

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

TEST -3 EXAMINATION- 2025

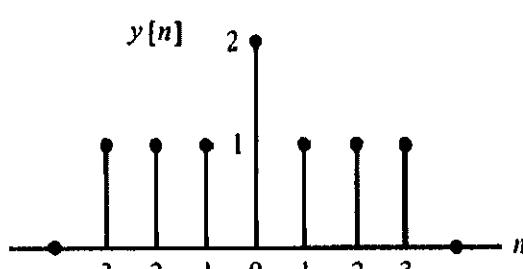
B.Tech-III Semester (ECE)

COURSE CODE (CREDITS): 25B11EC311 (4)

MAX. MARKS: 35

COURSE NAME: Signals and Systems

COURSE INSTRUCTORS: Dr. Vikas Baghel


MAX. TIME: 2 Hours

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

(c) Use of a standard scientific calculator is allowed.

Q.No	Question	CO	Marks
Q1	<p>a) Show that</p> $\left[2^{-n} \cos\left(\frac{\pi}{3}n\right)\right] u[n - 1] \Leftrightarrow \frac{0.25(z - 1)}{z^2 - 0.5z + 0.25}$ <p>b) By expanding $X[z] = \frac{\gamma z}{(z - \gamma)^2}$ as a power series in z^{-1}, show that $x[n] = n\gamma^n u[n]$.</p> <p>c) Find the output $y[n]$ of an LTID system:</p> $2y[n + 2] - 3y[n + 1] + y[n] = 4x[n + 2] - 3x[n + 1]$ <p>given $y[-1] = 0$, $y[-2] = 1$, and $x[n] = 4^{-n} u[n]$.</p>	[CO4]	[3]
Q2	<p>a) For each of the systems specified by the following transfer functions, find the differential equation relating the output $y(t)$ to the input $x(t)$: $H(s) = (s + 5) / (s^2 + 3s + 8)$.</p> <p>b) For an LTIC system with zero initial conditions, if an input $x(t)$ produces an output $y(t)$, then show that:</p> <ol style="list-style-type: none"> The input $\frac{dx(t)}{dt}$ produces an output $\frac{dy(t)}{dt}$, The input $\int_0^t x(\tau)d\tau$ produces an output $\int_0^t y(\tau)d\tau$. Hence, show that the unit step response of a system is an integral of the impulse response; that is $\int_0^t h(\tau)d\tau$. <p>c) Derive the Initial Value Theorem (IVT) for the Laplace Transform.</p>	[CO4]	[2]

Q3	<p>a) Consider the signal $y[n]$ in figure. Find the signal $x[n]$ such that $\text{Even}\{x[n]\} = y[n]$ for $n \geq 0$ and $\text{Odd}\{x[n]\} = y[n]$ for $n < 0$.</p>	[CO3]	[3]
Q3	<p>b) Find the FS coefficients of signal</p>	[3]	[3]
	$x(t) = [1 + \cos(2\pi t)] \sin\left(10\pi t + \frac{\pi}{6}\right)$ <p>Also plot the magnitude and the phase spectrum.</p>		
	<p>c) Consider the discrete time system described by the difference equation</p> $y[n] = \sum_{k=-\infty}^n (-1)^{n-k} x[k]$ <p>Find out its impulse response $h[n]$ and frequency response $H(\Omega)$.</p>		
Q4	<p>a) Derive the cutoff frequency of a first-order RC high-pass filter.</p> <p>b) A low-pass RC filter has $R = 1 \text{ k}\Omega$ and $C = 0.1 \mu\text{F}$.</p> <ol style="list-style-type: none"> Compute the cutoff frequency f_c. For a 1 V rms input at $f = f_c$, compute the output amplitude using -3 dB definition. 	[CO1]	[3]
	<p>c) Draw the signal-flow structure of given IIR filter:</p> $y[n] = 1.2y[n-1] - 0.36y[n-2] + x[n] + 0.5x[n-1]$ <p>Also find whether this filter is stable or not.</p>		