

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

TEST -3 EXAMINATION- 2025

B.Tech.-III Semester (ECE/ECS/EEVLSI/MC)

COURSE CODE (CREDITS): 25B11MA311 (4)

MAX. MARKS: 35

COURSE NAME: PROBABILITY AND RANDOM PROCESSES

COURSE INSTRUCTORS: SST

MAX. TIME: 2 Hours

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make suitable numeric assumptions wherever required for solving problems.

(c) Use of a scientific calculator is allowed.

Q. No.	Question	CO	Marks																		
Q1	<p>The joint probability density function for random variables X and Y is as follows:</p> $f_{XY}(x, y) = \begin{cases} \frac{x(1 + 3y^2)}{4}, & 0 < x < 2, 0 < y < 1 \\ 0, & \text{elsewhere} \end{cases}$ <p>a) Find the marginal probability density function of X. b) Find the conditional probability density $P_{Y X}(y x = 1)$.</p>	2	2+3																		
Q2	<p>The life of a LED bulb follows exponential distribution with mean life of 500 hours. Let X denotes time-to-failure of this bulb.</p> <p>a) Write the probability density function for X. b) If the bulb has been used for 300 hours, what is the conditional probability that it will last for another 600 hours?</p>	3	2+3																		
Q3	<p>A study was done to study the effect of ambient temperature X on the electric power consumed by a chemical plant Y. Other factors were held constant, and the following data were collected from an experimental pilot plant:</p> <table border="1"> <thead> <tr> <th>Y (BTU)</th> <th>X (F)</th> </tr> </thead> <tbody> <tr> <td>250</td> <td>27</td> </tr> <tr> <td>285</td> <td>45</td> </tr> <tr> <td>320</td> <td>72</td> </tr> <tr> <td>295</td> <td>58</td> </tr> <tr> <td>265</td> <td>31</td> </tr> <tr> <td>298</td> <td>60</td> </tr> <tr> <td>267</td> <td>34</td> </tr> <tr> <td>321</td> <td>74</td> </tr> </tbody> </table>	Y (BTU)	X (F)	250	27	285	45	320	72	295	58	265	31	298	60	267	34	321	74	4	3+2
Y (BTU)	X (F)																				
250	27																				
285	45																				
320	72																				
295	58																				
265	31																				
298	60																				
267	34																				
321	74																				

	<p>a) Estimate the slope and intercept in a simple linear regression model. b) Predict power consumption for an ambient temperature of $65^{\circ}F$.</p>		
Q4	<p>a) Write the logistic function and standard logistic function. b) What is the major difference between linear and logistic regression? c) Compute the predicted probability using the logistic regression model: $z = -2 + 0.5x_1 + x_2 - 0.5x_3$ for feature values $x_1 = 2, x_2 = 1, x_3 = 0$.</p>	4	2+1+2 2025
Q5	<p>Mention one major difference between strict-sense stationary and wide-sense stationary random processes. Check whether $\{X(t)\}$, where $X(t) = A\cos(\omega t)$, where, $t \geq 0$, ω is a constant, and A is uniformly distributed in $(0, \pi)$, is a wide-sense stationary random process or not.</p>	5	1+4 2025
Q6	<p>A message transmission system is found to be Markovian with the transition probability of current message to next message as given by the matrix $\begin{bmatrix} 0.2 & 0.3 & 0.5 \\ 0.1 & 0.2 & 0.7 \\ 0.6 & 0.3 & 0.1 \end{bmatrix}$. The initial probabilities are given by $[0.4 \ 0.3 \ 0.3]$.</p> <p>a) Draw the state transition diagram. b) Find the probability of the second message to be the next message. c) State the Chapman-Kolmogorov theorem and use it to find $[p_{ij}^{(3)}]$.</p>	5	1+1+3 2025
Q7	<p>A wide-sense stationary Gaussian random process has an autocorrelation function $R_{XX}(\tau) = 16e^{- \tau /2}$. Determine the covariance matrix of the random variables $X(t), X(t+1), X(t+2)$, and $X(t+3)$. If $\mu_X(t) = 10$, evaluate, $P[X(10) \leq 12]$.</p>	5	3+2 2025

Areas under the Normal Curve:

<i>z</i>	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879