

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

TEST -3 EXAMINATION- 2025

B.Tech-III Semester (CSE)

COURSE CODE (CREDITS):25B11CI315 (3)

MAX. MARKS: 25

COURSE NAME: Theory of Computation

COURSE INSTRUCTORS: ARV*, MNK, NSA, RMS, SKS, SMA MAX. TIME: 1 Hour 30 Min

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

Q. No	Question	CO	Marks
Q1	<p>Consider the following PDA Machine $M = (\{q_0, q_1\}, \{0,1\}, \{X, Z_0\}, \delta, q_0, Z_0, \{\})$ with the transitions given by $\delta(\delta)$:</p> <p> $\delta(q_0, 0, Z_0) = (q_0, XZ_0)$ $\delta(q_0, 0, X) = (q_0, XX)$ $\delta(q_0, 1, X) = (q_1, \epsilon)$ $\delta(q_1, 1, X) = (q_1, \epsilon)$ $\delta(q_1, \epsilon, X) = (q_1, \epsilon)$ $\delta(q_1, \epsilon, Z_0) = (q_1, \epsilon)$ </p>	4	5
Q2	<p>Convert the following context-free grammar to an equivalent PDA. Write the terminals, non-terminals, and all final transitions.</p> <p> $S \rightarrow aaB \mid Abb \mid \epsilon$ $A \rightarrow a \mid aA$ $B \rightarrow b \mid bB$ </p>	4	5
Q3	<p>(a) Consider the following four languages over the alphabet $\Sigma = \{a, b, c\}$:</p> <p> $L_1 = \{a^i b^j c^k \mid i = j \text{ or } j = k, \text{ where } i, j, k \geq 0\}$ $L_2 = \{a^i b^j c^k \mid i = j \text{ and } j = k, \text{ where } i, j, k \geq 0\}$ $L_3 = \{a^i b^j c^k \mid i < j < k, \text{ where } i, j, k \geq 0\}$ $L_4 = \{a^n b^n c^k \mid n, k \geq 0\}$ </p> <p>Identify which of these languages is a Deterministic Context-Free Language (DCFL). Justify your answer briefly by explaining why the other three are not DCFLs.</p>	4	[4+3+3]

	<p>(b) For the language you identified as a DCFL in Part a, design a Deterministic Pushdown Automaton (DPDA) that recognizes it.</p> <ul style="list-style-type: none"> Provide a formal definition of your DPDA as a 7-tuple $(Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$. Clearly describe the meaning of each state in Q. Draw a clear state diagram for the DPDA. <p>(c) Identify whether the given language is Recursive, Recursively Enumerable but Not Recursive or Not Recursively Enumerable language and justify your answer. $L = \{a^p \mid p \text{ is a prime number}\}$</p>		
Q4	Design a Turing machine that accepts the language $L = \{a^m b^m a^n : m > n\}$	5	5
Q5	<p>Consider the simple (regular, in fact) language $L = \{w \in \{0,1\}^*: w \text{ is odd}\}$</p> <p>(a) Provide a Turing machine that decides L. (b) Provide a Turing machine that semi decides L.</p>	5	5
Q6	Match the Following:	5	5

Column A	Column B
A. Decision Problem	1. Ambiguity Problem for CFGs
B. Halting Problem	2. Ask "Yes/No" questions
c. Undecidable	3. Classic undecidable problem
D. Contradiction	4. Output required to be both halting and non-halting under same assumption.
E P vs NP	5. Concerned with complexity classification