Moveen Jaglon

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -1 EXAMINATION-Sep 2017

M.Tech 3rdSemester

COURSE CODE:13M1WEC334

MAX. MARKS:15

COURSE NAME: Antenna Theory & Techniques

COURSE CREDITS: 3

MAX. TIME: One Hr.

Note: All questions are compulsory. Carrying of mobile phone during examinations will be treated as case of unfair means.

1. The radiation patter of an antenna is given by:

$$F(\theta) = \frac{\sin(10\cos\theta)}{\sin(2\cos\theta)} \text{ Where } 0 \le \theta \le \pi$$

Find the direction of nulls, direction of maximum radiation and HPBW of antenna.

- 2. A $\frac{1}{2}$ dipole situated with its center at the origin radiates a time-averaged power of 600 W at a frequency of 300 MHz. A second $\frac{1}{2}$ dipole is placed with its center at a point $P(r, \theta, \phi)$ where r = 200 m, $\theta = 90^{\circ}$, $\phi = 40^{\circ}$. It is exist that its axis is parallel to that of the transmitting antenna. What is the available power at the terminals of the second (receiving) dipole?
- 3. Prove that radiation pattern is Fourier transform of current distribution on antenna structure. 2
- 4. A thin linear dipole of length *t* is placed symmetrically about the z-axis. Find the far-zone spherical electric and magnetic components radiated by the dipole whose current distribution can be approximated by:

$$I_{z}(z') = \left\{ I_{0}\left(1 + \frac{2}{l}z'\right) \right\}, -\frac{l}{2} \le z' \le 0$$

$$\left\{ I_{0}\left(1 - \frac{2}{l}z'\right) \right\}, 0 \le z' \le \frac{l}{2}$$
2

- 5. Plot the current distribution and radiation pattern for $\frac{\lambda}{2}$, λ , $\frac{3}{2}\lambda$, 2λ length dipole antennas.2
- 6. Derive expressions for the near and far field components of Hertz dipole? Calculate the radiation resistance, total power radiated and directivity of this antenna?

 5