JAYPEE UNIVERSITY OF INFORMATION TECHNOLOGY, WAKNAGHAT TEST -3 EXAMINATION- 2025

B.Tech-VI Semester (CE)

COURSE CODE (CREDITS): 18B11CE612 (3)

MAX. MARKS: 35

COURSE NAME: DESIGN OF STEEL STRUCTURES

COURSE INSTRUCTORS: Dr. KAUSHAL KUMAR

MAX. TIME: 2 Hours

Note: (a) All questions are compulsory.

(b) The candidate is allowed to make Suitable numeric assumptions wherever required for solving problems

(c) Scientific Calculator, IS800:2007, IS 808 or Steel Table is allowed.

Q.No	Question	*CO	Marks
Q1	Discuss in detail about mechanical properties of Steel Aso	1	TILALK
: .	Explain Residual Stresses and Stress Concentration in Steel	١.	
	design.	1	4
Q2			
Q2	Calculate the shear strength of 16 mm diameter bolt of grade 4.6.		
. :	The bolt is under triple shear as shown in the figure below.		}
		2	5
Q3	Two plates of thickness 12 mm and 10 mm are to be joined by a	····	
	groove weld. The joint is subjected to a factored tensile force of		en e
	250 kN. Assuming an effective length of 150 mm, check the safety		
	of the joint for Single-V groove weld joint. Assume Fe 410 grade	3	6
3	steel plates and that the welds are shop welded.		·
			i
	A tension member 3 m long carries a factored tensile load of 200		
	kN. Design a suitable single angle unequal section when		i
	connection is made with 20 mm diameter bolts of grade 4.6.	3	6
	Assume longer leg to be connected with plate.		

Q5	Design a laced column 10.5 m long to carry factored axial load of
	1000 kN. The column is restrained in position but not in direction
	at both the ends. Use 2 channel section placed as back-to-back as
	shown in the figure below.
Q6.	A cantilever beam of length 4.5 m supports a dead load (including
	self-weight) of 18 kN/m and a live load of 12 kN/m Assume a
	bearing length of 100 mm. Design the heart Check for web 5
	buckling and web cripling.