

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make suitable numeric assumptions wherever required for solving problems

(c) Scientific calculator is allowed.


Q.No	Question	CO	Marks																				
Q1	<p>The following frequency distribution has two missing frequencies:</p> <table border="1"> <tr> <td>Class Interval</td><td>0-20</td><td>20-40</td><td>40-60</td><td>60-80</td><td>80-100</td></tr> <tr> <td>Frequency</td><td>17</td><td>f_1</td><td>32</td><td>f_2</td><td>19</td></tr> </table> <p>The total frequency is 120, and the mean of the distribution is 50. Find the missing frequencies f_1 and f_2.</p>	Class Interval	0-20	20-40	40-60	60-80	80-100	Frequency	17	f_1	32	f_2	19	CO-1	4								
Class Interval	0-20	20-40	40-60	60-80	80-100																		
Frequency	17	f_1	32	f_2	19																		
Q2	<p>A bag X contains 8 white and 4 black balls. A second bag Y contains 5 white and 6 black balls. One ball is drawn at random from bag X and placed in Bag Y. Now, a ball is drawn at random from bag Y. It is found that this ball is white. Find the probability that a black ball has been transferred from bag X.</p>	CO-2	3																				
Q3	<p>The diameters of balls produced by a machine are normally distributed with a mean of 5 cm and a standard deviation of 0.02 cm, that is, $X \sim N(5, 0.02^2)$. Find the percentage of balls whose diameters lie between 4.97 cm and 5.02 cm.</p>	CO-2	3																				
Q4	<p>A DNA extraction kit claims that the mean DNA yield per extraction is 35 μg. The population standard deviation is known to be 5 μg. A biotechnology research laboratory tests a random sample of 50 DNA extractions and obtains a sample mean yield of 33.7 μg. At the 5% level of significance, test whether the true mean DNA yield is different from the claimed mean of 35 μg.</p>	CO-3	4																				
Q5	<p>A company tests life times (hours) of two LED bulb processes.</p> <table border="1"> <tr> <td>Process A:</td><td>1120</td><td>1150</td><td>1110</td><td>1130</td><td>1140</td></tr> <tr> <td>Process B:</td><td>1080</td><td>1100</td><td>1090</td><td>1075</td><td>1110</td></tr> </table> <p>Test at the 5% significance level whether the mean lifetimes differ. Assume population variances unknown but equal.</p>	Process A:	1120	1150	1110	1130	1140	Process B:	1080	1100	1090	1075	1110	CO-3	5								
Process A:	1120	1150	1110	1130	1140																		
Process B:	1080	1100	1090	1075	1110																		
Q6	<p>For the following data:</p> <table border="1"> <tr> <td>X</td><td>65</td><td>66</td><td>67</td><td>67</td><td>68</td><td>69</td><td>70</td><td>72</td></tr> <tr> <td>Y</td><td>67</td><td>68</td><td>65</td><td>68</td><td>72</td><td>72</td><td>69</td><td>71</td></tr> </table> <p>Calculate the Karl Pearson's coefficients between X and Y.</p>	X	65	66	67	67	68	69	70	72	Y	67	68	65	68	72	72	69	71	CO-4	5		
X	65	66	67	67	68	69	70	72															
Y	67	68	65	68	72	72	69	71															
Q7	<p>A company claims that its customers choose among four brands A, B, C, and D in the ratio 4 : 3 : 2 : 1. To verify this claim, a random sample of 200 customers was collected, and the following distribution was observed:</p> <table border="1"> <tr> <td>Brand</td><td>A</td><td>B</td><td>C</td><td>D</td></tr> <tr> <td>Observed Frequency</td><td>84</td><td>60</td><td>38</td><td>18</td></tr> </table> <p>Using the chi-square (χ^2) goodness-of-fit test, calculate the value of χ^2.</p>	Brand	A	B	C	D	Observed Frequency	84	60	38	18	CO-3	5										
Brand	A	B	C	D																			
Observed Frequency	84	60	38	18																			
Q8	<p>A retail store wants to compare the performance of its three billing counters in terms of customer waiting time. To study this, the waiting time (in minutes) of four customers at each counter was recorded as follows:</p> <table border="1"> <tr> <td>Customer</td><td>1</td><td>2</td><td>3</td><td>4</td></tr> <tr> <td>Counter 1</td><td>8</td><td>9</td><td>7</td><td>10</td></tr> <tr> <td>Counter 2</td><td>6</td><td>7</td><td>6</td><td>8</td></tr> <tr> <td>Counter 3</td><td>9</td><td>11</td><td>10</td><td>12</td></tr> </table> <p>Using a One-Way ANOVA, test at the 5% level of significance whether there is any</p>	Customer	1	2	3	4	Counter 1	8	9	7	10	Counter 2	6	7	6	8	Counter 3	9	11	10	12	CO-5	6
Customer	1	2	3	4																			
Counter 1	8	9	7	10																			
Counter 2	6	7	6	8																			
Counter 3	9	11	10	12																			

significant difference in the mean waiting times among the three counters. Prepare the ANOVA table and state your conclusion.

t Distribution: Critical Values of t

Degrees of freedom	Two-tailed test One-tailed test	Significance level						
		10% 5%	5% 2.5%	2% 1%	1% 0.5%	0.2% 0.1%	0.1% 0.05%	
1		6.314	12.706	31.821	63.657	318.309	636.619	
2		2.920	4.303	6.965	9.925	22.327	31.599	
3		2.553	3.182	4.541	5.841	10.215	12.924	
4		2.132	2.776	3.747	4.604	7.173	8.610	
5		2.015	2.571	3.365	4.032	5.893	6.869	
6		1.943	2.447	3.143	3.707	5.208	5.959	
7		1.894	2.365	2.998	3.499	4.785	5.408	
8		1.860	2.306	2.896	3.355	4.501	5.041	
9		1.833	2.262	2.821	3.250	4.297	4.781	
10		1.812	2.228	2.764	3.169	4.144	4.587	

Standard Normal Cumulative Probability Table

Cumulative probabilities for NEGATIVE z -values are shown in the following table:

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0369	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0438	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0376	0.0367
-1.6	0.0518	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0476	0.0465	0.0455
-1.5	0.0668	0.0656	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0569
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1161	0.1131	0.1112	0.1083	0.1075	0.1060	0.1038	0.1020	0.1003	0.0985
-1.1	0.1367	0.1335	0.1314	0.1282	0.1271	0.1261	0.1230	0.1210	0.1180	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379

Z-Critical Values Table

Level of significance: α	0.10	0.05	0.01	0.005	0.002
Critical values of z for one-tailed tests	-1.28 or 1.28	-1.645 or 1.645	-2.33 or 2.33	-2.58 or 2.58	-2.88 or 2.88
Critical values of z for two-tailed tests	-1.645 and 1.645	-1.96 and 1.96	-2.58 and 2.58	-2.81 and 2.81	-3.08 and 3.08

Critical Values of the F -Distribution

$$f_{0.05}(v_1, v_2)$$

v_2	v_1								
	1	2	3	4	5	6	7	8	9
1	161.45	199.50	215.71	224.58	230.16	234.99	236.77	238.88	240.64
2	18.51	19.00	19.16	19.25	19.30	19.34	19.35	19.37	19.38
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00
5	6.61	5.79	5.41	5.19	5.03	4.95	4.88	4.82	4.77
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02