Roll	No:
------	-----

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

TEST -2 EXAMINATION- October 2018

M.Tech. I Semester

Dr. Vireh Seligal

COURSE CODE: 10M11CI114

MAX. MARKS: 25

COURSE NAME: HIGH PERFORMANCE COMPUTER ARCHITECTURE

COURSE CREDITS: 03

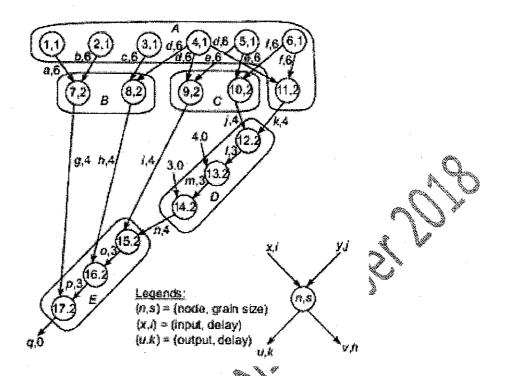
MAX. TIME 1.5Hr

Note: All questions are compulsory. Each question carries equal marks. Carrying of mobile phone during examinations will be treated as case of unfair means.

- 1. Define the following terms related to parallelism and dependence relations:
 - i. Computational granularity.
 - ii. Communication latency.
 - iii. Flow dependence.
 - iv. Anti dependence.
 - v. Output dependence.

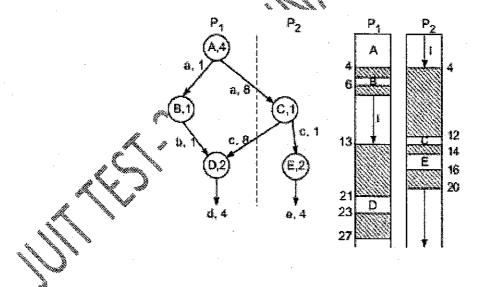
- vi. HO dependence.
- vii. Control dependence.
- viii. Resource dependence.
- ix Bernstein conditions.
- Degree of parallelism.
- 2. The following five statements labeled P₁, P₂, P₃, P₄, and P₅, in program order

$$P: C = D \times E$$


$$P_2: M = G + C$$

$$P_3: A = B + C$$

$$P_4: C = L + M$$


$$P_G: F = G + E$$

- (a) Draw dependence graph showing both data dependence (solid arrows) and resource dependence (Dashed arrows)
- (b) Draw the Sequential execution in five steps, assuming one step per statement
- (c) Draw the Parallel execution in three steps, assuming two adders are available per step
- 3. (a) Explain the Mismatch between software parallelism and hardware parallelism for eight instructions (four load and four arithmetic instructions)
 - (b) What is the role of control parallelism and data parallelism in parallel programming?
- 4. Convert the following Fine-grain program graph before packing in to Coarse-grain program graph after packaging

Also, Plot the Scheduling of the fins-grain and coarse-grain programs

5. What is the use of node duplication in Static Multiprocessor Scheduling? Convert the following schedule with node duplication

