

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT
Supplementary Examination- 2026
B.Tech-I Semester (CSE/IT/ECE/CE)

COURSE CODE (CREDITS): 25B11PH111(04)

MAX. MARKS: 75

COURSE NAME: Physics-1

COURSE INSTRUCTORS: PBB, SKK, VSA, SKT, SBD, HSR, HAZ

MAX. TIME: 2 Hours

Note: (a) All questions are compulsory. Scientific calculators are allowed.

Q.No	Question	CO	Marks
Q1	<p>a) Derive an expression for calculating the path difference for reflected interference from a thin film of thickness 't' and refractive index 'n' for incident wavelength 'λ'.</p> <p>b) Light of wavelength 5893 \AA is reflected at normal incidence from a soap film of refractive index 1.42. What is the least thickness of the film that will appear (i) bright (ii) dark for the first order?</p>	1 3	7.5
Q2	<p>a) Consider the circular slit diffraction, derive the expression to calculate the radius of the central maxima.</p> <p>b) In a double slit Fraunhofer diffraction, the screen is 1.6 m away from the slits. The slit widths are 0.2 mm and they are 0.4 mm apart. Calculate the wavelength of light if the fringe width is $2.5 \times 10^{-3} \text{ m}$ and also deduce the missing orders.</p>	1 3	7.5
Q3	<p>a) Discuss the superposition of e- and o-ray and extend the same to obtain the condition for circularly polarized light.</p> <p>b) A sugar solution in a tube of length 20 cm produces an optical rotation of 13 degrees. The solution is then diluted to one-third of its previous concentration. Find the optical rotation produced by 30 cm long tube containing the diluted solution?</p>	2 3	7.5
Q4	<p>a) Establish a co-relation for energy and relativistic mass.</p> <p>b) Calculate the percentage contraction of a rod moving with velocity 0.8 times the velocity of light in a direction at 60 degrees to its own length.</p>	1 2	7.5
Q5	<p>a) Show that the difference of the specific heats is equal to the universal gas constant for a one mole of a gas.</p> <p>b) Show that the slope of adiabatic curve is higher than the isothermal curve in thermodynamics.</p>	1 3	7.5
Q6	<p>a) Obtain adiabatic equation of state for one mole of an ideal gas.</p> <p>b) Air is compressed adiabatically to half of its volume at NTP. Calculate the change in its temperature (Given for air $\gamma = 1.4$)</p>	3 2	7.5
Q7	<p>a) Using uncertainty principle prove the non-existence of electron within the atomic nucleus.</p> <p>b) Calculate the work function, stopping potential, & maximum velocity of photoelectrons for a light of wavelength 435 nm when it is incident on sodium surface. Consider the threshold wavelength of photoelectrons to be 542 nm.</p>	4 3	7.5
Q8	<p>a) Calculate the kinetic energy of proton and an electron so that the deBroglie wavelength associated with them is the same and equal to 5000 \AA.</p> <p>b) An electron is bound to one dimensional potential box which has width 2.5 \AA. Assuming the height of the box to be infinite, calculate the lowest energy value of the electron.</p>	2 3	7.5
Q9	<p>a) Establish the correlation between thickness, refractive index and wavelength for an antireflecting film.</p> <p>b) Angle of the wedge is 0.3 degree and the wavelength of the sodium D-lines are 5890 and 5896 \AA. Find the distance from the apex of the wedge at which the maximum due to the two wavelength first coincides.</p>	4 3	7.5
Q10	<p>a) Show the Zeeman splitting of $l=3$ to $l=2$ transition line.</p> <p>b) Why it is impossible for $2^2P_{5/2}$ to exist?</p>	4 3	7.5

Constants: $e=1.6 \times 10^{-19} \text{ C}$; $h=6.626 \times 10^{-34} \text{ Js}$; $m_e=9.11 \times 10^{-31} \text{ kg}$; $c=3 \times 10^8 \text{ m/s}$; $k_B=1.38 \times 10^{-23} \text{ J/K}$; $m_p=1.67 \times 10^{-27} \text{ kg}$;