Dr. P. Klandey

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST-3 EXAMINATION- December 2018

B. Tech. III Semester (CE)

COURSE CODE: 10B11MA312

MAX. MARKS: 35

COURSE NAME: NUMERICAL METHODS

COURSE CREDITS: 4

MAX. TIME: 2 Hrs

Note: All questions are compulsory. Carrying of mobile phone during examinations will be treated as case of unfair means.

1. Perform four iterations of the Newton-Raphson method to find a root of $e^x - 4x \neq 0$. Take the initial approximation as $x_0 = 2$. [5 Marks], [CO1]

2. The population data of a town is given below. Using Newton's forward and backward interpolation formula for derivatives compute the growth rate of the population in 1941 and 1961.

[6 Marks], [CO5]

 Year:
 x_i 1931
 1941
 1951
 1961
 1971

 Population: $f(x_i)$ 40.620
 60.800
 19.930
 103.560
 132.650

3. The following table gives the variation in the specific weight of ocean water with depth.

Depth (m):	x_i	0	100 200	300	400	500	600
Specific weight (kPa/m):	$\gamma(x_i)$	10.055	10.059 10.063	10.068	10.072	10.076	10.079

Compute the hydrostatic pressure at depth 600 m using trapezoidal rule, Simpson's 1/3 rule, and Simpson's 3/8 rule. Assume that the hydrostatic pressure at depth d is given by $\int_0^d \gamma(x) dx$, where $\gamma(x)$ denotes the specific weight at depth x. [6 Marks], [CO5]

- 4. Using Taylor series method solve the IVP $y' = 2y + 3e^x$, y(0) = 0. Hence evaluate y(0.1) and y(0.2) [6 Marks], [CO6]
- 5. Perform three iterations of the Picard's method to solve the IVP $y' = y x^2$, y(0) = 1. Hence evaluate y(0.1) and y(0.2). [6 Marks], [CO6]
- 6. Using fourth order Runge-Kutta method, compute y(0.2), from the IVP

 $10y' = x^2 + y^2, \ y(0) = 1$

Take step size h = 0.1.

[6 Marks], [CO6]