JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT

MOOC End Term Examination-2025

B.Tech-VII Semester (CSE/IT)

COURSE CODE(CREDITS): 20B2WCI601

MAX. MARKS: 70

COURSE NAME: Introduction to Machine Learning

COURSE INSTRUCTORS: Ekta Gandotra

MAX. TIME: 3 Hours

Note: (a) All questions are compulsory.

(b) Marks are indicated against each question in square brackets.

(c) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

(d) Calculator is allowed.

Q. No		Ouestion	B/foul					
Q1.	You are given the training		Marks					
	You are given the training and testing errors of two machine learning models trained on the same dataset:							
	Model Model							
,		Training Error Testing Error						
	Model A	4% 22%						
	Model B	18% 20%						
		entify which model is overfitting and which is	3					
	underfitting. Explain yo	ur reasoning by relating the errors to bias and						
	variance.							
	b. Suggest suitable strategic	es to reduce overfitting and underfitting for the	3					
	respective models. 🛛 🥷							
Q2.	What is gradient descent?	xplain its purpose in optimization. Outline the	6					
	step-by-step process by wh	ich gradient descent is used to find the local						
	minimum of a differentiable	e cost function when fitting a regression line	4					
	y = mx + c	o cost function when fitting a regression line						
·								
, Q3.	Consider the logistic regress	ion hypothesis function	6					
		$h(X) = \frac{1}{1 + e^{-wX}}$						
		$1+e^{-wX}$	•					
	Dia har years V C P for	E 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	v.					
Con N	is sufficient). Based on these	weights $w \in \{0.5, 2, 10\}$. (A qualitative sketch	4.					
	How increasing the we	ight w changes the steepness of the sigmoid						
	curve.	ight wollanges the steephess of the signion	esta kirilini.					
	b. Why very large weights of	can cause overfitting in logistic regression.						
Q4.	Compute the first principal	component for the following 2-dimensional	6					
gilari Valday		rtion of total variance explained by the first and						
	second principal components		Take J. Y					
		(2) = (1,2), (3,3), (3,5), (5,4)						
<u> - </u>	== (-1)	2/ (-)-/) (-)-/) (-)-/) (-)-/)	· · · · · · · · · · · · · · · · · · ·					

	·	index and the second se						
•	Q5.	Describe step-by-step how Linear Discriminant Analysis transforms a	63.33					
	1	labeled dataset into a lower-dimensional space while maximizing class	1. 1. 1.					
	'	separability. Clearly define the within-class scatter matrix and between-						
		class scatter matrix, and explain how the optimal projection directions are						
		obtained using the generalized eigenvalue problem.						
•	Q6.	a. Given a feedforward neural network with an input layer of 3 neurons,						
	1000	one hidden layer with 4 neurons using ReLU activation, and an output layer with 2 neurons using softmax activation, how many weights and						
e e e e e	Carrier Services							
100	- 12.	biases are there in total?						
		b. Consider the following diagram of a single artificial neuron. The hode	1					
		has three inputs $x = (x1, x2, x3)$ that receive only binary signals						
	, .	(either 0 or 1).						
			,					
	· .							
٠.		$x_2 \longrightarrow (v) \longrightarrow y = \varphi(v)$						
		w ₃ /~						
		26						
		Suppose that the weights corresponding to the three inputs have the						
		values $w1 = 2$, $w2 = -4$ and $w3 = 4$ and the activation of the unit is	· · · . [
•		given by the following step-function						
			· · · · ·					
		$arphi(v) = \left\{egin{array}{ll} 1 & ext{if } v \geq 0 \\ 0 & ext{otherwise} \end{array} ight.$						
	- '	(U otherwise						
		Calculate the output value y of the unit for each of the following input	·					
.		patterns.						
		Pattern P1 P2 P3						
		x1 1 0 1						
		<u>x2 0 1 1</u>						
		X3 0 1 1	7. W					
	Q7.	Explain how bootstrapping is used in bagging. Describe the complete	6					
		process of training a bagged ensemble model using bootstrapped datasets,						
		and discuss how this approach helps in reducing variance. Provide a simple	19 19 19 19 19 19 19 19 19 19 19 19 19 1					
		numerical example to illustrate the concept.	+ 12 + 4					
er egeneration of the grade of the con- traction of the grade of the con- traction of the con-								
	Q8.	Explain the Expectation Maximization (EM) algorithm in the context of	6					
1 6 kgs (" \$ N.K \$. \$ 7	erroughts and court of the	clustering. Describe its key steps, including the E-step and M-step, and						
gravelet och		illustrate how the algorithm iteratively improves parameter estimates.	2 48 183					
orany bitaj	or could	Discuss the major advantages and disadvantages of using EM algorithm.	·					

ر ا	Q9.		An	aler dle a	DDdd	<u> </u>			1.				. j. j.	Į.	
•	Ų,		poir	ny ine it as C	ore. Bo	AN algorder, or	orithm t Noise	o the fo	ollowing	g datas	et and la	abel eac	ch data	ī	6
									.•			• • •			
	-	-	1	4(3, 7)	, B(4, 6	6), C(5, :	5), D(6,	4), E(7	', 3), F(6, 2), G	(7, 2), I	H(8, 4).			
:-						rs Epsile									
			follo	wing	distance	e matrix	м (в)	· 2, WIII	шицт.]	Points (minPts) = 3, a	nd the		
						·		,	 .						
				A	A 0	B	C	D	E	F	G	Н]		
				B		1.41	2.83	4.24	5.66	5.83	6.40	5.83			
	•		٠	C		 	0	2.83	4.24	4.47	5.00	4.47	K		
	:			D	 	<u> </u>		0	2.83	3.16	3.61	3 6			
				E				U	0	2.00	2.24	2.00			
				F			7		-	0	1.00	2.83	V		
	er er aller			G						-	0	2,24	•		
			•.	H								0			
	Q10.	Consider the following dataset.													
					ent ID		Hours	(H)	Atton	lance (.		
				A	1		High	(11)	2000	ood		esult Pass		,	
					2		High			oor .		Pass			
	er digete e koraj			<u> </u>	3	M	ledium		y -	ood		Pass			
				4 Medium Poor Fail											
	en la company		- -	• • • • • • • • • • • • • • • • • • • •	5	4	Low		G	ood		ail			
1.	4141 SM	ľ		(2	Low		Po	or	I	ail		•	
				<u> </u>		9000	High	_		ood	P	ass			
-			-				edium			od		ass			
.					$\frac{1}{2}$		Low High			or		ail			
							ııgıı		PC	or	<u> </u>	ass			
	erwini fi fi	A.	Co	moute	the Info	ormation	Gain (TC) for	1					•	
			Att	endan	ce) with	respect	to the o	lass Re	oom an ent	ributes	(Study	Hours	and	4	
4	N	Ъ.	T MAN	illiate	why s	selecting	Stude	nt ID	as the	ton f	eatura	basad			
			ANTIC	nman	JII Gaii	i is not a	ppropri	ate tor i	nredicti	na tha v	All Land	er Total en		· \. 2	
		Ö	Sta	te the i	najor li	mitation	of IG	in featu	re selec	tion an	d explai	in how	the	2	
		11-11	Gin	i Inde	k helps	to overc	ome thi	s limita	tion.						
0	11. 226	. a.:	Des	cribe 1	he arch	itecture	ofIII	don M.			- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	···			. '
		41.	the	Marko	V assui	mntion	on Hide and the	ien ivia	rkov M indon	odel. E	xplain t	he role	of	4	3
7	12.15	the Markov assumption and the output independence assumption, and discuss how these assumptions influence the behaviour of the model.													
£1.	9 - 10 - 10	υ.	Exp	iam go	ometri	c interpi	etation	of Sun	nort Ve	ctor-NA	anhina	c ·			
		ÚĶ.	on t	he dec	ision be	undarie	s, marg	ins and	support	vector	s Usino	oranhi	ng ral	4	
			exar	nple.		• •					- aouitg	Prabutt	-CII		
									<u>-</u>				. 		

Tariff Baring