (A) = n.

• For α →∞,

Hβ
∞(A) = lim

α→∞
1

1− β

n∑
i=1

[
(µα

A(xi) + (1− µA(xi))
α)

β−1
α−1 − 1

]
,

⇒ Hβ
∞(A) = 1

1−β

n∑
i=1

[
lim

α→∞
(µα

A(xi) + (1− µA(xi))
α)

β−1
α−1 − 1

]
,

= 1
1−β

n∑
i=1

[
lim

α→∞
2(1−β).

log [µα
A(xi)+(1−µA(xi))

α]
1−α − 1

]
,

= 1
1−β

n∑
i=1

[
lim

α→∞
2−(1−β).f(xi) − 1

]
;

where

f(xi) =
µα

A(xi). log µA(xi) + (1− µA(xi))
α log(1− µA(xi))

µα
A(xi) + (1− µA(xi))α

.

Further,

Hβ
∞(A) =

1

1 -β

n∑
i=1

[
2−(1−β). max .[log µA(xi); log(1−µA(xi))] − 1

]
. (5.2.11)

If each µA(xi) = 1
2

, then Hβ
α(A) = n(21−β−1)

1−β
≤ n ∀β (β 6= 1). Even if it is

independent of α, then also it is less than n and equality holds when β = 0. Thus

maximum value is always n, but the minimum value depends on set A and will

be zero if and only if the set is crisp.

Let A=(0.3, 0.4, 0.4, 0.2, 0.5) be any standard fuzzy set (one can choose any

fuzzy set). We have plotted the graph of Hβ
α(A) ∼ α for three different values of

β (but fixed), where α > 0 , α 6= 1, shown in Figure 5.1 which is based on the

computed Table 5.1. Figure 5.1 shows the monotonic decreasing nature of Hβ
α(A)

with respect to α i.e., the value of Hβ
α(A) decreases as α increases for different

values of β.

It may be observed that for β = 0.5, from (5.2.11) we calculate H0.5
∞ (A) =

2.618930 and the pattern in Table 5.1 agrees with this value. Similarly, for β = 2
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and β = 5, we calculate the value of Hβ
∞(A) from (5.2.11) which comes to be 1.8

and 1.00715 respectively, which shows convergence, refer to Table 5.1.

Similarly, it can be proved that Hβ
α(A) is monotonically decreasing function

with respect to β. In particular, for the above considered fuzzy set A=(0.3, 0.4,

0.4, 0.2, 0.5), the monotonic nature of Hβ
α(A) w.r.t. β can be observed in the

computed Table 5.2 and Figure 5.2.

Comparison Between Hβ
α(P ) and Hβ

α(A):

• If P is the uniform distribution i.e.,
(

1
n
, 1

n
, 1

n
, . . . , 1

n

)
or P is a degenerate

function then by (5.1.2), it is clear that Hβ
α(P ) is independent of α. Sim-

ilarly, observe that if A is the fuzziest set or A is crisp set then Hβ
α(A) is

independent of α.

• Both are monotonic decreasing function of α.

• When α →∞, Hβ
α(P ) → 1

21−β−1

n∑
i=1

[
2−(1−β). log pmax . − 1

]

while Hβ
α(A) → 1

1−β

n∑
i=1

[
2−(1−β). max .[log µA(xi); log(1−µA(xi))] − 1

]
.
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Table 5.1: Monotonic Nature of Fuzzy Entropy w.r.t. α
α H0.5

α (A) H2
α(A) H5

α(A)

0.1 4.092988 2.482408 1.16962

0.2 4.044955 2.464791 1.167248

0.4 3.952707 2.429751 1.162172

0.5 3.908683 2.412459 1.159484

0.8 3.785735 2.362192 1.150953

0.9 3.747885 2.346136 1.147997

1.01 3.708063 2.328952 1.144709

1.2 3.643668 2.300552 1.138993

1.3 3.611941 2.28629 1.135991

1.4 3.581647 2.272515 1.133009

1.5 3.552736 2.25923 1.130059

1.8 3.473731 2.222287 1.121488

2 3.426914 2.2 1.116072

5 3.042433 2.011328 1.06575

10 2.838211 1.91082 1.038378

20 2.724488 1.854173 1.022795

25 2.702424 1.842999 1.019641

30 2.687976 1.835641 1.017544

50 2.659731 1.821157 1.013368

100 2.639101 1.810494 1.010252

300 2.625604 1.80348 1.008182

500 2.622928 1.802086 1.007769

800 2.621427 1.801303 1.007537

1000 2.620927 1.801042 1.00746

→∞ 2.618930 1.8 1.00715
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Table 5.2: Monotonic Nature of Fuzzy Entropy w.r.t. β
β Hβ

0.5(A) Hβ
2 (A) Hβ

5 (A) Hβ
10(A)

0.1 4.508121 3.907157 3.439569 3.19135

0.2 4.347758 3.779167 3.334007 3.097658

0.3 4.194634 3.656635 3.232762 3.007682

0.4 4.04839 3.5393 3.135634 2.921253

0.5 3.908683 3.426914 3.042433 2.838211

0.6 3.775188 3.319241 2.952977 2.758403

0.7 3.647599 3.216059 2.867095 2.681685

0.8 3.525624 3.117156 2.784624 2.607917

0.9 3.408988 3.02233 2.705407 2.536968

1.01 3.286544 2.922502 2.621851 2.462032

1.2 3.088567 2.760453 2.485843 2.339819

1.3 2.990805 2.68012 2.418239 2.278958

1.4 2.897204 2.603001 2.35322 2.220348

1.5 2.807564 2.528949 2.290671 2.163892

2 2.412459 2.2 2.011328 1.91082

2.5 2.091664 1.929356 1.779387 1.699362

3 1.829423 1.7052 1.585537 1.521541

3.5 1.613548 1.518299 1.422459 1.371053

4 1.434581 1.361413 1.284369 1.242891

4.5 1.285149 1.228841 1.166684 1.133064

5 1.159484 1.116072 1.06575 1.038378

10 0.553984 0.550441 0.543279 0.538902

20 0.263157 0.263121 0.262881 0.262654

50 0.102041 0.102041 0.102041 0.102041

100 0.050505 0.050505 0.050505 0.050505

500 0.01002 0.01002 0.01002 0.01002

1000 0.005005 0.005005 0.005005 0.005005
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5.3 Monotonicity of Fuzzy Directed Divergence

Measure

Here we shall prove that Iβ
α(A,B) given by (5.1.6) is a monotonic increasing

function of α. Differentiating (5.1.6) with respect to α, we get

d

dα
Iβ
α(A, B) =

1

2β−1 − 1

n∑
i=1

[
(Xi)

β−1
α−1 .

{
β − 1

α− 1
.

1

Xi

dXi

dα
− β − 1

(α− 1)2
log Xi

}]
,

(5.3.1)

where Xi = µα
A(xi)µ

1−α
B (xi) + (1− µA(xi))

α(1− µB(xi))
1−α

⇒ d

dα
Iβ
α(A, B) =

β − 1

2β−1 − 1
.

1

(α− 1)2

n∑
i=1

[
(Xi)

β−1
α−1 .

{
(α− 1).

1

Xi

dXi

dα
− log Xi

}]
,

⇒ d

dα
Iβ
α(A,B) =

β − 1

2β−1 − 1
.

1

(α− 1)2

n∑
i=1

[
(Xi)

β−1
α−1 .

{
(α− 1).

Zi

Xi

− log Xi

}]
,

(5.3.2)

where

Zi = (1− µA(xi))
α(1− µB(xi))

1−α log
1− µA(xi)

1− µB(xi)
+ µα

A(xi)µ
1−α
B (xi) log

µA(xi)

µB(xi)
.

Further, (5.3.2) can be expressed as

d

dα
Iβ
α(A,B) =

β − 1

2β−1 − 1
.

1

(α− 1)2

n∑
i=1

[
(Xi)

β−1
α−1 .

φ(µA(xi), µB(xi))

Xi

]
, (5.3.3)

where

φ(s, t) = sαt1−α log
(

s
t

)α−1
+ (1− s)α(1− t)1−α log

(
1−s
1−t

)α−1

− (sαt1−α + (1− s)α(1− t)1−α) log (sαt1−α + (1− s)α(1− t)1−α) .

(5.3.4)

Now (5.3.4) can be written as

φ(s, t) = λ t1 log t1 + (1− λ)t2 log t2 − (λ t1 + (1− λ)t2) log (λ t1 + (1− λ)t2) ,

(5.3.5)
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where

λ = s, t1 =
(s

t

)α−1

log
(s

t

)α−1

, t2 =

(
1− s

1− t

)α−1

log

(
1− s

1− t

)α−1

. (5.3.6)

Because of convexity of s log s, we have

φ(s, t) ≥ 0 and φ(µA(xi), µB(xi)) ≥ 0. (5.3.7)

Since

Xi = µα
A(xi)µ

1−α
B (xi) + (1− µA(xi))

α(1− µB(xi))
1−α > 0 (5.3.8)

and
β − 1

2β−1 − 1
.

1

(α− 1)2
≥ 0, (5.3.9)

therefore, from (5.3.3), (5.3.7), (5.3.8) and (5.3.9), we have d
dα

Iβ
α(A, B) ≥ 0.

Hence, Iβ
α(A,B) is a monotonic increasing function of α. Let A = (0.3, 0.4, 0.4,

0.2, 0.5) and B = (0.4, 0.3, 0.3, 0.1, 0.2) be two standard fuzzy sets (One can

choose any two fuzzy sets). We plot the graph of Iβ
α(A,B) ∼ α for three different

values of β (but fixed), where α > 0 , α 6= 1, shown in Figure 5.3 which is based

on the computed Table 5.3. Figure 5.3 shows the monotonic increasing nature of

Iβ
α(A, B) with respect to α i.e., the value of Iβ

α(A, B) increases as α increases for

different values of β.

For β = 0.5, from (5.4.5) we calculate the limiting case Iβ
∞(A, B)= 3.42297.

The same convergence pattern can be observed in Table 5.3 and Figure 5.3 which

shows that the value of I0.5
α (A, B) increases from 0 (which is the minimum value

when α = 0) to 3.42297 as α increases from 0 to ∞. Similarly, for β = 2 and

β = 5 from (5.4.5) we calculate Iβ
∞(A,B) which comes out to be 3.33333 and

3.88240 respectively.

Particular case:

• When α = 0, from (5.1.6) we see that Iβ
0 (A,B) =0.
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• When α →∞, in the next section we have calculated that

Iβ
∞(A,B) → 1

2β−1−1

n∑
i=1

[
2

(β−1). max

{
log

µA(xi)
µB(xi)

,log
1−µA(xi)
1−µB(xi)

}

− 1

]
.

Comparison Between Iβ
α(P : Q) and Iβ

α(A,B):

• Iβ
α(P : Q) and Iβ

α(A,B) are independent of α and have value zero when

P = Q and A = B respectively. These both are also zero when α = 0.

• Iβ
α(P : Q) and Iβ

α(A,B) are monotonic increasing function of α for certain

values of β. However, from the Table 5.4 and Figures 5.4(a) and 5.4(b), it

can be inferred that Iβ
α(A,B) is neither increasing nor decreasing function

of β for certain values of α.
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Table 5.3: Monotonic Nature of Fuzzy Directed Divergence w.r.t. α
α I0.5

α (A, B) I2
α(A, B) I5

α(A, B)

0.1 0.051024212 0.030201517 0.008225

0.2 0.103246291 0.061780127 0.017209

0.3 0.156567194 0.094753833 0.027037

0.5 0.266016791 0.164889727 0.049603

0.8 0.434958171 0.280141748 0.092231

0.9 0.491861072 0.320997559 0.109186

1.1 0.605469 0.405785 0.147768

1.2 0.661823689 0.449466923 0.169539

1.5 0.827216388 0.583938941 0.245254

1.7 0.933177792 0.674921105 0.30435

1.8 0.984594032 0.720368479 0.33634

2 1.084026337 0.810515873 0.404736

3 1.511860336 1.224455495 0.799139

5 2.097418423 1.822465847 1.524991

10 2.751722691 2.525996006 2.49235

20 3.104707171 2.93413971 3.139426

50 3.300598347 3.175729179 3.573906

75 3.342090963 3.228571201 3.675045

100 3.362571557 3.254876672 3.726248

200 3.392966582 3.294191016 3.803849

300 3.403012452 3.307257536 3.829928

→∞ 3.42297554 3.333331905 3.882405
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Table 5.4

94



95



5.4 Maximum Fuzziness of the Generalized Fuzzy

Information and Directed Divergence Mea-

sures

Here we study the maximum fuzziness for the generalized measures of fuzzy

information and fuzzy directed divergence given by (5.1.4) and (5.1.6) respectively

subject to
n∑

i=1

µA(xi) = α0.

When α0 is equally distributed, (5.1.4) has maximum value which comes out to

be

Hmax . =
1

1− β

n∑
i=1

[((α0

n

)α

+
(
1− α0

n

)α) β−1
α−1

− 1

]
,

⇒ Hmax . =
1

21−β − 1
n

[((α0

n

)α

+
(
1− α0

n

)α) β−1
α−1

− 1

]
. (5.4.1)

Differentiating (5.4.1) with respect to α0, we get

∂Hmax .

∂α0

=
α

1− α
n

[
1

α0

(α0

n

)α

− 1

n

(
1− α0

n

)α−1
][(α0

n

)α

+
(
1− α0

n

)α−1
] β−1

α−1

Differentiating with respect to α0 again, we get

∂2Hmax .

∂α2
0

= − nα2

(α− 1)2
.(β − α)[M ]− α.[N ] (5.4.2)

where

M =
[(α0

n

)α

+
(
1− α0

n

)α] 1−2α+β
α−1

((
α0

n

)α

α0

−
(
1− α0

n

)α−1

n

)2

> 0

and

N =
[(α0

n

)α

+
(
1− α0

n

)α]β−α
α−1

((
α0

n

)α

α2
0

+

(
1− α0

n

)α−2

n2

)
> 0.

On considering the co-efficient of M and N in (5.4.2) and using (5.2.11),

we conclude that ∂2

∂α2
0
Hmax . < 0, provided α < β and that shows Hmax . is a
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concave function of α0. Therefore, the value of Hβ
α(A) is maximum when α0 =

n− α0 or α0 = n
2

and the maximum value is

Hmax . = n
1−β

[
((

1
2

)α
+

(
1− 1

2

)α) β−1
α−1 − 1

]
= n(21−β−1)

1−β
; which was expected

also.

Next, since Iβ
α(A,B) is a monotonic increasing function of α, therefore, the max-

imum value of (5.1.6) is obtained when α →∞ and is given by

Iβ
∞(A,B) =

1

2β−1 − 1

n∑
i=1

[
lim

α→∞
(
µα

A(xi)µ
1−α
B (xi) + (1− µA(xi))

α(1− µB(xi))
1−α

) β−1
α−1 − 1

]

⇒ Iβ
∞(A,B) =

1

2β−1 − 1

n∑
i=1

[
lim

α→∞
2

β−1
α−1 log(µα

A(xi)µ
1−α
B

(xi)+(1−µA(xi))
α(1−µB(xi))

1−α) − 1

]

⇒ Iβ
∞(A,B) =

1

2β−1 − 1

n∑
i=1


 2

β−1 lim
α→∞

log(µα
A(xi)µ

1−α
B

(xi)+(1−µA(xi))
α(1−µB(xi))

1−α)
α−1 − 1


.

(5.4.3)

Considering the limit term in (5.4.3) separately, we have

lim
α→∞

log
(
µα

A(xi)µ
1−α
B (xi) + (1− µA(xi))

α(1− µB(xi))
1−α

)

α− 1

= lim
α→∞

µα
A(xi)µ

1−α
B (xi) log µA(xi)

µB(xi)
+ (1− µA(xi))

α(1− µB(xi))
1−α log 1−µA(xi)

1−µB(xi)

µα
A(xi)µ

1−α
B (xi) + (1− µA(xi))α(1− µB(xi))1−α

= lim
α→∞

µA(xi)
(

µA(xi)
µB(xi)

)α−1

log µA(xi)
µB(xi)

+ (1− µA(xi))
(

1−µA(xi)
1−µB(xi)

)α−1

log 1−µA(xi)
1−µB(xi)

µA(xi)
(

µA(xi)
µB(xi)

)α−1

+ (1− µA(xi))
(

1−µA(xi)
1−µB(xi)

)α−1 .

(5.4.4)

Case 1: When µA(xi) > µB(xi) or 1−µA(xi) < 1−µB(xi), limit is log µA(xi)
µB(xi)

.

Case 2: When µA(xi) = µB(xi) or 1− µA(xi) = 1− µB(xi), limit is 0.
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Case 3: When µA(xi) < µB(xi) or 1 − µA(xi) > 1 − µB(xi), limit is

log 1−µA(xi)
1−µB(xi)

.

In view of all the cases discussed above, from (5.4.3) and (5.4.4) we have

Iβ
∞(A,B) =

1

2β−1 − 1

n∑
i=1

[
2

(β−1). max

{
log

µA(xi)
µB(xi)

,log
1−µA(xi)
1−µB(xi)

}

− 1

]
. (5.4.5)

Under the constraint that
n∑

i=1

µA(xi) = α0 and
n∑

i=1

µB(xi) = β0, the maximum

fuzzy directed divergence is given by

Iβ
max .(A, B) =

n

2β−1 − 1

[
2

(β−1). max
{

log
α0
β0

,log
n−α0
n−β0

}
− 1

]
. (5.4.6)
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Chapter 6

R-norm Fuzzy Information

Measures and their

Generalizations

6.1 Introduction

De Luca and Termini (1972) defined the following fuzzy information measure

analogous to the Shannon’s (1948) entropy:

H(A) = −
n∑

i=1

[µA(xi) log µA(xi) + (1− µA(xi)) log (1− µA(xi))] (6.1.1)

On formulating the axioms P1 to P4 mentioned in Chapter 4, which became

the essential properties required by the fuzzy information measure. However,

we have other fuzzy information measures but (6.1.1) can be regarded as the

first correct measure of ambiguity of a fuzzy set. In addition, Yager (1979) also

defined an information measure of a fuzzy set based on the distance from the set

to its complement set. Similarly, Kosko (1986, 1990) introduced another kind of

fuzzy information measre by considering the distance from a set to its nearest
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nonfuzzy set and the distance from the set to its farthest nonfuzzy set. Another

kind of fuzzy information measure with an exponential function was introduced

by Pal and Pal (1989). Later on, they introduced the concept of higher rth order

entropy of a fuzzy set in their paper Pal and Pal (1992). Further, Bhandari and

Pal (1993) made a survey on information measures on fuzzy sets and gave some

new measures of fuzzy information. Kapur (1997) and Parkash (1998, 2001) also

suggested new measures of fuzzy information and studied.

Let ∆n = {P = (p1, p2, . . . , pn), pi ≥ 0, i = 1, 2, . . . , n and
n∑

i=1

pi = 1} be

the set of all probability distributions associated with a discrete random variable

X taking finite values x1, x2, . . . , xn.

Boekee and Lubbe (1980) defined and studied R-norm information measure

of the distribution P for R ∈ R+ as given by

HR(P ) =
R

R− 1


1−

(
n∑

i=1

pR
i

) 1
R


 ; R > 0, R 6= 1. (6.1.2)

The measure (6.1.2) is a real function from ∆n to R+ and is called R-norm

information measure. The most important property of this measure is that when

R → 1, it approaches to Shannon’s entropy and in case R → ∞, HR(P ) →
(1−max pi); i = 1, 2, . . . , n.

Analogous to measure (6.1.2), Hooda (2004) proposed and characterized the

following fuzzy information measure:

HR(A) =
R

R− 1

[
n∑

i=1

1− (
µR

A(xi) + (1− µA(xi))
R
) 1

R

]
; R > 0, R 6= 1. (6.1.3)

Further, Hooda and Ram (1998) gave a parametric generalization of (6.1.2)

by

Hβ
R(P ) =

R

R + β − 2


1−

(
n∑

i=1

p
R

2−β

i

) 2−β
R


; (6.1.4)

where 0 < β ≤ 1, R > 0 and R + β 6= 2.
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The measure (6.1.4) is called the generalized R-norm entropy of degree β and

it reduces to (6.1.2), when β → 1. In case R → 1, (6.1.4) reduces to

Hβ
1 (P ) =

1

β − 1


1−

(
n∑

i=1

p
1/(2−β)
i

)2−β

; (6.1.5)

where 0 < β ≤ 1, R > 0 and R + β 6= 2.

Setting θ = 1
2−β

in (6.1.5), we get

Hθ(P ) =
θ

θ − 1


1−

(
n∑

i=1

pθ
i

) 1
θ


;

1

2
< θ ≤ 1. (6.1.6)

This is an information measure which has been mentioned by Arimoto (1971)

as an example of a generalized class of information measures. It may also be noted

that (6.1.6) approaches to Shannon’s entropy when θ → 1.

Next, suppose that P = (p1, p2, . . . , pn) and Q = (q1, q2, . . . , qn) be two given

probability distributions belonging to ∆n. Kullback and Leibler (1951) obtained

the measure of directed divergence of P from Q as

D(P : Q) =
n∑

i=1

pi log
pi

qi

. (6.1.7)

Kullback (1959) suggested the measure of symmetric divergence as

J(P : Q) = D(P : Q) + D(Q : P ) =
n∑

i=1

(pi − qi) log
pi

qi

. (6.1.8)

Motivated by Kullback and Leibler measure, Bhandari and Pal (1993) sug-

gested the following fuzzy directed divergence measure of fuzzy set A from B:

I(A,B) =
n∑

i=1

[
µA(xi) log

µA(xi)

µB(xi)
+ (1− µA(xi)) log

(1− µA(xi))

(1− µB(xi))

]
, (6.1.9)

and the analogous fuzzy symmetric divergence measure by

J(A, B) = I(A,B) + I(B,A),
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which on simplification gives

J(A,B) =
n∑

i=1

[(µA(xi)− µB(xi)] log
µA(xi)(1− µA(xi))

µB(xi)(1− µB(xi))
. (6.1.10)

Further, analogous to Havrda and Charvát’s (1967) measure of directed diver-

gence given by

Dβ(P : Q) =
1

β − 1

n∑
i=1

(pβ
i q1−β

i − 1); β > 0, β 6= 1, (6.1.11)

Hooda (2004) suggested the following measures of fuzzy directed divergence and

symmetric divergence measure:

Iβ(A,B) =
1

β − 1

n∑
i=1

[
µβ

A(xi)µ
1−β
B (xi) + (1− µA(xi))

β(1− µB(xi))
1−β − 1

]
;

(6.1.12)

where β > 0, β 6= 1

and

Jβ(A,B) = Iβ(A,B) + Iβ(B, A) (6.1.13)

respectively.

A new generalized measure of fuzzy information analogous to (6.1.4) is pro-

posed and its validity to be a fuzzy information measure is proved in Section 6.2.

In Section 6.3, we propose a generalized fuzzy directed divergence measure anal-

ogous to a R-norm directed divergence and prove its validity. In Section 6.4, we

investigate the monotonic nature of the generalized measure of fuzzy information

and the R-norm fuzzy directed divergence. R-norm generalized measures of total

ambiguity and Fuzzy information improvement are also studied in Section 6.5.
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6.2 A Generalized R-norm Fuzzy Information

Measure

Analogous to (6.1.4), we propose the following measure of fuzzy information:

Hβ
R(A) =

R

R + β − 2

[
n∑

i=1

1−
[
(µA(xi))

R
2−β + (1− µA(xi))

R
2−β

] 2−β
R

]
; (6.2.1)

where 0 < β ≤ 1, R > 0 R + β 6= 2 and prove its validity in the next theorem.

Theorem 6.1: The measure (6.2.1) is a valid measure of fuzzy information.

Proof: To prove that the measure (6.2.1) is a valid fuzzy information mea-

sure, we shall show that four properties (P1) to (P4) are satisfied.

The measure (6.2.1) can be written

Hβ
R(A) = λ




n∑
i=1

1− [(µA(xi))
ν + (1− µA(xi))

ν ]

1
ν


; (6.2.2)

where λ = R
R+β−2

, ν = R
2−β

, ν > 0, ν 6= 1.

P1 (Sharpness):

If Hβ
R(A) = 0, then

(µA(xi))
ν + (1− µA(xi))

ν = 1. (6.2.3)

Since ν(6= 1) > 0, therefore, (6.2.3) is satisfied in case µA(xi)= 0 or 1, ∀i =

1, 2, . . . , n.

Conversely, if A be a non-fuzzy set, then either µA(xi)= 0 or µA(xi)= 1. It

implies (µA(xi))
ν + (1 − µA(xi))

ν = 1 for ν > 0, ν 6= 1, for which Hβ
R(A)= 0.

Hence, Hβ
R(A)= 0 if and only if A is non-fuzzy set or crisp set.
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P2 (Maximality):

Differentiating Hβ
R(A) with respect to µA(xi), we have

∂Hβ
R

∂µA(xi)
= −λ[(µA(xi))

ν + (1− µA(xi))
ν ]

1−ν
ν

[
(µA(xi))

ν−1 − (1− µA(xi))
ν−1].
(6.2.4)

Let 0 ≤ µA(xi) < 0.5, then two cases arise

Case 1 : R > 2− β

In this case we have λ > 0, ν > 1 and (µA(xi))
ν−1 − (1 − µA(xi))

ν−1 < 0 which

implies that
∂Hβ

R

∂µA(xi)
> 0.

Case 2 : R < 2− β

In this case we have λ < 0, ν < 1 and (µA(xi))
ν−1 − (1 − µA(xi))

ν−1 > 0 which

implies that
∂Hβ

R

∂µA(xi)
> 0.

Hence, Hβ
R(A) is an increasing function of µA(xi) satisfying 0 ≤ µA(xi) < 0.5.

Similarly, it can be proved that Hβ
R(A) is a decreasing function of µA(xi) satisfying

0.5 < µA(xi) ≤ 1. It is evident that
∂Hβ

R

∂µA(xi)
= 0, when µA(xi) = 0.5. Hence, Hβ

R(A)

is a concave function and it has a global maximum at µA(xi) = 0.5. It shows

that Hβ
R(A) is maximum if and only if A is the most fuzzy set.

P3 (Resolution):

Since Hβ
R(A) is an increasing function of µA(xi) in [0, 0.5) and decreasing function

in (0.5, 1], therefore

µA∗(xi) ≤ µA(xi) ⇒ Hβ
R(A∗) ≤ Hβ

R(A) in [0, 0.5) (6.2.5)

and

µA∗(xi) ≥ µA(xi) ⇒ Hβ
R(A∗) ≤ Hβ

R(A) in (0.5, 1]. (6.2.6)

Taking (6.2.5) and (6.2.6) together, we get Hβ
R(A∗) ≤ Hβ

R(A).
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P4 (Symmetry):

Evidently, from the definition of Hβ
R(A) and with µĀ(xi) = 1 − µA(xi), we may

conclude that Hβ
R(A) = Hβ

R(A).

Hence, Hβ
R(A) satisfies all the properties of fuzzy information measure and

therefore, it is a valid measure of fuzzy information.

It may be noted that (6.2.1) reduces to (6.1.3), when β = 1 and reduces to

(6.1.1) when β = 1 and R → 1. In case β = 1 and R → ∞, (6.2.1) reduces to
n∑

i=1

[
1−max{µA(xi), 1−µA(xi)}

]
.

6.3 R-norm Fuzzy Directed Divergence Measure

Let P (p1, p2, . . . , pn) and Q(q1, q2, . . . , qn) be the posterior and prior probability

distribution of a random variable respectively in an experiment. Recently, Hooda

and Sharma (2007) defined the R-norm directed divergence given by

DR(P : Q) =
R

R− 1




(
n∑

i=1

pR
i q1−R

i

) 1
R

− 1


 (6.3.1)

and R-norm measure of inaccuracy given by

DR(P/Q) = DR(P : Q) + HR(P ) =
R

R− 1




(
n∑

i=1

pR
i q1−R

i

) 1
R

−
(

n∑
i=1

pR
i

) 1
R


.

(6.3.2)

It may be seen that when R → 1, (6.3.1) reduces to

D(P : Q) =
n∑

i=1

pi log
pi

qi

,

which is the measure of directed divergence due to Kullback and Leibler (1951)

and (6.3.2) reduces to Kerridge inaccuracy due to Kerridge (1961)

D(P/Q) = −
n∑

i=1

pi log qi.
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Analogous to (6.3.1) we propose the following measure of fuzzy directed diver-

gence of fuzzy set A from fuzzy set B:

IR(A,B) =
R

R− 1

n∑
i=1

[(
µR

A(xi)µ
1−R
B (xi) + (1− µA(xi))

R(1− µB(xi))
1−R

) 1
R − 1

]
,

(6.3.3)

where R > 0, R 6= 1 and measure of fuzzy symmetric divergence

JR(A,B) = IR(A,B) + IR(B, A). (6.3.4)

Next, we show that IR(A,B) is a valid measure i.e., IR(A,B) ≥ 0 with

equality if µA(xi) = µB(xi) for each i = 1, 2, . . . , n.

Let
n∑

i=1

µA(xi) = s,
n∑

i=1

µB(xi) = t, then

n∑
i=1

(
µA(xi)

s

)R (
µB(xi)

t

)1−R

− 1 ≥ 0

or
n∑

i=1

µR
A(xi)µ

1−R
B (xi) ≥ sRt1−R. (6.3.5)

Similarly, we can write

n∑
i=1

(1− µA(xi))
R(1− µB(xi))

1−R ≥ (n− s)R(n− t)1−R . (6.3.6)

Adding (6.3.5) and (6.3.6), we get

n∑
i=1

µR
A(xi)µ

1−R
B (xi)+(1−µA(xi))

R(1−µB(xi))
1−R ≥ sRt1−R +(n−s)R(n− t)1−R.

(6.3.7)

Case 1: 0 < R < 1

Let µR
A(xi)µ

1−R
B (xi) + (1−µA(xi))

R(1−µB(xi))
1−R = xi, then xi < 1 and 1

R
> 1

which implies xi −1 > (xi)
1/R−1. Since R

R−1
< 0, therefore R

R−1

n∑
i=1

[
(xi)

1/R − 1
] ≥

R
R−1

n∑
i=1

(xi − 1). Thus, we have

IR(A,B) ≥ R

R− 1

[
sRt1−R + (n− s)R(n− t)1−R − n

]
.
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Further let φ(s) = R
R−1

[
sRt1−R + (n− s)R(n− t)1−R − n

]
, then

φ′(s) = R
R−1

[
R

(
s
t

)R−1 −R
(

n−s
n−t

)R−1
]

and

φ′′(s) = R2
[

1
t

(
s
t

)R−2
+ 1

n−t

(
n−s
n−t

)R−2
]

> 0.

This shows that φ(s) is a convex function of s whose minimum value arises

when s
t

(
= n−s

n−t

)
= 1 and is equal to zero. Hence, φ(s) > 0 and vanishes only

when s = t.

Case 2: R > 1

In this case (6.3.7) can be written

(
n∑

i=1

µR
A(xi)µ

1−R
B (xi) + (1− µA(xi))

R(1− µB(xi))
1−R − 1

)1/R

≥ (
sRt1−R + (n− s)R(n− t)1−R − n

)1/R
. (6.3.8)

Also, we have

n∑
i=1

[(
µR

A(xi)µ
1−R
B (xi) + (1− µA(xi))

R(1− µB(xi))
1−R

) 1
R − 1

]

≥
(

n∑
i=1

µR
A(xi)µ

1−R
B (xi) + (1− µA(xi))

R(1− µB(xi))
1−R − 1

)1/R

(6.3.9)

Now (6.3.8) and (6.3.9) together implies that

IR(A,B) ≥ R

R− 1

[
sRt1−R + (n− s)R(n− t)1−R − n

] 1
R .

Let φ(s) = 1
R−1

[
sRt1−R + (n− s)R(n− t)1−R − n

]
, then

φ′(s) = 1
R−1

[
R

(
s
t

)R−1 −R
(

n−s
n−t

)R−1
]

and

φ′′(s) =
[

R
t

(
s
t

)R−2
+ R

n−t

(
n−s
n−t

)R−2
]

> 0.

This shows that φ(s) is a convex function of s whose minimum value arises

when s
t

(
= n−s

n−t

)
= 1 and is equal to zero. Hence, φ(s) > 0 and vanishes only

when s = t i.e., for all R (6= 1) > 0, IR(A,B) ≥ 0 and vanishes only when A = B.

107



Thus IR(A,B) is a valid measure of directed divergence of fuzzy set A from fuzzy

set B and consequently, the analogous measure of fuzzy symmetric divergence

JR(A,B) is a valid measure.

It may be noted that lim
R→1

IR(A,B) = I(A,B) and lim
R→1

JR(A,B) = J(A,B),

where I(A,B) and J(A,B) are the fuzzy directed divergence and symmetric

divergence measures given by (6.1.9) and (6.1.10) respectively.

6.4 Monotonicity of Fuzzy Information and Fuzzy

Directed Divergence Measures

Let A1 = (0.2, 0.3, 0.4, 0.2, 0.3), A2= (0.4, 0.3, 0.2, 0.2, 0.4), A3= (0.3, 0.2,

0.3, 0.3, 0.3) be any three fuzzy sets in standard form. Consider four different

values of R, say, 0.6, 1, 2, 3, and 0 < β ≤ 1. Using (6.2.1) we have constructed

Table 6.1 listed below. Looking at Table 6.1, it is clear that the fuzzy information

measure given by (6.2.1) is a monotonically decreasing function of β and R. This

monotonic nature of the fuzzy information measure is shown in Figure 6.1 based

on Table 6.1.
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Table 6.1
β Hβ

0.6(A) Hβ
1 (A) Hβ

2 (A) Hβ
3 (A)

A1 A2 A3 A1 A2 A3 A1 A2 A3 A1 A2 A3

0.001 7.76 7.86 7.84 4.41 4.47 4.46 2.89 2.96 2.94 2.45 2.52 2.50

0.002 7.75 7.85 7.84 4.41 4.47 4.46 2.89 2.96 2.94 2.45 2.52 2.50

0.005 7.74 7.83 7.82 4.40 4.47 4.46 2.89 2.95 2.94 2.45 2.52 2.50

0.01 7.71 7.80 7.79 4.39 4.46 4.45 2.89 2.95 2.94 2.45 2.52 2.49

0.02 7.65 7.75 7.73 4.38 4.44 4.43 2.88 2.94 2.93 2.44 2.51 2.49

0.05 7.49 7.58 7.56 4.32 4.39 4.38 2.86 2.92 2.91 2.43 2.50 2.48

0.1 7.22 7.31 7.29 4.24 4.30 4.29 2.83 2.89 2.88 2.40 2.48 2.45

0.2 6.71 6.80 6.79 4.06 4.13 4.12 2.76 2.83 2.81 2.36 2.43 2.40

0.3 6.25 6.33 6.32 3.90 3.96 3.95 2.70 2.76 2.75 2.31 2.39 2.36

0.4 5.82 5.90 5.89 3.74 3.80 3.79 2.63 2.70 2.68 2.26 2.34 2.31

0.5 5.43 5.50 5.49 3.59 3.65 3.64 2.56 2.63 2.61 2.21 2.29 2.26

0.6 5.06 5.13 5.12 3.45 3.50 3.49 2.50 2.57 2.54 2.16 2.25 2.21

0.7 4.73 4.79 4.78 3.30 3.36 3.35 2.43 2.50 2.48 2.11 2.20 2.15

0.8 4.41 4.48 4.47 3.16 3.22 3.21 2.36 2.43 2.40 2.06 2.15 2.10

0.9 4.12 4.18 4.17 3.03 3.09 3.08 2.29 2.36 2.33 2.01 2.10 2.04

1 3.85 3.91 3.90 2.89 2.95 2.94 2.21 2.29 2.26 1.95 2.05 1.99

It can be shown analytically that d
dβ

(
Hβ

R(A)
)
≤ 0; ∀ 0 < β ≤ 1 and

d
dR

(
Hβ

R(A)
)
≤ 0; ∀ R > 0 and this implies monotonic decreasing nature of

the fuzzy information measure with respect to β and R respectively. However, it

is observed that for the most fuzzy set, the maximum value of Hβ
R(A) depends on

the value of β and R, but it will be less than or equal to n. Similarly, monotonic

nature of the fuzzy directed divergence measure given by (6.3.3) can be observed

in the above computed Table 6.2 for three different sample pairs of fuzzy sets

given by A1 = (0.3, 0.5, 0.3, 0.2, 0.1); A2 = (0.4, 0.3, 0.4, 0.2, 0.5);

A3 = (0.5, 0.2, 0.2, 0.3, 0.4); B1 = (0.2, 0.4, 0.4, 0.3, 0.2);

B2 = (0.2, 0.4, 0.4, 0.2, 0.2); and B3 = (0.3, 0.4, 0.4, 0.2, 0.3).

Table 6.2 shows that the fuzzy directed divergence given by (6.3.3) is mono-

tonic increasing function of R. This monotonic increasing nature of the fuzzy

directed divergence is also shown in Figure 6.2 based on Table 6.2. This mono-

tonic nature of the fuzzy directed divergence can also be proved analytically by

showing that d
dR

(IR(A,B)) ≥ 0; ∀R > 0.
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Table 6.2
R IR(A1, B1) IR(A2, B2) IR(A3, B3)

0.1 0.013827 0.029164 0.032484

0.2 0.027531 0.059652 0.065004

0.5 0.067891 0.159083 0.162301

0.8 0.107101 0.269945 0.258256

1 0.132602 0.349394 0.320959

1.2 0.157595 0.432339 0.382348

1.5 0.19415 0.561022 0.471532

2 0.252654 0.777309 0.611291

5 0.543459 1.674712 1.207667

10 0.817193 2.156136 1.640287

50 1.11155 2.563536 2.06191

75 1.135962 2.597848 2.096904

100 1.148134 2.615028 2.114372

150 1.160285 2.632223 2.131821

200 1.166353 2.640828 2.140539

300 1.172415 2.649436 2.149253

400 1.175444 2.653742 2.153608

420 1.175877 2.654357 2.15423

430 1.176078 2.654644 2.154519

440 1.17627 2.654917 2.154795
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6.5 Measures of Total Ambiguity and Fuzzy In-

formation Improvement

6.5.1 Total ambiguity

Let A and B be two fuzzy sets. The total ambiguity of the fuzzy set A about set

B is the sum of two components:

• Fuzzy entropy present in the fuzzy set A, and

• fuzzy directed divergence of A from B measured by I(A,B).

Using Havrda and Charvát’s measure, Kapur (1997) estimated the total fuzzy

ambiguity as

TA = 1
1−α

[
n∑

i=1

µα
A(xi)(1− µ1−α

B (xi)) +
n∑

i=1

(1− µA(xi))
α (1− (1− µB(xi))

1−α)

]
.

Corresponding to fuzzy information measure (6.1.3) and the proposed fuzzy

directed divergence (6.3.3), total ambiguity is given by

TA =
R

R− 1

[
n∑

i=1

(
1− (µR

A(xi) + (1− µA(xi))
R
) 1

R

+
n∑

i=1

[{
µR

A(xi)µ
1−R
B (xi) + (1− µA(xi))

R(1− µB(xi))
1−R

} 1
R − 1

]]

=
R

R− 1

n∑
i=1

[(
µB(xi)

(
µA(xi)

µB(xi)

)R

+ (1− µB(xi))

(
1− µA(xi)

1− µB(xi)

)R
) 1

R

− (
µR

A(xi) + (1− µA(xi))
R
) 1

R

]
.

Total ambiguity is a fuzzy measure of inaccuracy analogous to Kerridge

(1961) inaccuracy and is related to two fuzzy sets. It is not symmetric as we

get something different if we interchange the role of the fuzzy sets A and B.
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6.5.2 R-norm fuzzy information improvement measure

Let P and Q be observed and predicted distributions of a random variable re-

spectively. Let R = (r1, r2, . . . , rn) be the revised probability distribution of Q,

then

I(P : Q)− I(P : R) =
n∑

i=1

pi log
ri

qi

, (6.5.1)

which is known as Theil’s measure (1967) of information improvement and has

found wide applications in economics, accounts and financial management. Sim-

ilarly, suppose the correct fuzzy set is A and originally our estimate for it was

the fuzzy set B and that was revised to fuzzy set C. The original ambiguity was

I(A,B) and final ambiguity is I(A,C), so the reduction in ambiguity is

I(A,B, C) = I(A,B)− I(A,C),

=
n∑

i=1

[
µA(xi) log

µC(xi)

µB(xi)
+ (1− µA(xi)) log

(1− µC(xi))

(1− µB(xi))

]
. (6.5.2)

The measure I(A,B, C) given by (6.5.2) can be called fuzzy information improve-

ment measure. Corresponding to fuzzy directed divergence given by (6.3.3), the

reduction in ambiguity is given by

IR(A,B, C) = IR(A,B)− IR(A,C)

=
R

R− 1

n∑
i=1

[ {
µR

A(xi)µ
1−R
B (xi) + (1− µA(xi))

R(1− µB(xi))
1−R

} 1
R

−{
µR

A(xi)µ
1−R
C (xi) + (1− µA(xi))

R(1− µC(xi))
1−R

} 1
R

]
, (6.5.3)

which can be called as R-norm fuzzy information improvement measure. It can

also be proved that IR(A, B, C) → I(A,B,C) i.e., (6.5.3) reduces to (6.5.2), when

R → 1.
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Chapter 7

Measures of ‘useful’ Fuzzy

Information

7.1 Introduction

Zadeh (1965) introduced the concept of fuzzy sets and developed the theory to

measure the ambiguity of a fuzzy set. Fuzzy set theory makes use of entropy to

measure the degree of fuzziness in a fuzzy set, which is also called fuzzy entropy

or fuzzy information measure (Ebanks (1983), Pal (1994)). Fuzzy entropy is the

measurement of fuzziness in a fuzzy set, and thus has especial important position

in fuzzy systems such as fuzzy pattern recognition systems, fuzzy neural network

systems, fuzzy knowledge base systems, fuzzy decision making systems, fuzzy

control systems and fuzzy management information systems.

Let X is a discrete random variable with probability distribution P = (p1, p2,

. . ., pn) in an experiment. (X,P ) is a discrete probabilistic framework. The in-

formation contained in this experiment is given by the well known Shannon’s

entropy (1948).
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It has been already mentioned that the meaning of fuzzy entropy is different

from the classical Shannon entropy because no probabilistic concept is needed in

order to define it. Fuzzy entropy deals with vagueness and ambiguous uncertain-

ties, while Shannon entropy deals with probabilistic uncertainties. De Luca and

Termini (1972) characterized the fuzzy entropy with a set of postulates P1 to P4

and these have been used as a criterion for defining a new fuzzy entropy.

Analogous to entropy due to Shannon (1948), De Luca and Termini (1972)

suggested the following measure of fuzzy entropy:

H(A) = −
n∑

i=1

[µA(xi) log µA(xi) + (1− µA(xi)) log (1− µA(xi))]. (7.1.1)

As (7.1.1) satisfies all four properties (P1) to (P4), so it is a valid measure of

fuzzy entropy. Later on Bhandari and Pal (1993) made a survey on information

measures on fuzzy sets and gave some measures of fuzzy entropy. Analogous to

Rényi’s (1961) entropy they have suggested the following measure:

Hα(A) =
1

1− α

n∑
i=1

log [µα
A(xi) + (1− µA(xi))

α]; α 6= 1, α > 0 (7.1.2)

and analogous to Pal and Pal’s (1989) exponential entropy they introduced

He(A) =
1

n
√

e− 1

n∑
i=1

log
[
µA(xi)e

1−µA(xi) + (1− µA(xi)) eµA(xi) − 1
]
. (7.1.3)

It may be noted that Shannon entropy does not take into account the effec-

tiveness or importance of the events, while in some practical situations of proba-

bilistic nature subjective considerations also play their own role. Belis and Guisau

(1968) considered qualitative aspect of information and attached a utility distri-

bution U = (u1, u2, ..., un), where ui > 0 for each i and is utility or importance

of an event xi whose probability of occurrence is pi. In general ui is indepen-

dent of pi. They suggested that the occurrence of an event removes two types of

uncertainty - the quantitative type related to its probability of occurrence and

the qualitative type related to its utility (importance) for the fulfillment of some
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goal set by the experimenter. Bhaker and Hooda (1993) gave the generalized

mean value characterization of the useful information measures for incomplete

probability distributions:

H(P ; U) = −

n∑
i=1

uipi log pi

n∑
i=1

uipi

, (7.1.4)

and

Hα(P ; U) =
1

1− α
log

n∑
i=1

uip
α
i

n∑
i=1

uipi

; α 6= 1, α > 0. (7.1.5)

The first attempt to quantify the uncertainty associated with a fuzzy event in

the context of a discrete probabilistic framework appears to have been made by

Zadeh (1968), who defined the (weighted) entropy of A with respect to (X,P ) as

H(A,P ) = −
n∑

i=1

µA(xi)pi log pi, (7.1.6)

where µA is the membership function of A and pi is the probability of occurrence of

xi. One can notice that this situation contains the different types of uncertainties,

e.g., randomness, ambiguity, and vagueness; i.e., randomness and fuzziness. This

measure does not satisfy properties (P1) to (P4). H(A,P ) of a fuzzy event with

respect to P is less than Shannon’s entropy which is of P alone.

In Section 7.2 of the present chapter, we introduce a new concept of ‘useful’

fuzzy information measure by attaching utilities with uncertainties of fuzziness

and probabilities of randomness. In Section 7.3, a new measure of total ‘useful’

fuzzy information, by considering the usefulness of an event along with fuzzy

uncertainties and random uncertainties is introduced and studied. In Section 7.4,

we define a measure of ‘useful’ fuzzy directed divergence of fuzzy set A from

fuzzy set B and also prove its validity. The constrained optimization of ‘useful’

fuzzy information and ‘useful’ fuzzy directed divergence measures is discussed in

Sections 7.5 and 7.6 respectively.
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7.2 ‘Useful’ Fuzzy Information Measures

Let x1, x2, . . . , xn are members of the universe of discourse having probabilities of

occurrence p1, p2, . . . , pn and utility or importance u1, u2, . . . , un respectively. Let

A be a fuzzy set. Then µA(x1), µA(x2), . . .,µA(xn) are ambiguities or uncertainties

which lie between 0 and 1, but these are not probabilities because their sum is

not unity. However,

ΦA(xi) =
µA(xi)

n∑
i=1

µA(xi)
, i = 1, 2, . . . , n, (7.2.1)

is a probability distribution.

On attaching utilities with the uncertainties of fuzziness and probabilities of

randomness having utilities, we suggest the following measure of fuzziness of a

fuzzy set is suggested analogous to De Luca and Termini’s fuzzy entropy (7.1.1):

H(A; P ; U) = −

n∑
i=1

uipi[µA(xi) log µA(xi) + (1− µA(xi)) log (1− µA(xi))]

n∑
i=1

uipi

,

(7.2.2)

which can be called as ‘useful’ fuzzy information measure of fuzzy set A.

Theorem 7.1: The measure (7.2.2) is a valid measure of fuzzy information.

Proof :To prove that the measure (7.2.2) is a valid fuzzy information mea-

sure, we prove that four properties (P1) to (P4) hold.

P1 (Sharpness):

If H(A; P ; U)= 0 then

n∑
i=1

uipi[µA(xi) log µA(xi) + (1− µA(xi)) log (1− µA(xi))] = 0,

⇒ µA(xi) log µA(xi) + (1− µA(xi)) log (1− µA(xi)) = 0, [ui, pi > 0 ∀i]
⇒ either µA(xi) = 0 or 1 ∀i = 1, 2, . . . , n,

⇒ A is a crisp set.
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Conversely, let A be a crisp set, then either µA(xi) = 0 or µA(xi) = 1 ∀i.
⇒ µA(xi) log µA(xi) + (1− µA(xi)) log (1− µA(xi)) = 0 , ∀i
⇒

n∑
i=1

uipi[µA(xi) log µA(xi) + (1− µA(xi)) log (1− µA(xi))] = 0, [ui, pi > 0 ∀i]

⇒ H(A; P ; U) = 0.

Hence, H(A; P ; U)= 0 if and only if A is non-fuzzy set or crisp set.

P2 (Maximality):

Differentiating H(A; P ; U) with respect to µA(xi), we have

∂H(A; P ; U)

∂µA(xi)
=

n∑
i=1

uipi log
1− µA(xi)

µA(xi)
. (7.2.3)

Case 1 : 0 < µA(xi) < 0.5,

In this case, log 1−µA(xi)
µA(xi)

> 0 ⇒ ∂H(A;P ;U)
∂µA(xi)

> 0.

Thus H(A; P ; U) is an increasing function of µA(xi) satisfying 0 < µA(xi) < 0.5.

Case 2 : 0.5 < µA(xi) < 1,

In this case, log 1−µA(xi)
µA(xi)

< 0 ⇒ ∂H(A;P ;U)
∂µA(xi)

< 0.

Thus H(A; P ; U) is a decreasing function of µA(xi) satisfying 0.5 < µA(xi) < 1.

Also from (7.2.3) note that

∂H(A; P ; U)

∂µA(xi)
= 0; when µA(xi) = 0.5 (7.2.4)

Hence, H(A; P ; U) is a concave function and it has a global maximum at µA(xi) =

0.5 which shows that H(A; P ; U) is maximum if and only if A is the most fuzzy

set.

P3 (Resolution):

Since H(A; P ; U) is an increasing function of µA(xi) in [0, 0.5) and decreasing

function in (0.5, 1], therefore

µA∗(xi) ≤ µA(xi) ⇒ H(A∗; P ; U) ≤ H(A; P ; U) in [0, 0.5) (7.2.5)
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and

µA∗(xi) ≥ µA(xi) ⇒ H(A∗; P ; U) ≤ H(A; P ; U) in (0.5, 1] (7.2.6)

Taking (7.2.5) and (7.2.6) together, we get H(A∗; P ; U) ≤ H(A; P ; U).

P4 (Symmetry):

Evidently, from the definition of H(A; P ; U) and with µA(xi) = 1 − µA(xi),

we conclude that H(A; P ; U) = H(A; P ; U). Hence, H(A; P ; U) satisfies all the

properties of fuzzy information measure and therefore is a valid measure of ‘useful’

fuzzy information.

The measure (7.2.2) can further be generalized parametrically. Correspond-

ing to (7.1.2) and (7.1.3), we have respectively

Hα(A; P ; U) =
1

1− α

n∑
i=1

uipi log [µα
A(xi) + (1− µA(xi))

α]

n∑
i=1

uipi

; α(6= 1) > 0 (7.2.7)

and

He(A; P ; U) =
1

n
√

e− 1

n∑
i=1

uipi log
[
µA(xi)e

1−µA(xi) + (1− µA(xi)) eµA(xi) − 1
]

n∑
i=1

uipi

(7.2.8)

‘useful’ fuzzy information measures.

It may be noted that when α → 1, (7.2.7) reduces to (7.2.2). Thus we

can define a ‘useful’ fuzzy information measure corresponding to the generalized

measures of fuzzy entropies.

7.3 Total ‘Useful’ Fuzzy Information Measure

Total ‘useful’ fuzzy information measure is related to integration of fuzzy and

probabilistic uncertainties with utilities. There have been several attempts to

118



combine probabilistic and fuzzy uncertainties when (X,P ) is a discrete probabil-

ity framework. The entropy given by (7.1.6) is a measure of uncertainty associated

with a fuzzy event, and was the first composite measure of probabilistic and fuzzy

uncertainty.

De Luca and Termini (1972) introduced and studied the following total in-

formation measure of a fuzzy system which has been used by some authors as a

measure of uncertainties of fuzziness and randomness of events in an experiment:

(a) The average uncertainty deduced from the “random” nature of the experi-

ment is computed by Shannon’s entropy given by

H(P ) = −
n∑

i=1

pi log pi (7.3.1)

(b) The uncertainty that arises from the fuzziness of the fuzzy set relative to the

ordinary set given by the fuzzy entropy (7.1.1).

(c) The statistical average, m, of the ambiguity of the whole set is given by

m(µA, p1, p2, ..., pn) = −
n∑

i=1

pi[µA(xi) log µA(xi) + (1− µA(xi)) log (1− µA(xi))].

(7.3.2)

(d) The total information measure is obtained by adding two kinds of uncertain-

ties (7.3.1) and (7.3.2).

Analogously, we combine probabilistic and fuzzy uncertainties with utilities

when (A; P ; U) is a discrete probabilistic framework with utilities and fuzzy set A

which is characterized by membership function µA. If we also consider importance

or usefulness of an event, then total ‘useful’ information measure is a measure

of fuzzy uncertainties, random uncertainties and utilities of events and that is

computed as follows:
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(i) If we consider the uncertainties with ‘usefulness’ from “random” nature of

an experiment, then average measure of these uncertainties introduced and

characterized by Bhaker and Hooda (1993) is given by

H(P ; U) = −

n∑
i=1

uipi log pi

n∑
i=1

uipi

. (7.3.3)

(ii) If we consider the uncertainty that arises from fuzziness of the fuzzy set,

then we can compute the amount of ambiguity by taking the proposed

‘useful’ fuzzy information measure (7.2.2) and can be written as

H(A; P ; U) = −

n∑
i=1

uipiHi(A)

n∑
i=1

uipi

, (7.3.4)

where Hi(A) = [µA(xi) log µA(xi) + (1− µA(xi)) log (1− µA(xi))].

(iii) Total ‘useful’ fuzzy information measure of fuzzy set A in a random exper-

iment is obtained by adding (7.3.3) and (7.3.4):

HTotal(A; P : U) = H(P ; U) + H(A; P ; U). (7.3.5)

7.4 ‘Useful’ Fuzzy Directed Divergence Measures

Let A and B be two standard fuzzy sets with same supporting points x1, x2, . . . , xn

and with fuzzy vectors µA(x1), µA(x2), . . . , µA(xn) andµB(x1), µB(x2), . . . , µB(xn).

The simplest measure of fuzzy directed divergence as suggested Bhandari and Pal

(1993) is given by

I(A,B) =
n∑

i=1

[
µA(xi) log

µA(xi)

µB(xi)
+ (1− µA(xi)) ln

(1− µA(xi))

(1− µB(xi))

]
. (7.4.1)

Next, attaching utilities with the uncertainties of fuzziness of fuzzy set A

from fuzzy set B and probabilities of randomness we define the following ‘useful’
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measure of fuzzy directed divergence of fuzzy set A from fuzzy set B correspond-

ing to (7.4.1):

I(A,B; P ; U) =

n∑
i=1

uipi

[
µA(xi) log µA(xi)

µB(xi)
+ (1− µA(xi)) log (1−µA(xi))

(1−µB(xi))

]

n∑
i=1

uipi

(7.4.2)

and measure of ‘useful’ fuzzy symmetric divergence as

J(A,B; P ; U) = I(A,B; P ; U) + I(B, A; P ; U). (7.4.3)

Further, we show that I(A,B; P ; U) is a valid measure i.e., I(A,B; P ; U) ≥ 0

with equality if µA(xi) = µB(xi) for each i = 1, 2, . . . , n.

Let
n∑

i=1

µA(xi) = s,
n∑

i=1

µB(xi) = t and
n∑

i=1

uipi = u, then

n∑
i=1

uipi

(
µA(xi) log

µA(xi)

µB(xi)

)
≥ us log

s

t
. (7.4.4)

Similarly, we have

n∑
i=1

uipi

(
(1− µA(xi)) log

1− µA(xi)

1− µB(xi)

)
≥ u(n− s) log

n− s

n− t
. (7.4.5)

Adding (7.4.4) and (7.4.5), we get

n∑
i=1

uipi

(
µA(xi) log

µA(xi)

µB(xi)
+ (1− µA(xi)) log

1− µA(xi)

1− µB(xi)

)
≥ u

[
s log

s

t
+ (n− s) log

n− s

n− t

]

(7.4.6)

Let f(s) = s log s
t
+ (n− s) log n−s

n−t
, then

f ′(s) =
(
log s

t
− log n−s

n−t

)
and

f ′′(s) = 1
s

+ 1
n−s

= n
s(n−s)

> 0.

Hence, f ′′(s) > 0, which shows that f(s) is a convex function of s and has

its minimum value when s
t

= n−s
n−t

= n
n

= 1. Now, if A = B i.e., s = t, then
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f(s) = 0. Hence, f(s) > 0 and vanishes only when s = t. As
n∑

i=1

uipi = u > 0, so

I(A,B; P ; U) ≥ 0 and vanishes only when A = B.

Thus I(A,B; P ; U) is a valid measure of ‘useful’ fuzzy directed divergence of

fuzzy sets A and B; and consequently, J(A,B; P ; U) is also a valid measure of

‘useful’ fuzzy symmetric divergence.

It may be noted that if B = AF , the most fuzzy set i.e., µB(xi) = 0.5 ∀xi ,

then I(A,AF ; P,U) = n log 2−H(A; P ; U).

The measure (7.4.2) can further be generalized parametrically. Correspond-

ing to the following fuzzy directed divergence measure defined in Chapter 4:

Iα(A,B) =
1

α− 1

n∑
i=1

log
[
µα

A(xi)µ
1−α
B (xi) + (1− µA(xi))

α(1− µB(xi))
1−α

]
,

(7.4.7)

we suggest a new measure of ‘useful’ fuzzy directed divergence of fuzzy set A

from fuzzy set B which is given by

Iα(A,B; P ; U) =
1

α− 1

n∑
i=1

uipi log
[
µα

A(xi)µ
1−α
B (xi) + (1− µA(xi))

α(1− µB(xi))
1−α

]

n∑
i=1

uipi

(7.4.8)

and measure of ‘useful’ fuzzy symmetric divergence is given by

Jα(A,B; P ; U) = Iα(A, B; P ; U) + Iα(B,A; P ; U). (7.4.9)

Further, it can be proved that Iα(A, B; P ; U) is a valid measure by showing

Iα(A,B; P ; U) with equality if µA(xi) = µB(xi) for each i = 1, 2, . . . , n.

It may be noted that if B = AF , the most fuzzy set i.e., µB(xi) = 0.5 ∀xi ,

then we have

Iα(A,AF ; P, U) = n log 2−Hα(A; P ; U).
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7.5 Constrained optimization of ‘useful’ Fuzzy

Information Measure

Consider the ‘useful’ fuzzy information measure given by (7.2.2) subject to
n∑

i=1

µA(xi) =

α. Using Lagrange’s multiplier method, we have

uipi log
µA(xi)

1− µA(xi)
= m (7.5.1)

It implies

µA(xi) =
e

m
uipi

1 + e
m

uipi

=
1

1 + e
− m

uipi

, (7.5.2)

where m is determined by

φ(m) =
n∑

i=1

e
m

uipi

1 + e
m

uipi

− α = 0 (7.5.3)

and

φ′(m) =
n∑

i=1

1
uipi

e
m

uipi

(
1 + e

m
uipi

)2 ≥ 0. (7.5.4)

It may be seen that

φ(−∞) = −α, φ(0) =
n

2
− α, φ(∞) = n− α. (7.5.5)

In view of (7.5.5), we see that equation (7.5.3) has a unique root which is negative

if α < n
2

and is positive if α > n
2
. It is observed that if m is negative i.e., if α < n

2
,

then µA(xi) ≤ 1
2
∀i, if m is positive i.e., if α > n

2
, then µA(xi) ≥ 1

2
∀i and if m = 0

i.e., if α = n
2
, then µA(xi) = 1

2
∀i. Thus maximization is possible:

(i) all µA(xi) are less than or equal to 1
2

(ii) all µA(xi) are greater than or equal to 1
2

(iii) all are equal to 1
2
.
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When µA(xi) is replaced by 1−µA(xi), the fuzziness of the ith element does

not change, but its contribution to the sum
n∑

i=1

µA(xi) changes. So it will be

better to take a fuzzy set in standard form i.e., µA(xi) ≤ 1
2
∀i.

Differentiating (7.2.2) with respect to µA(xi), we get

dH

dµA(xi)
= −

n∑
i=1

uipi log
µA(xi)

1− µA(xi)
> 0 since µA(xi) ≤ 1

2
. (7.5.6)

Differentiating (7.5.2) with respect to m, we get

dµA(xi)

dm
=

1
uipi

e
− m

uipi

(
1 + e

m
uipi

)2 > 0. (7.5.7)

Differentiating (7.5.3) with respect to m, we get

dα

dm
=

n∑
i=1

1
uipi

e
− m

uipi

(
1 + e

m
uipi

)2 > 0. (7.5.8)

Taking (7.5.6), (7.5.7) and (7.5.8) together, we can conclude that H(A; P ; U)

is an increasing function of α. Hence, H(A; P ; U) is maximum when α = n
2

and

consequently, m = 0 and µA(xi) = 1
2
∀i. Thus Hmax(A; P ; U) = log 2 and Hmax

increases from 0 to log 2 as α increases from 0 to n
2
.

Minimum value of fuzzy information measure will occur when many of µA(xi)

values are 0 or 1 subject to the constraint being satisfied. Without loss of gen-

erality we can assume that u1p1 ≤ u2p2 ≤ . . . ≤ unpn. Next, we discuss the

different cases for minimum values of fuzzy information measure as given below:

• When α = 0, all µA(xi) have to be zero and that gives Hmin(A; P ; U) = 0.

• When α = 1
2
, one of µA(xi) values can be 1

2
and rest have to be 0, so that

Hmin(A; P ; U) = u1p1 log 2
n∑

i=1
uipi

.
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• Similarly, when α = 1, two of µA(xi)’s can be 1
2

and rest have to be 0, so

that Hmin(A; P ; U) = (u1p1+u2p2) log 2
n∑

i=1
uipi

.

• When α = n
2
, Hmin(A; P ; U) = log 2.

• When α lies between m−1
2

and m
2

, m− 1 of µA(xi)’s can be 1
2
, one can be

a fraction η and rest can be 0, so that

Hmin(A; P ; U) = (u1p1+u2p2+...+um−1pm−1) log 2−umpm(η log η+(1−η) log(1−η))
n∑

i=1
uipi

.

Thus as α varies from m−1
2

to m
2
, Hmin varies from (u1p1+u2p2+...+um−1pm−1) log 2

n∑
i=1

uipi

to log 2. Therefore, Hmax increases from 0 to log 2 continuously while Hmin also

increases from 0 to the same value but in a piecewise continuous manner.

7.6 Constrained Optimization of ‘useful’ Fuzzy

Directed Divergence

The maximum value of the ‘useful’ fuzzy directed divergence is obtained when

many of µA(xi) values are 0 or 1. Next, we discuss the different cases for maximum

values of ‘useful’ fuzzy directed divergence measure as given below:

• When α = 0, the maximum value is −
n∑

i=1

uipi log (1− µB(xi)).

• When α = 1
2
, the maximum value is

unpn log 1−µB(xn)
µB(xn)

−
n∑

i=1

uipi log (1− µB(xi))

provided u1p1 ≤ u2p2 ≤ . . . ≤ unpn.

• Similarly, when α = 1, the maximum value is given by

unpn log
1− µB(xn)

µB(xn)
+un−1pn−1 log

1− µB(xn−1)

µB(xn−1)
−

n∑
i=1

uipi log (1− µB(xi)).

125



• Finally, when α = n
2
, the maximum value is −

n∑
i=1

uipi log µB(xi).

It may be noted that the maximum value of ‘useful’ fuzzy directed divergence

measure is a piecewise continuous function which increases from

−
n∑

i=1

uipi log (1− µB(xi)) to −
n∑

i=1

uipi log µB(xi).

For minimization of the ‘useful’ fuzzy directed divergence measure of a stan-

dard fuzzy set A from a standard fuzzy set B, we consider (7.4.2) subject to
n∑

i=1

µA(xi) = α ≤ n
2
.

On using method of Lagrange’s multiplier, we get

uipi log

(
µA(xi)(1− µB(xi))

(1− µA(xi))µB(xi)

)
= m, (7.6.1)

⇒ µA(xi)

1− µA(xi)
= e

m
uipi

µB(xi)

1− µB(xi)
= e

m
uipi βi, (7.6.2)

where m is determined by

ψ(m) =
n∑

i=1

e
m

uipi βi

1 + e
m

uipi βi

− α = 0. (7.6.3)

and

ψ′(m) =
n∑

i=1

e
m

uipi
βi

uipi(
1 + e

m
uipi βi

)2 ≥ 0. (7.6.4)

It can be seen that

ψ(−∞) = −α, ψ(0) =
n∑

i=1

µB(xi)−
n∑

i=1

µA(xi), ψ(∞) = n− α.

(7.6.5)

In view of (7.6.5), the equation (7.6.3) has a unique root which is positive if
n∑

i=1

µB(xi) <
n∑

i=1

µA(xi), negative if
n∑

i=1

µB(xi) >
n∑

i=1

µA(xi) and zero if
n∑

i=1

µB(xi) =

n∑
i=1

µA(xi).
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If m ≥ 0, then µA(xi) ≥ µB(xi) and each minimizing value is less than the

corresponding given value. Thus in every case we have three possibilities:

(i) µA(xi) < µB(xi) (ii) µA(xi) > µB(xi) (iii) µA(xi) = µB(xi).
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