

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

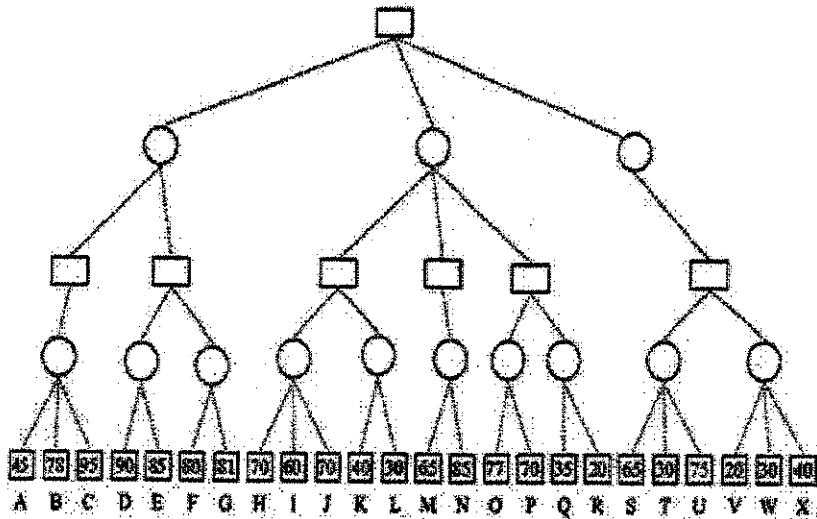
Supplementary Examination- 2026

B.Tech-VII Semester (CSE/IT)

COURSE CODE(CREDITS):18B1WCI742 (3)

MAX. MARKS: 75

COURSE NAME: Artificial Intelligence


COURSE INSTRUCTORS:HRI/KTS/SRJ

MAX. TIME: 2 Hours

**Note:** (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

| Q.No | Question                                                                                                                                                                                                                                                                                                                                                                                            | CO | Marks |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------|
| Q1   | Explain how the concept of state space search forms the foundation for both domain-independent deterministic search algorithms and heuristic search methods. In your answer, analyze how DFS, BFS, and Iterative Deepening DFS explore the state space differently                                                                                                                                  | 1  | 8     |
| Q2   | Consider a water jug problem with three jugs of capacities 8 liters, 5 liters, and 3 liters. Initially, all jugs are empty. Using an appropriate state space search approach, explain how exactly 4 liters of water can be measured. Show the sequence of states involved.                                                                                                                          | 2  | 8     |
| Q3   | (a) Write the A* heuristic search algorithm.<br>(b) What characteristics should the heuristic function satisfy so that A* always finds the optimal (least-cost) path? Explain this in terms of admissibility and whether the heuristic underestimates or overestimates the distance from a node $N$ to the goal.                                                                                    | 3  | 5+5   |
| Q4   | In the context of Ant Colony Optimization (ACO), explain the following, clearly defining all symbols used.<br>(a) The probability of the $k$ th ant moving from city $i$ to city $j$ .<br>(b) If the pheromone value on an edge is $\tau = 0.5$ , heuristic value $\eta = 4$ , $\alpha = 1$ , $\beta = 2$ , and the sum of probabilities is 10, calculate the probability of selecting that edge.   | 4  | 5+5   |
| Q5.  | In the game tree given in the following image, the leaves are labelled with the values from the evaluation function. The letter labels [A... X] below the leaves are names of the leaves. Show the order in which algorithm Minimax and Alpha-Beta pruning will inspect the nodes, explaining all the decisions made, along with diagrams where appropriate. What is the minimax value of the game? | 2  | 8     |



|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |     |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|
| Q6 | Explain the assumptions of the Naïve Bayes classifier and describe the rules applied when multiple pieces of evidence are available.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 | 8   |
| Q7 | <p>(a) Explain the role of selection, crossover, and mutation in a Genetic Algorithm. How do these operators help in improving the quality of solutions across generations?</p> <p>(b) Consider a Genetic Algorithm where chromosomes are represented as binary strings of length 6.</p> <p>The fitness function is defined as <math>f(x) = \text{Number of 1s in the chromosome}</math></p> <p>The initial population is given as</p> $x_1 = 101011; \quad x_2 = 110001; \quad x_3 = 011010; \quad x_4 = 100111$ <p>i) Calculate the fitness of each chromosome.<br/> ii) Identify the two fittest chromosomes.<br/> iii) Perform <b>one-point crossover</b> at position 3 on the two fittest chromosomes and write the resulting offspring.</p> | 3 | 4+6 |
| Q8 | Explain the different inference rules used in logic.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 | 5   |
| Q9 | Explain the concepts of bias and variance in machine learning. How do bias and variance lead to underfitting and overfitting in a model? Illustrate how an appropriate balance between bias and variance helps in building a generalized model.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5 | 8   |