

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT
 Supplementary Examination- 2026

B.Tech-I Semester (CSE/IT/ECE/CE/M&C)

COURSE CODE(CREDITS): 25B11MA113 (4)

MAX. MARKS: 75

COURSE NAME: MATHEMATICS-I

COURSE INSTRUCTORS: PKP*, NKT, RKB, MDS

MAX. TIME: 2 Hours

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems.

Q.No.	Question	CO	Marks
Q1	<p>(a) Show that the function</p> $f(x, y) = \begin{cases} \frac{xy}{x^2+5y^2}, & (x, y) \neq (0,0) \\ 0, & (x, y) = (0,0) \end{cases}$ <p>is not continuous at $(0,0)$.</p> <p>(b) Investigate $\lim_{(x,y) \rightarrow (0,0)} \frac{x^3y}{x^6+y^2}$.</p>	CO-1	3+3
Q2	Expand $f(x, y) = 4x^2 + xy + 6y^2 + x - 20y + 21$ in Taylor's series of maximum order about the point $(-1, 2)$.	CO-1	6
Q3	<p>(a) Find all the extreme points of the function</p> $f(x, y) = -2x^3 + 6x^2 + 3y^2 + 6xy$ <p>and classify them.</p> <p>(b) Using Lagrange's multiplier method find the minimum value of $x^2 + y^2 + z^2$ subject to the conditions</p> $ax + by + cz = 1, \quad ax + \beta y + \gamma z = 1.$	CO-1	3.5+3.5
Q4	Evaluate the integral $\int_0^{\infty} \int_0^x xe^{(-x^2/y)} dx dy$ by changing the order of integration.	CO-2	6.5
Q5	Show that $\int_0^{\pi/2} \sin^2 \theta \cos^4 \theta d\theta = \frac{5\pi}{32}$	CO-2	6.5
Q6	If $\vec{V} = \frac{x\hat{i} + y\hat{j} + z\hat{k}}{\sqrt{x^2 + y^2 + z^2}}$, find the value of $\text{div } \vec{V}$	CO-3	6.5
Q7	Solve $(D^2 - 4D + 4)y = x^3 e^{2x}$	CO-4	6.5
Q8	Evaluate $L[t^2 e^t \sin 4t]$	CO-4	6.5
Q9	Evaluate $L^{-1} \left[\frac{s}{s^2 + 4s + 13} \right]$	CO-4	6.5
Q10	Convert the matrix $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 5 & 4 \\ 3 & 8 & 5 \end{bmatrix}$ into row echelon form, and hence find the rank of A .	CO-5	4

Q11	<p>Consider a simple linear model (say, $y = ax_1 + bx_2 + c$) trained on three data points, giving three linear equations:</p> $a + b + c = 6, \quad 2a + b + c = 8, \quad a + 2b + c = 9$ <p>Using the Gauss Elimination Method find the values of a, b, c.</p>	CO-5	6.5
Q12	<p>Find the eigenvalues of the matrix</p> $A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 3 & 4 \\ 0 & 0 & 5 \end{bmatrix}$	CO-5	6.5