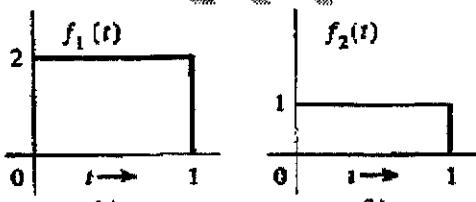
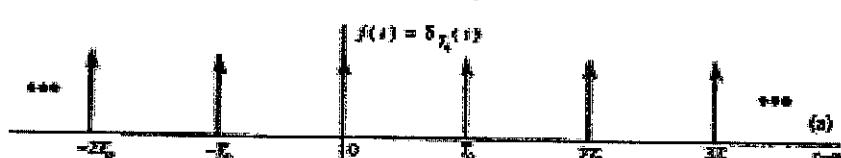


COURSE CODE(CREDITS): 25B11EC311 (4)

MAX. MARKS: 75

COURSE NAME: Signals and Systems



COURSE INSTRUCTORS: Dr. Vikas Baghel

MAX. TIME: 2 Hours

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

(c) Use of a standard scientific calculator is allowed.

Q.No	Question	CO	Marks
Q1	<p>a) Determine whether or not each of the following signals is periodic. If signal is periodic, specify its fundamental period.</p> <p>a. $x(t) = e^{(-1+j)t}$</p> <p>b. $x[n] = e^{j7\pi n}$</p> <p>b) Show that the energies of the given signals are 4 and 1, respectively.</p>	CO1	[6]
Q2	<p>a) Show that the system described by a equation</p> $\frac{dy}{dt} + 3y(t) = x(t)$ <p>is LTI (linear and time-invariant) system.</p> <p>b) Compute the convolution $y[n] = x[n] * h[n]$, where</p> $x[n] = \left(\frac{1}{3}\right)^{-n} u[-n-1] \text{ and } h[n] = u[n-1]$	CO2	[6]
Q3	<p>a) Find the exponential Fourier series and sketch the corresponding spectra for the impulse train $\delta_{T_0}(t)$ depicted in figure.</p>	CO3	[7]

	b) Given that $X(w)$ is the CTFT of signal $x(t)$. Express the CTFT of $\frac{d^2}{dt^2}x(1-t)$ in terms of $X(w)$.		[6]
Q4	<p>a) Determine the inverse Laplace transform of the $X(s) = \frac{s+2}{s^2+7s+12}$, $-4 < \text{Re}\{s\} < -3$.</p> <p>b) An LTI system has following transfer function $H(s) = \frac{3-s}{(s+3)(s^2-4)}$. Determine the following (i) Draw poles and zeros of the system (ii) Stability of the system (iii) Causality of the system.</p>	CO4	[6] [7]
Q5	<p>a) Using long division method, determine four terms of inverse z-transform of</p> $H(z) = \frac{1 - \frac{1}{2}z^{-1}}{1 + \frac{1}{2}z^{-1}}$ <p>b) A causal LTI system is defined by the following difference equation</p> $y[n] + \frac{1}{4}y[n-1] + \frac{1}{8}y[n-2] = x[n]$ <p>Determine the system function and the impulse response of the system.</p>	CO4	[6] [7]
Q6	<p>a) Define the four basic digital filtering functions and sketch their ideal frequency responses.</p> <p>b) Given the transfer function $H(z) = \frac{(1+2z^{-1})}{(1-0.5z^{-1})}$</p> <ol style="list-style-type: none"> Identify if it is FIR or IIR. Draw the Direct Form I realization. 	CO1	[6] [6]