Dr. Shruk

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION - 2022

B.Tech. IV Semester (ECE)

COURSE CODE: 18B11EC411

MAX. MARKS: 25

COURSE NAME: ANALOG INTEGRATED CIRCUITS

COURSE CREDITS: 03

MAX. TIME: 1 Hour 30 Min

Note: All questions are compulsory. Marks are indicated against each question in square brackets.

- 1. a) How does the high frequency model differ from the equivalent circuit of an op-amp?
 - b) What determines the peak frequency f_p in the peaking amplifier?

[2.5 + 2.5]

- 2. a) For a particular phase shift oscillator the following specifications are given as $C = 0.1 \mu F$, $R = 3.9 \text{ k}\Omega$, and $R_F/R_1 = 29$. Determine the frequency of oscillations.
 - b) Design a Wien bridge oscillator that will oscillate at 2.0 kHz.

[2.5 + 2.5]

- 3. a) Show that the slope of the wave obtained at the output of integrator is proportional to the charging voltage and is inversely proportional to the RC times constant.
 - b) Using single op-amp, generate the expression

$$V_{out} = -\int_{0}^{t} (V_{in1} + 2V_{in2}) dt$$

[2.5 + 2.5]

- 4. a) For the voltage controlled oscillator, determine the output frequency if V_c is 9V. Assume that +V = 12V, $R_2 = 15k\Omega$, $R_3 = 100 k\Omega$, $R_1 = 6.8k\Omega$, and $C_1 = 75pF$.
 - b) Siya wants to design an operational amplifier circuit. She wants to use compensation in the circuit. Help her in designing a circuit with external compensation. [2.5 + 2.5]
- 5. Design a practical differentiator circuit that will differentiate an input signal with the ideal frequency of 150Hz. [5]