Pragya Gupta

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT **TEST 2 EXAMINATION - OCTOBER 2018**

B.Tech 5TH Semester (ECE)

COURSE CODE: 17B11EC511

MAX. MARKS: 25

COURSE NAME: Linear Integrated Circuits

COURSE CREDITS: 04

MAX. TIME: 1.5 HRS

Note: All questions are compulsory. Carrying of mobile phone during examinations will be treated as case of unfair means. Marks are indicated against each question in square brackets.

Q1. For a non-inverting amplifier, determine the –

[2+1+2]

- a) Maximum possible output offset voltage V_{oo} due to input offset voltage V_{io} and input offset current I_{io} .
- b) What value of compensating resistance R_c is needed to reduce the effect of input offset
- c) What is the effect of input offset voltage and input offset current on the output voltage V_o

$$R_I = 100\Omega$$
, $R_F = 10K\Omega$, $V_{io} = 6\text{mV}$, $I_{io} = 100\text{mA}$, $V_{cc} = \pm 15V$, $I_B = 500\text{nA}$, $V_{in} = 10\text{mV}$

Q2. Draw the circuit diagram of instrumentation amplifier and show that under unbalanced condition-

[3+2]

$$V_{ab} = -\frac{\Delta R V_{dc}}{2(2R + \Delta R)}$$
 and $V_0 = \frac{\Delta R R_f \ V_{dc}}{4R R_1}$

Assume that under unbalanced condition change in the transducer resistance (R_T) is ΔR . Also assume that $R_A = R_B = R_C = R_T = R$.

- Q3. For the positive clamper circuit, draw the output wave form, if V_{in} is 500mV peak sine wave at 100Hz and $V_{ref} = +200 \text{mV}$. [5]
- Q4. In the give circuit $R_1 = 68 \text{ k}\Omega$, $R_2 = 150\Omega$, Vin = 500 mV P-P sine wave and $V_{sat} = \pm 14 \text{V}$
 - a) Determine the threshold voltages $\pm V_T$

[2+5]

Q5. Design a fourth order low pass Butterworth filter at a cut off frequency of 1kHz using IC741. Also draw the schematic diagram with component values. [5]