

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

Supplementary Examination- 2026

B.Tech-VII Semester (CSE/IT)

COURSE CODE(CREDITS): 18B1WEC636 (2)

MAX. MARKS: 75

COURSE NAME: Fundamentals of Digital Signal Processing & Applications

COURSE INSTRUCTORS: Dr. Vikas Baghel

MAX. TIME: 2 Hours

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

(c) Use of a standard scientific calculator is allowed.

Q.No	Question	CO	Marks
Q1	<p>a) State the Nyquist Sampling Theorem. Explain the concept of 'Aliasing' and how it can be prevented during the reconstruction of band-limited signals.</p> <p>b) Determine whether the system $y(n) = x(n) + n x(n - 1)$ is:</p> <ul style="list-style-type: none"> i. Linear or Non-linear ii. Time-invariant or Time-variant iii. Causal or Non-causal <p>c) A discrete-time system is characterized by the impulse response $h(n) = \{1, 2, 1, -1\}$ and an input sequence $x(n) = \{1, 2, 3, 1\}$.</p> <ul style="list-style-type: none"> • Compute the linear convolution $y(n) = x(n) * h(n)$. • Check if the system is stable and causal. 	CO1	[6]
Q2	<p>a) Find the Z-transform and the Region of Convergence (ROC) for the sequence:</p> $x(n) = \left(\frac{1}{2}\right)^n u(n) + \left(-\frac{1}{3}\right)^n u(n)$ <ul style="list-style-type: none"> • Plot the pole-zero pattern. • Determine the stability of the system based on the ROC. 	CO2	[8]

	<p>b) Compute the 4-point DFT of the sequence $x(n) = \{1, 1, 0, 0\}$. Show the magnitude and phase for each frequency bin $X(k)$.</p> <p>c) Use the Radix-2 Decimation-In-Time (DIT) FFT algorithm to compute the 8-point DFT of the sequence $x(n) = \{1, 2, 1, 2, 0, 0, 0, 0\}$. Draw the butterfly signal flow graph clearly showing all twiddle factors W_N^k.</p>		[7]
Q3	<p>a) Compare FIR and IIR filters based on their stability, phase response, and computational complexity.</p> <p>b) Design a digital Low Pass Filter (LPF) using the Bilinear Transformation method to meet the following specifications:</p> <ul style="list-style-type: none"> Passband edge: 200 Hz Sampling frequency: 1000 Hz Use a first-order Butterworth analog prototype $H(s) = \frac{\Omega_c}{s + \Omega_c}$ <p>c) A system is described by the difference equation:</p> $y(n) = 0.5y(n-1) - 0.25y(n-2) + x(n) + 2x(n-1) + x(n-2)$ <ul style="list-style-type: none"> Obtain the Transfer Function $H(z)$. Realize the system using Direct Form II and Cascade Form structures. 	CO3	[4]
			[8]
Q4	<p>a) Explain the role of Digital Signal Processing in RADAR systems, specifically focusing on how DSP is used for object detection and distance measurement.</p> <p>b) Discuss the application of DSP in Biomedical Engineering, highlighting its use in processing ECG (Electrocardiogram) signals for noise removal.</p>	CO4	[10]