JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -2 EXAMINATION- October 2017

B.Tech (CSE&IT) VII Semester

COURSE CODE: 10B1WCI733

MAX. MARKS: 25

COURSE NAME: Graph Algorithms and Applications

COURSE CREDITS: 3

MAX. TIME: ÎHr 30 Min

Note: All questions are compulsory.

- 1. [5 Marks]
- a. Determine the stable matching resulting from the Proposal algorithm run with men proposing and women proposing, given the preference lists below:

Men
$$\{x, y, z, w\}$$
 Women $\{a, b, c, d\}$
 $x: a > b > c > d$ $a: z > x > y > w$
 $y: a > c > b > d$ $b: y > w > x > z$
 $x: c > d > a > b$ $c: w > x > y > z$
 $x: c > b > a > d$ $d: x > y > z > z$

b. Determine k(G), k'(G), and $\delta(G)$ for the graph shown in Figure 1.

Figure 1

2. [5 Marks]

For the network with edge capacities shown in Figure 2, find the maximum flow from S to T, along with a matching cut.

Figure 2

3. [5 Marks]

Prove or disprove:

- a. Every 3-connected graph has connectivity 3
- b. Every tree T has at most one perfect matching.

4. [5 Marks]

Prove or disprove:

- a. Let G be a graph without isolated vertices, and let S be a minimal dominating set in G. complement of S is a dominating set.
- b. If x, y are vertices of a graph G and xy is not an edge in G, then the minimum size of an x, y cut equals the maximum number of pairwise internally disjoint x, y paths.

5. [5 Marks]

- a. Exhibit a maximum matching in the graph shown in Figure 3.
- b. Compute the maximum size of independent set maximum size of matching, minimum size of vertex cover, and minimum size of edge cover for the graph shown in Figure 4.

Figure 3

Figure 4