JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION- 2025

B.Tech-VII Semester (CSE/IT)

COURSE CODE (CREDITS): 18B1WEC636 (2)

MAX. MARKS: 35

COURSE NAME: Fundamentals of Digital Signal Processing & Applications

COURSE INSTRUCTORS: Dr. Vikas Baghel

MAX. TIME: 2 Hours

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

(c) Use of a standard scientific calculator is allowed.

Q.No	Onorth	<u> </u>	1
Q.TIO	Question	CO	Marks
Q1	a) A continuous-time signal $x(t) = 3\cos(3000\pi t)$ is sampled with		[3]
	sampling frequency $fs = 4 kHz$. Derive the corresponding		
	discrete-time signal $x[n]$ and discuss how the chosen sampling		l.
	frequency affects the resulting sequence, specifically addressing		
	whether aliasing occurs.	·	
	b) For the filter $H(z) = \frac{1+z}{1-0.5z^{-1}}$, find the poles and zeros and sketch		[2]
	their approximate z-plane positions.		
Q2	a) Describe the design steps of a linear-phase FIR filter using the	[CO3]	[3]
	windowing method.		
	An FIR filter has coefficients $h[n] = \{1, -1, 2, -2\}$. Compute its		[3]
	magnitude response at $\omega = \pi/2$ and explain the result.		
Q3	a) Discuss the bilinear transform method for converting analog	[CO2]	[3]
i	filters into digital filters.		
	b) Using the bilinear transform, derive the difference equation of a		[3]
	digital integrator obtained from $H(s) = \frac{1}{s}$.		

Q4	a)	Compare Decimation-in-Time (DIT) FFT and Decimation-in-	[CO2]	[3]
		Frequency (DIF) FFT algorithms in detail.	-	
	b)	Compute the $8 - point$ DFT of $x[n] = \{1,1,1,1,0,0,0,0,0\}$ using		[3]
		either DIT or DIF, showing all major steps.		
Q5	a)	Compute the IDFT of the sequence $X[k] = \{4, 0, 0, 0\}$ and	[CO2]	[3]
		describe the resulting time-domain signal.		
	b)	Perform circular convolution of $x[n] = \{1,2,3,4\}$ and $h[n] = \{1,2,3,4\}$	V	[3]
		{4,3,2,1}.		
Q6	a)	A linear FMCW radar sweeps from 100 MHz to 120 MHz in	[CO4]	[3]
		1 ms . Calculate the sweep rate in Hz/s and interpret its physical		
,		significance.		
,	b)	A VoIP communication system records voice at a sampling rate of		[3]
		8 kHz and processes the audio in frames, each 20 ms long. After		
		encoding, every frame generates 64 bytes of data. Determine the		
		bit rate of the encoded voice stream in bits per second.		