JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION- 2025

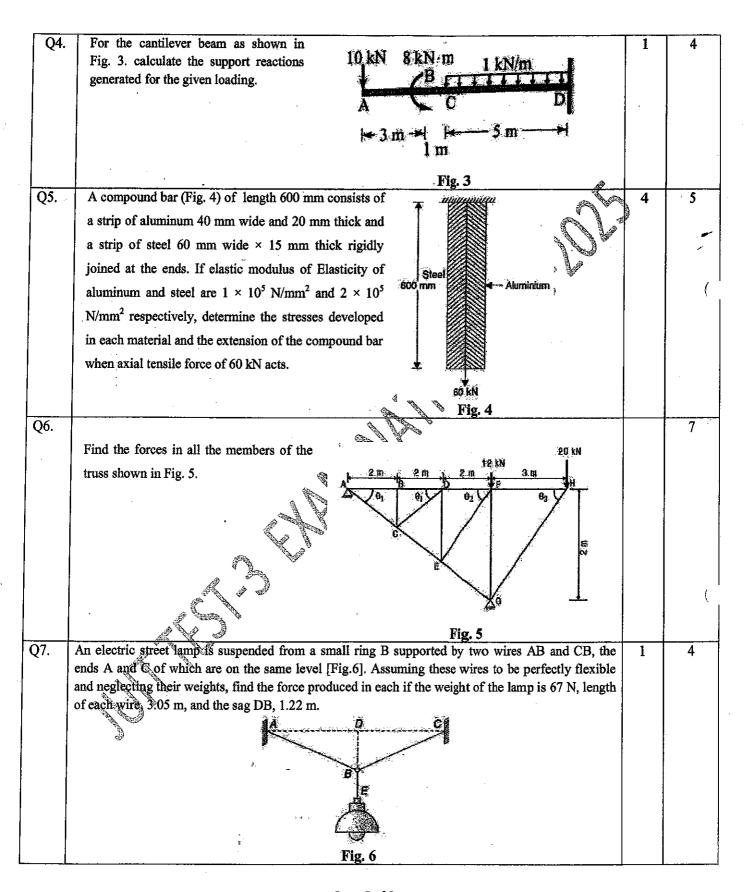
B.Tech- III Semester (CE)

COURSE CODE (CREDITS): 25B11CE311 (4)

MAX. MARKS: 35

COURSE NAME: ENGINEERING MECHANICS

MAX. TIME: 2 Hours


COURSE INSTRUCTORS: DR SAURAV

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

(c) Use of Non Programmable Scientific Calculator is allowed

Q.No	Questions	CO	Marks
Q1	i) Derive mathematical expression for the moment of inertia of a triangular section of width B and	3	4+2
	height H about its base using first-principle concepts.		
	ii) A hollow triangular section shown in Fig. 1 is symmetrical about its vertical axis. Find the		
	moment of inertia of the section about the base BC.		
			-
	100 mm	۱.	•
	60 nun		
	120 mm →	i	
	180 mm		
	Fig. 1		
Q2	Find the coordinates of the centroid of the	3	5
	Fig 2. Clearly mention the reference axis		
	and origin of the coordinate system.		
	Area of square		
	49 m ²		
	Fig. 2		·····
Q3.	A simply supported beam of length L and depth D is subjected to temperature change of T°C at	3	4
	bottom fibres, whereas at top fibres temperature is unchanged. If the temperature variation is linear		
	from top to bottom, then find the central deflection of the beam due to temperature effect.		

