JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION- 2025

B.Tech-III Semester (CSE/IT/ECE/CE/BT/BI)

COURSE CODE (CREDITS):25B11CE313 (3)

MAX. MARKS: 35

COURSE NAME: Fluid Mechanics

COURSE INSTRUCTORS: Ashish Kumar

MAX. TIME: 2 Hour

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

(c) Use of scientific calculator is allowed.

Q.No	Question	CO	Marks
Q1	Differentiate between Newtonian and Non Newtonian fluid. Compute the dynamic viscosity of liquid if kinematic viscosity is 6 stokes and specific gravity is 2.0.	1	3
Q2 (a)	Define the term velocity potential function and stream function.	3	2
Q2 (b)	The velocity potential function (ϕ) is given by an expression	3	4
	$\phi = -\frac{xy^3}{3} - x^2 + \frac{yx^3}{3} + y^2$		
	 (i) Find the velocity components in x and y direction. (ii) Show that (φ) represents a possible case of flow i.e. satisfies Laplace Equation. 		
Q3 (a)	Explain the term HGL and TEL in a pipe flow system	4	2
Q3 (b)	At a sudden enlargement of water main from 240 mm to 480 mm diameter, the hydraulic gradient rises by 10 mm. estimate the rate of flow.	4	5
Q4	Using the principle of dimensional analysis develop the expression for the drag force F on smooth sphere of diameter D, moving with a uniform velocity V in a fluid of density ρ and dynamic viscosity μ .	5	6
Q5	The difference in water surface levels in two tanks, which are connected by two pipes in series of length 300 m and 200 m and of diameters 300 mm and 400 mm respectively, is 12 m. Determine the rate of flow of water if coefficient of friction is 0.005. Consider minor losses	4	6
Q6 (a)	Differentiate between bluffed body and stream line body. Why stream line bodies are preferred over bluffed bodies. explain with suitable example.	6	3
Q6 (b)	Experiments were conducted in a wind tunnel with wind speed of 15 m/s on a flat plate having the area 5 m ² . The density of air is 1.15 kg/m ³ . The coefficient of drag and lift are 0.2 and 0.8 respectively. Determine (i) the lift and drag force and resultant force (ii) power exerted by air on the plate	6	4