

JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT
 TEST -3 EXAMINATION- 2025
 B.Tech-I Semester (CSE/IT/ECE/CE)

COURSE CODE (CREDITS): 25B11PH111 (04)

MAX. MARKS: 35

COURSE NAME: PHYSICS-1

COURSE INSTRUCTORS: PBB, SKK, VSA, SKT, SBA, HSR, HAZ

MAX. TIME: 2 Hour

Note: (a) All questions are compulsory. Symbols have their usual meanings. Calculators are allowed.

Q.No	Question	CO	Marks
Q1	<p>(a) If a grating with 1000 lines/cm produces a first-order fringe at 19.2 cm on a screen 4 m away, what is the wavelength of the light?</p> <p>(b) State and explain Malus law with a figure. What angle is needed between the direction of polarized light and the axis of a polarizing filter to reduce its intensity by 90.0%?</p>	3 4	3+3
Q2	<p>(a) Show that the average intensity over a complete period (cycle) from the output of the YDSE is equal to the sum of individual intensities from two slits.</p> <p>(b) In a photoelectric experiment both sodium (work function = 2.3 eV) and tungsten (work function = 4.5 eV) metals were illuminated by the ultraviolet lights of same wavelength. If the stopping potential for tungsten is measured to be 1.8 V, what will be the stopping potential for sodium?</p>	1 3	3+2
Q3	<p>(a) A beam of X-rays of wavelength 0.2 nm is incident on a free electron and gets scattered in a direction with respect to the direction of the incident radiation resulting in maximum wavelength shift. What is the percentage energy loss of the incident radiation?</p> <p>(b) What is de Broglie hypothesis? What is the speed of an electron whose de Broglie wavelength is equal to its Compton wavelength?</p>	3 4	2+2
Q4	<p>(a) The ground state of Nb has the electron configuration [Kr]4d¹5s¹. What is the corresponding ground state term symbol?</p> <p>(b) A sample of certain element is placed in a magnetic field of flux density 0.3 Tesla. How far apart is the Zeeman component of a spectral line of wavelength 450 nm?</p>	4 3	1+2
Q5	<p>(a) Derive energy-momentum relation in special theory of relativity.</p> <p>(b) With what velocity a particle should move so that its mass appears to increase by 20% of its rest mass?</p>	1 2	3+2
Q6	<p>A Carnot cycle is illustrated in the given figure. Calculate the following parameters:</p> <p>(a) Ratio of work done in process 1 \rightarrow 2 and 2 \rightarrow 3, in terms of T_1 and T_2.</p> <p>(b) Show that T_2 cannot be zero or negative.</p> <p>(c) Show that Q/T is constant.</p>	2 4 2	3+2+1
Q7	<p>(a) A quantity of dry air at 27°C is compressed (i) slowly and (ii) suddenly to one third of its volume. Find the change in temperature in each case, assume $C_p/C_v = 1.4$ for dry air.</p> <p>(b) A mass m of a liquid at temperature T_1 is mixed with an equal mass of same liquid at temperature T_2. The system is thermally insulated; calculate the change of entropy of both liquids.</p> <p>(c) One mole of a gas at temperature T expands isothermally to four times of its volume. Calculate the change in its entropy in terms of gas constant.</p>	3 4 3	2+2+2

Constants: $e=1.6 \times 10^{-19} \text{ C}$; $h=6.626 \times 10^{-34} \text{ Js}$; $m=9.11 \times 10^{-31} \text{ kg}$; $c=3 \times 10^8 \text{ m/s}$; $k_B=1.38 \times 10^{-23} \text{ J/K}$;