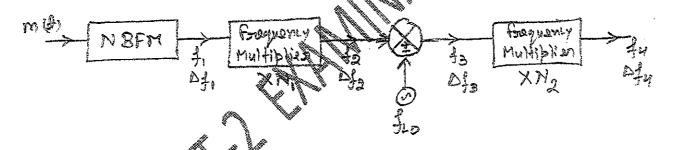
JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT **TEST -2 EXAMINATION- October 2017**

B.Tech (CSE/IT) Vth Semester

COURSE CODE: 10B11EC514

MAX. MARKS: 25

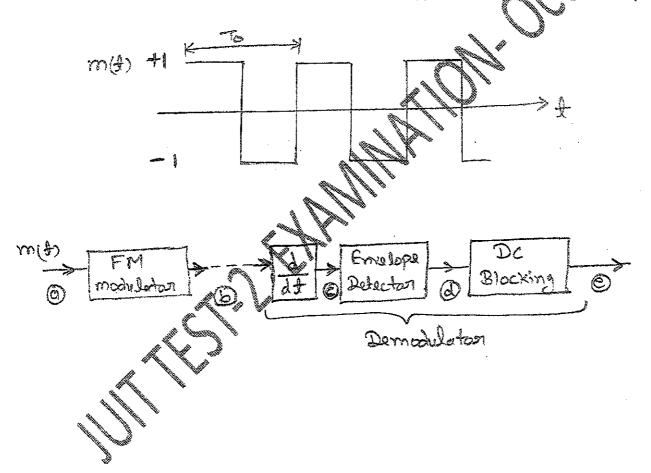
COURSE NAME: COMMUNICATION SYSTEMS


COURSE CREDITS: 4

MAX. TIME: 1.5 Hrs

Note: All questions are compulsory. Carrying of mobile phone during examinations will be treated as case of unfair means.

Q1. (a) Prove that the FM signal has theoretically infinite bandwidth.


- (b) FM is better than AM in some aspects and AM is better than FM in others. Justify this by comparing these two techniques. (2.5)
- Q2. (a) Discuss the concept of Phase Locked Loop (PLL) in the detection of FM with the block diagram.
- (b) A block diagram of an indirect FM generator is shown below. Calculate the maximum frequency deviation (Δf_4) of the output of FM transmitter and the carrier frequency (f_4) if $f_1 = 300kHz$, $\Delta f_1 = 30Hz$, $f_{LO} = 10.5MHz$, $N_1 = 64$ and $N_2 = 48$. (3.0)

- Q3. (a) Discussivarious approaches in detail to access a common communication channel by multiple message signals. (3.0)
- (b) Discuss the threshold improvement in FM with the help of Pre-emphasis and Deemphasis (2.0)
- Q4. (a) An angle modulated signal with carrier frequency $w_c = 4\pi \times 10^6$ is described by the equation $\varphi_{EM}(t) = 8\cos[w_c t + 4\sin(1500t) + 6\sin(3000\pi t)]$. Find:
 - i. The power of modulated signal
 - ii. The frequency deviation Δf
 - iii. The modulation index β
 - iv. The phase deviation $\Delta \phi$
 - Estimate the bandwidth v.

(0.5+1+0.5+0.5+1=3.5)

- (b) For a modulating signal of 15kHz, find the number of channels available in MF band (300kHz 3MHz) when (i) AM is used (ii) FM with frequency deviation $\Delta f = 75kHz$ is used.
- (c) For AM broadcast Super-heterodyne receiver the standard value of intermediate frequency (f_{IF}) is used. Calculate the image frequency at an incoming signal of frequency 900kHz.
- Q5. (a) Draw the block diagram and discuss the concept of Super-heterodyne receiver. Compare its merits and demerits with TRF (Heterodyne) receiver.
- (b) A periodic square wave m(t) frequency-modulates a carrier of frequency $f_c = 10kHz$ with $\Delta f = 1kHz$. The carrier amplitude is A. The resulting FM signal is demodulated as shown below. Sketch the waveforms at points (b), (c), (d) and (e). (2.5)

